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A B S T R A C T  
 

The kinetics and mechanistic aspects of oxidation of two aminoglycoside antibiotics, namely, neomycin and 

streptomycin by permanganate ion (MnO4
-) in alkaline solutions were examined spectrophotometrically. The 

stoichiometry of the reactions between the investigated antibiotics and MnO4
- were set to be 8.0  0.3 mol. The 

reactions exhibited first order dependence regarding to [MnO4
-] and less-than unit order dependences with respect 

to antibiotics and OH- concentrations. Under the same investigational conditions, the rate of oxidation of streptomycin 
was found to be about seven times more than that of neomycin. The impact of ionic strength of the reactions medium 

was explored which revealed that as the ionic strength increases the oxidation rates are also increased. Also, the 

influence of temperature was studied and the activation parameters were calculated and discussed. The plausible 
reactions mechanism was proposed and the appropriate rate-law expression consisted with the acquired 

investigational kinetic results was derived. 

 

1. Introduction 

Antibiotics, a kind of pharmaceutical drugs, are composed of 

synthetic or natural organic compounds employed to cure, treat 

or prevent human and animal diseases.  However, antibiotics are 

regarded as one of the dangerous pollutants for the environment and 

human health if they reach to the environment because they contain 

complex organic compounds in their structures [1]. It was reported [2-

10] that antibiotics are greatly susceptible to oxidation which can be a 

relatively common technique for antibiotics degradation [3,6]. Hence, 

oxidation of antibiotics is regarded as a presumed way for removal of 

antibiotics from the environment to care for the human health. During 

the oxidation process, oxidizing agents convert the polluted substances 

to less harmful ones that are safe to be discharged into the environment 

[3,5,7,10]. Furthermore, study of the kinetics of oxidation of 

antibiotics have significantly help in identifying the mechanism of 

conversions of such organic compounds in biological systems. A 

detailed literature review revealed little published studies on the 

kinetics of oxidative removal of antibiotics in different media [2-5,8-

10].  

 

   
                 (a)                                                   (b)         

Figure 1: Chemical structures of (a) streptomycin (STR) and (b) neomycin 

(NOM). 

In the light of the above mentioned aspects, this investigation deals 

with the kinetics and mechanism of oxidation of two aminoglycoside 

antibiotics, viz. neomycin and streptomycin, (their structures are 

illustrated in Figure 1) using one of the supreme significant, powerful, 

cheap and green oxidants, namely, permanganate ion (MnO4
-) [11-15] 

in alkaline solutions. This investigation aimed to explore the 

selectivity of the examined antibiotics towards permanganate ion 

oxidant and to comprehend the reactive species of both reactants in 

alkaline solutions. The activation parameters were planned to 

determine and discuss. Furthermore, the study is extended to propose 

a plausible reactions mechanism as well as to establish the rate-law 

expression consistent with the obtained kinetic results.  

2. Results and Discussion 

2.1. Spectral Changes 

Spectral changes during the oxidation of neomycin (NOM) and 

streptomycin (STP) by permanganate ion are shown in Figure 2 (a) 

and (b), respectively. These figures showed a continuous decay of 

MnO4
─ ion band at  = 526 nm as the reactions advanced. This 

behavior indicated reduction of permanganate ion as a result of 

oxidation of such antibiotics. From Figure 2, it can be observed that 

the rate of oxidation of streptomycin was significantly higher than that 

of neomycin under the same investigational conditions which may be 

due to the structural difference between the two antibiotics and 

presence of two very reactive guanidine groups (–NH=C(NH2)2) in 

streptomycin. A careful examination of the spectral scans in case of 

neomycin antibiotic, shown in Figure 3(a,b), confirmed construction 

of MnVI intermediate by detecting the new peak at 606 nm [13]. Also, 

additional proof of the construction of MnVI transient species was the 

continued appearance of the green color as the oxidation reactions 

proceeded [11,12,15].    

