ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

PEARSON

Chapter 6 & 7: Field-Effect Transistors and Applications

© Modified by Yuttapong Jiraraksopakun ENE, KMUTT 2009

FETs vs. BJTs

Similarities:

- Amplifiers
- Switching devices
- Impedance matching circuits

Differences:

- FETs are voltage controlled devices. BJTs are current controlled devices.
- FETs have a higher input impedance. BJTs have higher gains.
- FETs are less sensitive to temperature variations and are more easily integrated on ICs.
- FETs are generally more static sensitive than BJTs.

FET Types

•JFET: Junction FET

•MOSFET: Metal–Oxide–Semiconductor FET

D-MOSFET: Depletion MOSFET**E-MOSFET:** Enhancement MOSFET

JFET Construction

There are two types of JFETs

•*n*-channel •*p*-channel

The n-channel is more widely used.

There are three terminals:

•Drain (D) and Source (S) are connected to the *n*-channel •Gate (G) is connected to the *p*-type material

PEARSON

JFET Operation: The Basic Idea

JFET operation can be compared to a water spigot.

The source of water pressure is the accumulation of electrons at the negative pole of the drain-source voltage.

The drain of water is the electron deficiency (or holes) at the positive pole of the applied voltage.

The control of flow of water is the gate voltage that controls the width of the n-channel and, therefore, the flow of charges from source to drain.

PEARSON

JFET Operating Characteristics

There are three basic operating conditions for a JFET:

- $V_{GS} = 0$, V_{DS} increasing to some positive value
- $V_{GS} < 0$, V_{DS} at some positive value
- Voltage-controlled resistor

JFET Operating Characteristics: $V_{GS} = 0 V$

Three things happen when $V_{GS} = 0$ and V_{DS} is increased from 0 to a more positive voltage

- The depletion region between p-gate and n-channel increases as electrons from n-channel combine with holes from p-gate.
- Increasing the depletion region, decreases the size of the n-channel which increases the resistance of the n-channel.
- Even though the n-channel resistance is increasing, the current (I_D) from source to drain through the nchannel is increasing. This is because V_{DS} is increasing.

JFET Operating Characteristics: Pinch Off

If $V_{GS} = 0$ and V_{DS} is further increased to a more positive voltage, then the depletion zone gets so large that it pinches off the n-channel.

This suggests that the current in the nchannel (I_D) would drop to 0A, but it does just the opposite-as V_{DS} increases, so does I_D .

JFET Operating Characteristics: Saturation

At the pinch-off point:

- Any further increase in V_{GS} does not produce any increase in I_D . V_{GS} at pinch-off is denoted as V_p .
- I_D is at saturation or maximum. It is referred to as I_{DSS}.
- The ohmic value of the channel is maximum.

JFET Operating Characteristics

As V_{GS} becomes more negative, the depletion region increases.

JFET Operating Characteristics

As V_{GS} becomes more negative:

- The JFET experiences pinch-off at a lower voltage (V_P).
- I_D decreases ($I_D < I_{DSS}$) even though V_{DS} is increased.
- Eventually I_D reaches 0 A. V_{GS} at this point is called V_p or $V_{GS(off)}$..

Also note that at high levels of V_{DS} the JFET reaches a breakdown situation. I_D increases uncontrollably if $V_{DS} > V_{DSmax}$.

ARSON Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

JFET Operating Characteristics: Voltage-Controlled Resistor

The region to the left of the pinch-off point is called the ohmic region.

The JFET can be used as a variable resistor, where V_{GS} controls the drain-source resistance (r_d) . As V_{GS} becomes more negative, the resistance (r_d) increases.

$$\mathbf{r_d} = \frac{\mathbf{r_o}}{\left(1 - \frac{\mathbf{V_{GS}}}{\mathbf{V_P}}\right)^2}$$

p-Channel JFETS

The *p*-channel JFET behaves the same as the *n*-channel JFET, except the voltage polarities and current directions are reversed.

p-Channel JFET Characteristics

Also note that at high levels of V_{DS} the JFET reaches a breakdown situation: I_D increases uncontrollably if $V_{DS} > V_{DSmax}$.

