

Course Specifications

Course Title:	Rings and fields theory
Course Code:	2304342-3
Program:	Bachelor of Mathematics
Department:	Mathematics Department
College:	Jamoum University College
Institution:	Umm Al-Qura University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	5
D. Teaching and Assessment	5
1. Alignment of Course Learning Outcomes with Teaching Strategies a Methods	
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support	7
F. Learning Resources and Facilities	7
1.Learning Resources	7
2. Facilities Required	8
G. Course Quality Evaluation	8
H Specification Approval Data	Q

A. Course Identification

1. Credit hours: 3 credit hours			
2. Course type			
a. University College Department $\sqrt{}$ Others			
b. Required $\sqrt{}$ Elective			
3. Level/year at which this course is offered: 8 th level			
4. Pre-requisites for this course (if any): Introduction to Group Theory			
5. Co-requisites for this course (if any):			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage	
1	Traditional classroom	13.5	30	
2	Blended	13.5	30	
3	E-learning	7	15	
4	Correspondence	7	15	
5	Other	4	10	

7. Actual Learning Hours (based on academic semester)

No	Activity	Learning Hours
Conta	et Hours	·
1	Lecture	30
2	Laboratory/Studio	0
3	Tutorial	15
4	Others (specify)	0
	Total	45
Other	Learning Hours*	·
1	Study	70
2	Assignments	15
3	Library	0
4	Projects/Research Essays/Theses	0
5	Others (specify)	20
	Total	105

^{*} The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

B. Course Objectives and Learning Outcomes

B. Course Objectives and Learning Outcomes	
1. Course Description	
2. Convers Main Objective	_
2. Course Main Objective	

The main purpose of this course are learning basic facts of rings and fields theory, integral domains, the field of quotients of an integral domain, rings of polynomials

over a field and their factorizations, the evaluation homeomorphisms for field theory, homeomorphisms and factor rings, Prime and maximal ideals, introduction to extension fields. Namely the topics are:

- 1-Rings and fields: Definitions and basic examples substructures of rings, ideals 2-Integral domain, the field of fractions of an integral domain.
- 3-Rings of polynomials and factorization of polynomials over a field 4-Isomorphism theorems of rings
- 5-Prime and Maximal ideals
- 6-Introduction to extension fields and some examples of finite fields.
- 7-Principal ideal domain (PID), Unique factorization domain (UFD), Euclidean domain (ED)

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge:	
1.1	To name Rings and fields	
1.2	To list Integral domain, and describe the field of fractions of an integral domain	
1.3	to reproduce and outline Rings of polynomials and factorization of polynomials over a field	
1.4	to recall Isomorphism theorems of rings	
1.5	To define Prime and Maximal ideals	
1.6	To define extension fields and outline some examples of finite fields.	
1.7	to recall Principal ideal domain (PID), Unique factorization domain (UFD), Euclidean domain (ED)	
2	Skills:	
2.1	To interpret Rings and fields	
2.2	To analyze Integral domain, and evaluate the field of fractions of an integral domain	
2.3	to develop and reconstruct Rings of polynomials and factorization of polynomials over a field	
2.4	to use Isomorphism theorems of rings	
2.5	To calculate Prime and Maximal ideals	
2.6	To reconstruct extension fields and develop some examples of finite fields.	
2.7	to construct Principal ideal domain (PID), Unique factorization domain (UFD), Euclidean domain (ED)	
2.8	Demonstrate communication skills with the teacher and other students in the class.	
2.9	Reading and solving basic facts of algebraic structures.	
3	Competence:	
3.1	Demonstrate communication skills with the teacher and other students in the class. Show ability for mental	
	mathematics.	
3.2	Reading and solving basic facts of algebraic structures such	

CLOs	Aligned PLOs
as rings and fields. Show ability for mental mathematics.	