 
                         (a)                                                (b) 

Figure 2: Spectral changes during oxidation of: (a) neomycin (NOM) and (b) 

streptomycin (STP) by alkaline permanganate. [MnO4
-] = 4.0 x 10-4, [A] = 5.0 

x 10-3, [OH-] = 5.0 x 10-3 and I = 0.1 mol dm-3 at T = 298 K. 
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                       (a)                                                 (b) 

Figure 3: Spectral changes during: (a) construction, and (b) decay of MnVI 

intermediate complex in the oxidation of neomycin by alkaline permanganate. 

[MnO4
-] = 4.0 x 10-4, [NOM] = 5.0 x 10-3 and I = 0.1 mol dm-3 at T = 298 K. 

2.2. Reactions Stoichiometry  

A set of reaction mixtures containing various ratios of antibiotic, 

[A] / [MnO4
─], were equilibrated in a dark place for about 24 h until 

completion of the reactions in all mixtures at constant [OH-] and at 

room temperature. Determination of unreacted [MnO4
─] 

spectrophotometrically at λmax = 526 nm indicated that the 

stoichiometric ratios of ([MnO4
─] / [A]0), were set to be 8.0  0.3 mol, 

i.e. each mole of antibiotic was consumed eight moles of 

permanganate ion.  

2.3. Effect of Permanganate Oxidant 

The oxidation reactions of both neomycin (NOM) and streptomycin 

(STR) with permanganate ion in alkaline solutions were investigated 

at different [MnO4
─]0, while other reactants concentrations were kept 

constant. The investigational results showed that the first order rate 

constant plots were straight lines for more than two half-lives of the 

reactions completion as illustrated in Figure 4. In addition, change of 

the initial concentration of the oxidant was set to have no significant 

effect on the observed first order rate constant values (kobs) as listed in 

Table 1. These results indicated that such reactions were first order 

regarding to [MnO4
─].  

 

Figure 4: Effect of [MnO4
-] on the first order plot in the alkaline permanganate 

oxidation of neomycin (NOM) at [NOM] = 5.0 x 10-3, [OH-] = 5.0 x 10-3, I = 

0.1 mol dm-3 and T = 298 K. 

2.4. Effect of Antibiotics  

In this context, the kinetics experiments were performed at variety 

of concentrations of the investigated antibiotics, [A], at constant 

concentrations of MnO4
─ and OH-, ionic strength and temperature. The 

values of kobs listed in Table 1 indicated that the reaction rates were set 

to increase with increasing [A]. The plots of kobs versus [A] were linear 

with positive intercepts on the kobs axes as shown in Figure 5(a). Also, 

the plots of log [A] versus log kobs gave good straight lines with slopes 

of less-than unity as illustrated in Figure 5(b) indicating the fractional-

first order credences with respect to [A]. 

2.5. Effect of [OH-] 

To clarify the reactions mechanism, the oxidation rates of the 

examined antibiotics by alkaline permanganate was measured at 

various [OH-]. The experimental results indicated that the reaction 

rates were increased with rising [OH-] as manifested from the acquired 

values kobs listed in Table 1. The plots of kobs versus [OH-] gave straight 

lines with positive intercepts on the kobs axes as shown in Figure 6(a). 

Also, the plots of log kobs versus log[OH-] were set to be straight lines 

with slopes of 0.894 and 0.883 for neomycin and streptomycin, 

respectively, as illustrated in Figure 6(b), indicating that these 

reactions were less-than unit order dependences in [OH-]. 

 
                        (a)                                                   (b) 

Figure 5: (a) Plots of kobs vs. [A], and (b) plots of log kobs vs. log [A] in the 
alkaline permanganate oxidation of antibiotics at [MnO4

-] = 4.0 x 10-4, [OH-] = 

5.0 x 10-3, I = 0.1 mol dm-3 and T = 298 K. 