N-Channel JFET Symbol

JFET Transfer Characteristics

The transfer characteristic of input-to-output is not as straightforward in a JFET as it is in a BJT.

In a BJT, β indicates the relationship between I_B (input) and I_C (output).

In a JFET, the relationship of V_{GS} (input) and I_D (output) is a little more complicated:

$$\mathbf{I}_{\mathbf{D}} = \mathbf{I}_{\mathbf{DSS}} \left(1 - \frac{\mathbf{V}_{\mathbf{GS}}}{\mathbf{V}_{\mathbf{P}}} \right)^2$$

JFET Transfer Curve

Plotting the JFET Transfer Curve

Using I_{DSS} and Vp ($V_{GS(off)}$) values found in a specification sheet, the transfer curve can be plotted according to these three steps:

Step 1 $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$ Solving for $V_{GS} = 0V$ $I_D = I_{DSS}$

Solving for
$$V_{GS} = V_p (V_{GS(off)}) I_D = 0A$$

 $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2$

Step 3

Solving for
$$V_{GS} = 0V$$
 to V_p $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2$

JFET Specifications Sheet

Electrical Characteristics

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Charletter Date		20-225	-76	14352102	

OFF CHARACTERISTICS

Gate-Source Breakdown Voltage ($I_G = -10 \ \mu \text{ Adc}, V_{DS} = 0$)	V _{(BR)GSS}	-25	-	-	Vdc
$ \begin{array}{l} \mbox{Gate Reverse Current} \\ (V_{GS} = -15 \mbox{ Vdc}, V_{DS} = 0) \\ (V_{GS} = -15 \mbox{ Vdc}, V_{DS} = 0, T_A = 100^{\circ}\mbox{C}) \end{array} $	Loss	-	-	-1.0 -200	nAdc
Gate Source Cutoff Voltage (VDS = 15 Vdc, ID = 10 nAdc) 2N5457	V _{GS(off)}	-0.5	-	-6.0	Vdc
Gate Source Voltage (V _{DS} = 15 Vdc, 1 _D = 100 μAdc) 2N5457	V _{GS}	-	-2.5	-	Vde

ON CHARACTERISTICS

Zero-Gate-Voltage Drain Current* (V _{DS} = 15 Vdc, V _{GS} = 0)	2N5457	DSS	1.0	3.0	5.0	mAde
---	--------	-----	-----	-----	-----	------

SMALL-SIGNAL CHARACTERISTICS

Forward Transfer Admittance Common Source* (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz) 2N5457	lYel	1000	-	5000	µmhos
Output Admittance Common Source* (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)	lYod	-	10	50	µmhos
Input Capacitance (V _{DS} = 15 Vdc, V _{CS} = 0, f = 1.0 MHz)	Ciss	1997	4.5	7.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{OS} = 0, f = 1.0 MHz)	C _{rss}	1	1.5	3.0	pF

*Pulse Test: Pulse Width \$ 630 ms; Duty Cycle \$10%

JFET Specifications Sheet

Maximum Ratings

MAXIMUM RATINGS			
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	25	Vdc
Reverse Gate-Source Voltage	VGSR	-25	Vdc
Gate Current	IG	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.82	mW mW/°C
Junction Temperature Range	Tj	125	.c
Storage Channel Temperature Range	Tsig	-65 to +150	.C

more...

Case and Terminal Identification

GENERAL PURPOSE P-CHANNEL

MOSFETs

MOSFETs have characteristics similar to JFETs and additional characteristics that make then very useful.

There are two types of MOSFETs:

- Depletion-Type
- Enhancement-Type

Depletion-Type MOSFET Construction

The Drain (D) and Source (S) connect to the to *n*-doped regions. These *n*doped regions are connected via an *n*channel. This *n*-channel is connected to the Gate (G) via a thin insulating layer of SiO₂.

