

Course Specifications

Course Title:	Sets and Algebraic Structures
Course Code:	23042103-4
Program:	Bachelor of Mathematics
Department:	Mathematics Department
College:	Jamoum University College
Institution:	Umm Al-Qura University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes4	
1. Course Description	4
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities	
1.Learning Resources	6
2. Facilities Required	7
G. Course Quality Evaluation7	
H. Specification Approval Data7	

A. Course Identification

1. Credit hours: [£] hours		
2. Course type		
a. University College Department Others		
b. Required Elective		
3. Level/year at which this course is offered: Third Level / Second Year		
4. Pre-requisites for this course (if any): Does not exist		
5. Co-requisites for this course (if any): Does not exist		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	4 Hours /Week	100%
2	Blended	*	0%
3	E-learning	۲	0%
4	Correspondence	*	0%
5	Other	4	0%

7. Actual Learning Hours (based on academic semester)

No	Activity	Learning Hours				
Conta	Contact Hours					
1	Lecture	(4 hours) x (15 weeks)				
2	Laboratory/Studio	0				
3	Tutorial	(1 hour) x (15 weeks)				
4	Others (specify)	0				
	Total	75 hours				
Other	Learning Hours*					
1	Study	(1 hour) x (15 weeks)				
2	Assignments	(1 hour) x (15 weeks)				
3	Library	(1 hour) x (15 weeks)				
4	Projects/Research Essays/Theses	(1 hour) x (15 weeks)				
5	Others (specify)	0				
	Total	60 hours				

* The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

B. Course Objectives and Learning Outcomes

1. Course Description

The name "algebra" comes from the title of the book Hisab al-jabr w'al-muqabala by Abu Ja'far Muhammad ibn Musa Al-Khwarizmi, a Persian mathematician who lived in Baghdad early in the Islamic era (and whose name has given us the word 'algorithm' for a procedure to carry out some operation). Al-Khwarizmi was interested in solving various algebraic equations (especially quadratics), and his method involves applying a transformation to the equation to put it into a standard form for which the solution method is known. In this elementary introductory course we develop much of the language and many of the basic concepts of sets in fairly simple contexts.Some topics we could discuss include:

What exactly are the sets, and how are operations on them defined?

Do union and intersection of sets behave like addition and multiplication of numbers? What about composition of permutations?

What are the "usual laws"? What consequences do they have?

In this course, in addition, we will define and study slightly two kinds of algebraic object: rings, with operations of addition, multiplication, and groups, with just one operation (like multiplication or composition). We use simplicity: groups are in some ways simpler, having just a single operation, but rings are more familiar since the integers make a good prototype to think about.

2. Course Main Objective

This course will provide a common mathematical foundation for students in all of the programs, drawing upon the full range of undergraduate courses in mathematics.

In addition, it will permit students to build upon and share knowledge already acquired while pointing out areas in which additional study may be needed. In addition, it will develop the communication skills and understanding of the process of doing mathematics necessary for graduate-level study.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge:	
1.1	Define logical equivalence, quantifiers and the contrapositive of a	
	conditional statement	
1.2	State the basic rules of logical equivalence	
1.3	Identify different methods of proofs	
1.4	Outline the main properties of the different types of sets	
1.5	Recognize groups, subgroups, rings and subgroups.	
2	Skills :	
2.1	Show the fact that a proposition is true or false	
2.2	Examine the relation between the elements of a set A and the elements	
	of a set B	
2.3	Demonstrate that a group is cyclical	
2.4	Summarize the main properties of rings	
3	Competence:	
3.1	Exemplify important concepts in specific cases	
3.2	Formulate important results and theorems covered by the course	
3.3	Analyze information presented verbally and translate it into mathematical form	
3.4	Use appropriate mathematical models, formulae or techniques to	

CLOs	Aligned PLOs
 process information and to draw relevant conclusions	

C. Course Content

No	List of Topics	Contact Hours
1	Sets, Operations on Sets, Cartesian product of sets	8
2	Mathematical Logic and Methods of Proof, integers, primes and division algorithm.	۱۲
3	Relations and Mappings, Binary Operations and closure, commutative and associative properties, identity and inverse elements	12
4	Introduction of groups: examples	٨
5	Cyclic Groups, permutations and the symmetric groups: examples	١٢
6	Rings: Definition and examples	٨
	Total	٦٠

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge		
1.1	Define logical equivalence, quantifiers and the contrapositive of a conditional statement	Lecture Tutorials	Exams (Quizzes, Midt and Final). Written possibly oral exam at the of the course. In addit compulsory work may given during the course
1.2	State the basic rules of logical equivalence	Lecture Tutorials	is (Qu Final). Dly oral e cour: e cour: ulsory during
1.3	Identify different methods of proof	Lecture Tutorials	(Quizzes, inal). Wri oral exam course. In cory work uring the co
1.4	Outline the main properties of the different types of sets	Lecture Tutorials	es, Midterm Written and am at the end In addition, ork may be course
1.5	State groups, subgroups, rings and subgroups.	Lecture Tutorials	Midterm en and t the end addition, may be rse
2.0	Skills		
2.1	Show the fact that a proposition is true or false	Lecture Individual or group work	Exams (Qu Final). Homework
2.2	Examine the relation between the elements of a set A and the elements of a set B	Lecture Individual or group work	(Quizzes, vork
2.3	Demonstrate that a group is cyclical	Lecture Individual or group work	s, Midterm
2.4	Summarize the main properties of rings	Lecture Individual or group work	rm and
3.0	Competence		
3.1	Exemplify important concepts in specific cases		Exams (Quizzes , Midterm and Final). Research Essays
3.2	Formulate important results and	Lecture	s n h

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
	theorems covered by the course	Individual or group work	
3.3	Analyze information presented verbally and translate it into mathematical form	Lecture Individual or group work	
3.4	Use appropriate mathematical models, formulae or techniques to process information and to draw relevant conclusions	Lecture Individual or group work	

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Pentage of Total Assessment Score
1	Midterm 1	6 th week	20%
2	Midterm 2	12 th week	20%
3	Homework + reports + Quizzes	During semester	10%
4	Final exam	End of semester	50 %

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

All faculty members are required to be in their offices outside teaching hours. Each member allocates at least 4 hours per week to give academic advice to students and to better explain the concepts seen during the lectures.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	Guide to Abstract Algebra by: Carol Whitehead, Edited by David Towers Edition 2nd Edition ISBN:9780333794470
Essential References Materials	 A First Course in Abstract Algebra, 7th Edition 7th edition, by John B. Fraleigh; Publisher: Pearson; 7 edition (November 16, 2002) ISBN-10: 0201763907:ISBN-13: 978-0201763904 Modern Algebra: An Introduction 6th Edition, by John R. Durbin; Publisher: Wiley; 6 edition (December 31, 2008) ISBN-10: 0470384433 ISBN-13: 978-0470384435
Electronic Materials	None
Other Learning Materials	None

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Large classrooms that can accommodate more than 30 students
Technology Resources (AV, data show, Smart Board, software, etc.)	Data Show, Smart Board
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment	Students	Direct
Quality of learning resources	Students	Direct
Extent of achievement of course learning outcomes	Faculty Member	Direct

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Council of the Mathematics Department
Reference No.	
Date	