  
                         (a)                                                   (b) 

Figure 6: (a) Plots of kobs vs. [OH-], and (b) plots of log kobs vs. log [OH-] in the 
alkaline permanganate oxidation of antibiotics at [A] = 5.0 x 10-4, [MnO4

-] = 

4.0 x 10-4, I = 0.1 mol dm-3 and T = 298 K. 

2.6. Effect of Ionic Strength  

To explore the nature of the reactive species and, therefore, to the 

suggested reactions mechanism, kinetic measurements were 

performed at firm alkali and antibiotic concentrations while the 

concentration of sodium perchlorate was increased. The results 

indicated that the rates of the oxidation reactions were increased as the 

ionic strength (I) of the reactions media increased as observed from 

the values of kobs listed in Table 1. The Debye-Hückel plots were set 

to be linear with positive slopes as illustrated in Figure 7. These results 

suggested that oxidation reactions occurred between ions of similar 

charges [16]. 

 

Figure 7: Debye-Hückel plots in the alkaline permanganate oxidation of 

antibiotics at [A] = 5.0 x 10-3, [MnO4
-] = 4.0 x 10-4, [OH-] = 5.0 x 10-3 mol dm-

3 and T = 298 K. 
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Table 1: Effect of [MnO4
-], [A], [OH-] and I on the values of kobs in the alkaline 

permanganate oxidation of antibiotics at T = 298 K. 

 

2.7. Effect of Temperature 

In order to evaluate the activation parameters, the reactions were 

conveyed out at different temperatures at firm other variables. The 

experimental results indicated that the rates of the reactions were set 

to speed up by rising temperature as listed in Table 2. On the other 

hand, both Eyring and Arrhenius plots of the second order rate 

constant values (k2) were linear as shown in Figures 8(a) and (b), 

correspondingly. The activation parameters were evaluated from these 

plots and are inserted in Table 3.  

2.8. Polymerization Test  

The possibility of formation of free radicals in the existing oxidation 

reactions was explored by acrylonitrile test. This test was conveyed 

out by the addition of a definite acrylonitrile quantity to the reaction 

mixture in an inert atmosphere for about 4 hours. No polymerization 

appeared in all reaction mixtures (as no white precipitates were 

formed) indicating that the present oxidation reactions did not proceed 

via intervention of free radicals. 

Table 2: Effect of temperature on the values of kobs  in the alkaline 

permanganate oxidation of antibiotics at [A] = 5.0 x 10-3, [MnO4
-] = 4.0 x 10-4, 

[OH-] = 5.0 x 10-3 and  I = 0.1 mol dm-3. 

Table 3: Activation parameters of k2 in the alkaline permanganate oxidation of 

antibiotics at [A] = 5.0 x 10-3, [MnO4
-] = 4.0 x 10-4, [OH-] = 5.0 x 10-3 and I = 

0.1 mol dm-3. 

  
                      (a)                                                 (b) 

Figure 8: (a) Eyring plots, and (b) Arrhenius plots of k2 in the alkaline 

permanganate oxidation of antibiotics at [A] = 5.0 x 10-3, [MnO4
-] = 4.0 x 10-4, 

[OH-] = 5.0 x 10-3 and I = 0.1 mol dm-3. 

2.9. Suggested Reactions Mechanism  

In the light of the investigational kinetic outcomes, the appreciable 

reactions mechanism was suggested and can be discussed as follows. 

The first step is the rapid deprotonation of antibiotic molecules (A ) 

according to the following equation:  

A + OH─  

K1

 A─  + H2O                                                                          (1) 

The deprotonated form (A─) appears to be the reactive species in the 

rate-controlling stage of the proposed reactions mechanism. This 

suggested step is based on increasing the oxidation rates upon 

increasing alkali concentration as well as the structures of the 

examined antibiotics [17]. 