The *n*-doped material lies on a *p*-doped substrate that may have an additional terminal connection called Substrate (SS).

Basic MOSFET Operation

A depletion-type MOSFET can operate in two modes:

- Depletion mode
- Enhancement mode

D-Type MOSFET in Depletion Mode

Depletion Mode

The characteristics are similar to a JFET.

- When $V_{GS} = 0$ V, $I_D = I_{DSS}$
- When $V_{GS} < 0$ V, $I_D < I_{DSS}$
- The formula used to plot the transfer curve still applies:

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

PEARSON Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

D-Type MOSFET in Enhancement Mode

Enhancement Mode

- $V_{GS} > 0 V$
- I_D increases above I_{DSS}
- The formula used to plot the transfer curve still applies:

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

Note that V_{GS} is now a positive polarity

PEARSON Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

p-Channel D-Type MOSFET

D-Type MOSFET Symbols

Specification Sheet

Maximum Ratings

				2N3797
MAXIMUM RATINGS				CASE 22-03, STYLE 2 TO-18 (TO-206AA)
Rating	Symbol	Value	Unit	Gate
Drain-Source Voltage 2N3797	VDS	20	Vdc	
Gate-Source Voltage	Vcs	±10	Vdc	1 500
Drain Current	ID	20	mAdc	MOSFETs
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	mW mW/°C	LOW POWER AUDIO
	T _I	+175	°C	N-CHANNEL - DEPLETION
Junction Temperature Kange				a second s

more...

3 Drain

6 1 Source

Specification Sheet

Electrical Characteristics

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		8	(24	
Drain Source Breakdown Voltage (V _{CS} = -7.0 V, I _D = 5.0 μA)	2N3797	Vibriosx	20	25	1	Vdc
		lass	30	-	1.0 200	pAde
Gate Source Cutoff Voltage $(I_D = 2.0 \ \mu A, V_{DS} = 10 \ V)$	2N3797	V _{CS(off)}	14	-5.0	-7.0	Vdc
Drain-Gate Reverse Current (1) (V _{DG} = 10 V, I _S = 0)		loco		-	1.0	pAdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current $(V_{DS} = 10 V_v V_{GS} = 0)$	2N3797	lpss	2.0	2.9	6.0	mAde
On-State Drain Current $(V_{DS}=10~V,~V_{GS}\approx +3.5~V)$	2N3797	I _{D(m)}	9.0	14	18	mAde
SMALL-SIGNAL CHARACTERISTICS						
Forward Transfer Admistance (V _{DS} = 10 V, V _{CS} = 0, f = 1.0 kHz)	2N3797	(Yn)	1500	2300	3000	µmho
$(V_{\rm DS}=10~V,V_{\rm GS}=0,f=1.0~MHz)$	-2N3797		1500			
Output Admittance $(I_{DS}=10~V,~V_{GS}=0,~f=1.0~kHz) \label{eq:eq:admittance}$	2N3797	l Yod		27	60	µmho
Input Capacitance $(V_{DS}=10~V,~V_{GS}=0,~f=1.0~MHz)$	283797	C _{int}		6.0	8.0	pF
Reverse Transfer Capacitance (V _{DS} = 10 V, V _{OS} = 0, f = 1.0 MHz)		Cris	372	0.5	0.8	pF
FUNCTIONAL CHARACTERISTICS					-	
Noise Figure (V _{DS} = 10 V, V _{GS} = 0, f = 1.0 kHz, R _S = 3 megohms)		NF	-	3.8	-	dB

 This value of current includes both the PET leakage current as well as the leakage current associated with the test socket and fixture when measured under best attainable conditions.

E-Type MOSFET Construction

- The Drain (D) and Source (S) connect to the to *n*-doped regions. These *n*doped regions are connected via an *n*channel
- The Gate (G) connects to the *p*-doped substrate via a thin insulating layer of SiO₂
- There is no channel
- The *n*-doped material lies on a *p*-doped substrate that may have an additional terminal connection called the Substrate (SS)

Basic Operation of the E-Type MOSFET

The enhancement-type MOSFET operates only in the enhancement mode.