C. Course Content

No	o List of Topics			
1	Rings and fields: Definitions and basic examples substructures of rings, ideals	6		
2	Integral domain, the field of fractions of an integral domain	6		
3	Rings of polynomials and factorization of polynomials over a field			
4	Isomorphism theorems of rings			
5	Prime and Maximal ideals			
6	Introduction to extension fields and some examples of finite fields.	6		
7	Principal ideal domain (PID), Unique factorization domain (UFD), Euclidean domain (ED)	9		
	Total			

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

	Assessment Methods				
Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods		
1.0	Knowledge				
1.1	To name Rings and fields				
1.2	To list Integral domain, and describe the field of fractions of an				
	integral domain				
1.3	to reproduce and outline Rings of				
	polynomials and factorization of polynomials over a field				
1.4	to recall Isomorphism theorems of				
	rings				
1.5	To define Prime and Maximal	Lectures, Tutorials	Written Exams		
	ideals	and exams			
1.6	To define extension fields and				
	outline some examples of finite				
	fields.				
1.7	to recall Principal ideal domain				
	(PID), Unique factorization				
	domain (UFD), Euclidean				
	domain (ED)				
2.0	Skills				

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
2.1 2.2 2.3	To interpret Rings and fields To analyze Integral domain, and evaluate the field of fractions of an integral domain to develop and reconstruct Rings of polynomials and factorization of polynomials over a field	Lectures and Tutorials	Written Exams
2.4	to use Isomorphism theorems of rings		
2.5	To calculate Prime and Maximal ideals		
2.6	To reconstruct extension fields and develop some examples of finite fields.		
2.7	to construct Principal ideal domain (PID), Unique factorization domain (UFD), Euclidean domain (ED)	Lectures, Tutorials and exams	Mid-term Exams
2.8	Demonstrate communication skills with the teacher and other students in the class.		
2.9	Reading and solving basic facts of algebraic structures.		
3.0	Competence		
3.1	Demonstrate communication skills with the teacher and other students in the class. Show ability for mental mathematics.	Brainstorming: A Method of solving problems in which all members of a group suggest ideas	
3.2	Reading and solving basic facts of algebraic structures such as rings and fields. Show ability for mental mathematics.		

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Midterm Test (1)	6 th week	20%
2	Midterm Test (2)	12 th week	20%
3	Homework + Reports + Quizzes	During the semester	10%
4	Final Examination	End of semester	50%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

- -Each group of students is assigned to a particular faculty where he or she will provide academic advising during specific academic hours. Each staff will provide at least one session/week.
- -There will be an academic advisor how will be a responsible for helping the student by doing the general supervision.
- The people in the library will support the students during the time of the course.

F. Learning Resources and Facilities

1.Learning Resources

1.Learning Resources	
Required Textbooks	- The book: A First Course in Abstract Algebra, 7th
	Edition 7th Edition, by John B. Fraleigh; Publisher:
	Pearson; 7 edition (November 16, 2002) Language:
	English ISBN-10: 0201763907:ISBN-13: 978-
	0201763904 - Abstract Algebra by D. Dummit and R.
	Foote; Publisher: Wiley; 3 edition (July 14,
	2003) Language: English ISBN-10: 0471433349 ISBN-
	13: 978-0471433347 -Algebra by Hungerford; Publisher:
	Springer; 8 edition (February 14, 2003) Language:
	EnglishISBN-10: 0387905189ISBN-13: 978-0387905181
	N. 1 . A. 1 . A. T 1 . C. 1 . T. 1
Essential References Materials	- Modern Algebra: An Introduction 6th Edition, by John
	R. Durbin; Publisher: Wiley; 6 edition (December 31,
	2008) Language: English ISBN-10: 0470384433 ISBN-
	13: 978-0470384435 - Notes on Algebraic Structures by:
	Peter J. Cameron:
	http://www.maths.qmul.ac.uk/~pjc/notes/algstr.pdf
	1 13 3 1
Electronic Materials	1. ABSTRACT ALGEBRA ONLINE STUDY
	GUIDE
	(http://www.math.niu.edu/~beachy/abstract_algebr

> 7 (b T	a/study_guide/contents.html)
	2.	https://en.wikipedia.org/wiki/Ring_theory
	3.	https://en.wikipedia.org/wiki/Algebraic_structure
	4.	http://mathworld.wolfram.com/topics/RingTheory.html
	5.	http://mathworld.wolfram.com/topics/FieldTheory.html
Other Learning Materials	Microsoft Excel	

2. Facilities Required

2. Facilities Required				
Item	Resources			
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 -The size of the room should be proportional to the number of students - Provide enough seats for students. - The number of student not exceed on 30 in the classroom - Library 			
Technology Resources (AV, data show, Smart Board, software, etc.)	-Hall is equipped with a computer Provide overhead projectors and related items -Smart board			
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	none			

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	