The second step of the suggested mechanism is the attack of MnO4
─ 

on the deprotonated antibiotic to construct a complex, [A - MnO4]2- 

(C), Eq. (2):  

A─ + MnO4
─ 

K2

 [A - MnO4]2-  (C)                                    (2) 

Complex construction during the oxidation reactions by MnO4
─ in 

alkaline solutions was reported earlier [18-21]. Furthermore, such 

complexation was approved spectrophotometrically by the achieved 

UV–Vis spectra as shown in Figures 2 and 3, as well as kinetically as 

the plots of 1/kobs vs. 1/[A] were linear with positive slopes [22] as 

shown in Figure 9(a).  

Then, the formed transient complex (C) decomposed in the rate-

controlling stage to yield the pr-oxidation products as follows:  

[A - MnO4]2- 
k1

 Pre-oxidation products                                 (3) 

The latter interacts with other seven MnO4
─ ions in subsequent fast 

steps to yield the final oxidation products of the antibiotics. 

According to the suggested mechanism, the rate law expressing the 

relationship between the reaction rate and the concentrations of 

antibiotic, OH- and oxidant was derive as in Eq. (4): 

]A[]OH[]OH[1

]MnO[]OH[[A]
= Rate

-

21

-

1

-

4

-

211

KKK

KKk

++
                        (4) 

Also, kobs equation was derived, Eq. (5): 

]A[]OH[]OH[1

]OH[[A]
-
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-
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-
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KKk
k

++
=

                                  (5) 

Rearranging Eq. (5) led to the following two equations: 

1
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Regarding to Eqs. (6) and (7), the plots of 1/kobs versus 1/[A] at 

constant [OH-] and 1/kobs versus 1/[OH-] at constant [A] must be linear 

with positive intercepts on the 1/kobs axes as were experimentally 

found to be so as illustrated in Figures 9(a) and (b), respectively. The 

values of the slow step of the proposed reactions mechanism (k1) and 

the equilibrium constants (K1 and K2) were calculated from these plots 

and are inserted in Table 4.  
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Table 4: Values of k1, K1 and K2 in the alkaline permanganate oxidation of 
antibiotics. [A] = 5.0 x 10-3, [MnO4

-] = 4.0 x 10-4, [OH-] = 5.0 x 10-3, I = 0.1 

mol dm-3 at T = 298 K. 

2.10. Activation Parameters 

The calculated activation parameters listed in Table 3 were found to 

be in a good accord with the suggested oxidation reactions mechanism. 

The acquired higher negative values of S≠ suggested formation of 

complexes amongst the reacting species. Also, the positive values of 

both H≠ and G≠ indicated that such complexes formation was 

endothermic and non-spontaneous, respectively [16]. The higher 

values of Ea
≠ proposed that the rate-determining step was the 

decomposition of the formed complexes. 

3. Conclusions  

The kinetics of oxidation of neomycin and streptomycin by 

permanganate ion in alkaline solution were studied. Under the same 

investigational conditions, the rate of oxidation of streptomycin was 

found to be about seven times more than that of neomycin. The 

activation parameters were calculated and discussed. The appreciable 

reactions mechanism was proposed. The rate-law expression in 

consistent with the obtained results was derived.  

4. Experimental 

4.1. Materials and Methods 

All employed chemicals were from Merck or Sigma in 

spectroscopic grade and were used as supplied. Doubly distilled water 

was utilized to prepare all the solutions. Fresh solutions of neomycin 

and streptomycin antibiotics were prepared by dissolving their 

weighted samples in doubly distilled water. Potassium permanganate 

solution was prepared and standardized as reported earlier [14]. The 

reactions temperature were equilibrated within ±0.1 oC. 

Kinetic experiments were conveyed out at pseudo-first order 

conditions where the concentrations of the examined antibiotics were 

presented in excess higher than that of permanganate concentration at 

constant ionic strength and temperature. A Shimadzu UV-1800 PC 

automatic scanning double-beam spectrophotometer was utilized to 

measuring the absorbance readings of the existing reactions. The 

reactions were followed by recording the decrease of permanganate 

ion absorbance at its absorption maximum, λ = 526 nm, with time. All 

experiments were carried out at least two times and the rate constants 

were found to be reproducible in the range of ±3 %. 
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