- V_{GS} is always positive
- As V_{GS} increases, I_D increases

E-Type MOSFET Transfer Curve

↓I_D(mA) $I_D(mA)$ $V_{GS} = +8 \text{ V}$ 10 To determine I_D given V_{GS}: 91 $I_{\rm D} = k(V_{\rm GS} - V_{\rm T})^2$ $V_{GS} = +7 \text{ V}$ $V_{GS} = +6 \text{ V}$ Where: $V_{GS} = +5 \text{ V}$ V_T = threshold voltage $V_{GS} = +4 \text{ V}$ $V_{GS} = +3 \text{ V}$ or voltage at which the 4 5 6 7 VGS 0 10 15 20 25 3 **MOSFET turns on** $V_{GS} = V_T = 2 V$

k, a constant, can be determined by using values at a specific point and the formula:

$$k = \frac{I_{D(ON)}}{(V_{GS(ON)} - VT)^2}$$

V_{DSsat} can be calculated by:

$$V_{Dsat} = V_{GS} - V_T$$

EARSON Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

p-Channel E-Type MOSFETs

The *p*-channel enhancement-type MOSFET is similar to the *n*channel, except that the voltage polarities and current directions are reversed.

MOSFET Symbols

Specification Sheet

Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDS	25	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage*	V _{GS}	30	Vdc
Drain Current	Ip	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 1.7	mW mW/'C
Junction Temperature Range	T	175	·C
Storage Temperature Range	Tatg	-65 to +175	'C

more...

PEARSON

Specification Sheet

Electrical Characteristics

	Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTI	CS	0			
Drain-Source Breakdown ($l_D = 10 \ \mu A$, $V_{GS} = 0$	Voltage)	V _{(BR)DSX}	25	-	Vde
Zero-Gate-Voltage Drain ((V _{DS} = 10 V, V _{GS} = 0)	Current $T_A = 25^{\circ}C$ $T_A = 150^{\circ}C$	L _{DSS}	1.1	10 10	nAdo µAdo
Gate Reverse Current ($V_{GS} = \pm 15$ Vdc, V_{DS}	= 0)	I _{ass}	-	± 10	pAde
ON CHARACTERISTIC	S				
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 10	μΑ)	V _{GS(Th)}	1.0	5	Vdc
Drain-Source On-Voltage (1 _D = 2.0 mA, V _{GS} = 1	0V)	V _{DS(oe)}	-	1.0	v
On-State Drain Current (VGS = 10 V, VDS = 1	0 V)	I _{D(ce)}	3.0	-	mAda
SMALL-SIGNAL CHAP	RACTERISTICS				
Forward Transfer Admitta (V _{DS} = 10 V, I _D = 2.0	nce mA, $f = 1.0 \text{ kHz}$)	y _{fs}	1000	E.	µmbo
Input Capacitance (V _{DS} = 10 V, V _{GS} = 0,	f = 140 kHz)	Cim	3	5.0	pF
Reverse Transfer Capacita (V _{DS} = 0, V _{GS} = 0, f =	nce	C _{ns}	520	1.3	pF
Drain-Substrate Capacitan (V _{D(SUB)} = 10 V, f =	ce 140 kHz)	Cd(sub)	1	5.0	pF
Drain-Source Resistance (V _{GS} = 10 V, I _D = 0, f	= 1.0 kHz)	fdi(on)	-	300	ohms
SWITCHING CHARAC	TERISTICS			11. 20	
Turn-On Delay (Fig. 5)		lai	1.20	45	ns
Rise Time (Fig. 6)	$I_D = 2.0 \text{ mAde}, V_{DS} = 10 \text{ Vde},$	t,		65	ns
Turn-Off Delay (Fig. 7)	(VGS = 10 V0C) (See Figure 9: Times Circuit Determined)	1 _{d2}	-	60	ns
Fall Time (Fig. 8)	fine (Pare 1) (men enem resemment)	4	0440	100	ns

PEARSON

Handling MOSFETs

MOSFETs are very sensitive to static electricity. Because of the very thin SiO_2 layer between the external terminals and the layers of the device, any small electrical discharge can create an unwanted conduction.

Protection

- Always transport in a static sensitive bag
- Always wear a static strap when handling MOSFETS
- •
- Apply voltage limiting devices between the gate and source, such as back-to-back Zeners to limit any transient voltage.

VMOS Devices

VMOS (vertical MOSFET) increases the surface area of the device.

Advantages

- VMOS devices handle higher currents by providing more surface area to dissipate the heat.
- VMOS devices also have faster switching times.

CMOS Devices

CMOS (complementary MOSFET) uses a *p*-channel and *n*-channel MOSFET; often on the same substrate as shown here.

Advantages

- Useful in logic circuit designs
- Higher input impedance
- Faster switching speeds
- Lower operating power levels

Summary Table

Common FET Biasing Circuits

JFET Biasing Circuits

- Fixed Bias
- Self-Bias
- Voltage-Divider Bias

D-Type MOSFET Biasing Circuits

•Self-Bias

•Voltage-Divider Bias

E-Type MOSFET Biasing Circuits

Feedback ConfigurationVoltage-Divider Bias

Basic Current Relationships

For all FETs:

$$I_G \cong 0A$$

 $I_D = I_S$

For JFETS and D-Type MOSFETs:

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

For E-Type MOSFETs:

$$I_{\rm D} = k(V_{\rm GS} - V_{\rm T})^2$$

Fixed-Bias Configuration

Fixed-Bias Configuration

Self-Bias Configuration

Self-Bias Calculations

For the indicated loop, $V_{GS} = -I_D R_S$

To solve this equation:

- Select an $I_D < I_{DSS}$ and use the component value of R_S to calculate V_{GS}
- Plot the point identified by I_D and V_{GS} . Draw a line from the origin of the axis to this point.
- Plot the transfer curve using I_{DSS} and $V_P (V_P = V_{GSoff} \text{ in specification sheets})$ and a few points such as $I_D = I_{DSS}/4$ and $I_D = I_{DSS}/2$ etc.

The Q-point is located where the first line intersects the transfer curve. Use the value of I_D at the Q-point (I_{DQ}) to solve for the other voltages:

$$V_{DS} = V_{DD} - I_D(R_S + R_D)$$
$$V_S = I_DR_S$$
$$V_D = V_{DS} + V_S = V_{DD} - V_{RD}$$

ARSON Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Self-Bias Configuration

Voltage-Divider Bias

 $I_G = 0 A$

 I_D responds to changes in $V_{GS}\mbox{.}$

Voltage-Divider Bias Calculations

V_G is equal to the voltage across divider resistor R₂:

$$\mathbf{V}_{\mathbf{G}} = \frac{\mathbf{R}_{2}\mathbf{V}_{\mathbf{D}\mathbf{D}}}{\mathbf{R}_{1} + \mathbf{R}_{2}}$$

Using Kirchhoff's Law:

$$\mathbf{V}_{\mathbf{GS}} = \mathbf{V}_{\mathbf{G}} - \mathbf{I}_{\mathbf{D}}\mathbf{R}_{\mathbf{S}}$$

The Q point is established by plotting a line that intersects the transfer curve.

Voltage-Divider Q-point

Step 1

Plot the line by plotting two points: $\cdot V_{GS} = V_G$, $I_D = 0 A$

 $\bullet \mathbf{V}_{GS} = \mathbf{0} \mathbf{V}, \mathbf{I}_{D} = \mathbf{V}_{G} / \mathbf{R}_{S}$

Step 2

Plot the transfer curve by plotting I_{DSS} , V_P and the calculated values of I_D

Step 3

The Q-point is located where the line intersects the transfer curve

Voltage-Divider Bias Calculations

Using the value of I_D at the Q-point, solve for the other variables in the voltagedivider bias circuit:

$$V_{DS} = V_{DD} - I_D (R_D + R_S)$$
$$V_D = V_{DD} - I_D R_D$$
$$V_S = I_D R_S$$
$$I_{R1} = I_{R2} = \frac{V_{DD}}{R_1 + R_2}$$

Voltage-Divider Bias Calculations

D-Type MOSFET Bias Circuits

Depletion-type MOSFET bias circuits are similar to those used to bias JFETs. The only difference is that depletion-type MOSFETs can operate with positive values of V_{GS} and with I_D values that exceed I_{DSS} .

Self-Bias

Step 1

Plot line for

$$V_{GS} = -I_D R_S$$

Step 2

Plot the transfer curve using I_{DSS}, V_{P} and calculated values of I_{D}

Step 3

The Q-point is located where the line intersects the transfer curve. Use the I_D at the Q-point to solve for the other variables in the voltage-divider bias circuit.

These are the same steps used to analyze JFET self-bias circuits.

PEARSON

Self-Bias

Voltage-Divider Bias

Step 1

Plot the line for

$$\bullet \mathbf{V}_{GS} = \mathbf{V}_{G}, \mathbf{I}_{D} = \mathbf{0} \mathbf{A}$$
$$\bullet \mathbf{I}_{D} = \mathbf{V}_{G}/\mathbf{R}_{S}, \mathbf{V}_{GS} = \mathbf{0} \mathbf{V}$$

Step 2

Plot the transfer curve using I_{DSS} , V_P and calculated values of I_D .

Step 3

The Q-point is located where the line intersects the transfer curve is. Use the I_D at the Q-point to solve for the other variables in the voltage-divider bias circuit.

These are the same steps used to analyze JFET voltage-divider bias circuits.

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Voltage-Divider Bias

E-Type MOSFET Bias Circuits

The transfer characteristic for the e-type MOSFET is very different from that of a simple JFET or the d-type MOSFET.

Feedback Bias Circuit

Feedback Bias Q-Point

Step 3

The Q-point is located where the line and the transfer curve intersect

Step 4

Using the value of I_D at the Q-point, solve for the other variables in the bias circuit

Feedback Bias Circuit

Voltage-Divider Biasing

Plot the line and the transfer curve to find the Q-point. Use these equations:

$$V_{G} = \frac{R_{2}V_{DD}}{R_{1} + R_{2}}$$
$$V_{GS} = V_{G} - I_{D}R_{S}$$
$$V_{DS} = V_{DD} - I_{D}(R_{S} + R_{D})$$

Voltage-Divider Bias Q-Point

Step 1

Plot the line using

•
$$V_{GS} = V_G = (R_2 V_{DD}) / (R_1 + R_2), I_D = 0 A$$

• $I_D = V_G / R_S, V_{GS} = 0 V$

Step 2

Using values from the specification sheet, plot the transfer curve with

•
$$V_{GSTh}$$
, $I_D = 0 A$
• $V_{GS(on)}$, $I_{D(on)}$

Step 3

The point where the line and the transfer curve intersect is the Q-point.

Step 4

Using the value of I_D at the Q-point, solve for the other circuit values.

Voltage-Divider Biasing

p-Channel FETs

For *p*-channel FETs the same calculations and graphs are used, except that the voltage polarities and current directions are reversed.

The graphs are mirror images of the *n*-channel graphs.

Applications

Voltage-controlled resistor JFET voltmeter Timer network Fiber optic circuitry MOSFET relay driver

Homework 4 (Chapter 6)

- Transfer Characteristics
 - 6.3 (11, 12)
- Depletion-Type MOSFET
 - 6.7 (28)
- Enhancement-Type MOSFET
 - 6.8 (33, 36)

Homework 4 (Chapter 7)

• Fixed-biased

– 7.2 (1)

- Self-biased
 - 7.3 (6)
- Voltage-Divider
 - 7.4 (12)
- Depletion-Type
 - 7.5 (18)
- Enhancement-Type
 - 7.6 (20)