

COURSE NAME: Chemistry of Aromatic Compounds

COURSE CODE: 4022142-3

By the end of this chapter, you should understand:

- 1. The electrophilic substitution reactions on benzene ring
- 2. The substituents orientation on the benzene ring

Reactions of benzene

It undergoes electrophilic substitution reactions rather than addition reactions in order to preserve the delocalized π system.

A) Electrophilic substitution reactions:

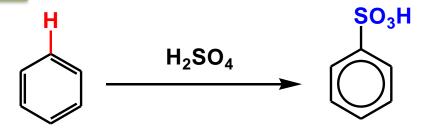
$$\stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow} \left[\begin{array}{c} \\ \\ \end{array} \right] \stackrel{\mathsf{E}}{\longrightarrow}$$

These reactions are accelerated by lewis acids to generate the electrophile

1) Halogenation

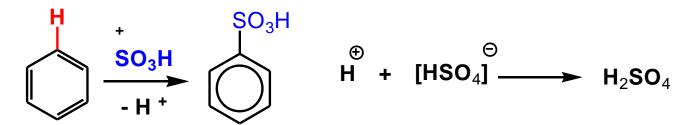
$$\frac{X_2 (X = CI, Br)}{FeX_3 (Lewis cid)}$$

Mechanism


2) Nitration

$$\begin{array}{c|c} & & & \\ &$$

Mechanism


HNO₃ + H₂SO₄
$$\longrightarrow$$
 [HSO₄] + H₂NO₃ \oplus Lewis acid \longrightarrow H₂O + NO₂

3) Sulfonation

Mechanism

$$H_2SO_4 + H_2SO_4 \longrightarrow [HSO_4] + H_3SO_4 \oplus$$
Lewis acid $\downarrow \longrightarrow H_2O + SO_3H$

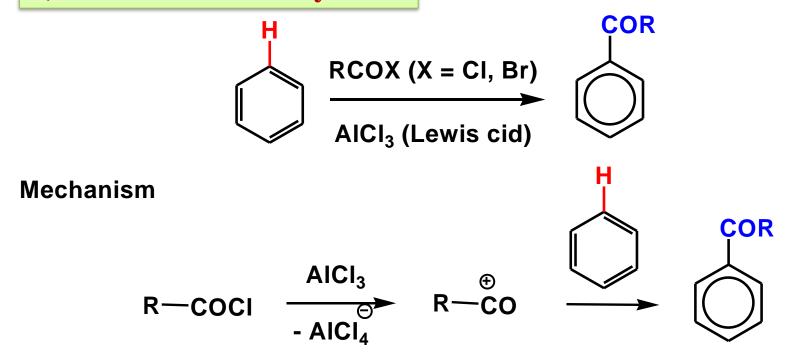
4) Friedel Crafts Alkylation

$$\frac{RX (X = CI, Br)}{AICI_3 (Lewis cid)}$$

Limitation of Friedel Crafts Reaction

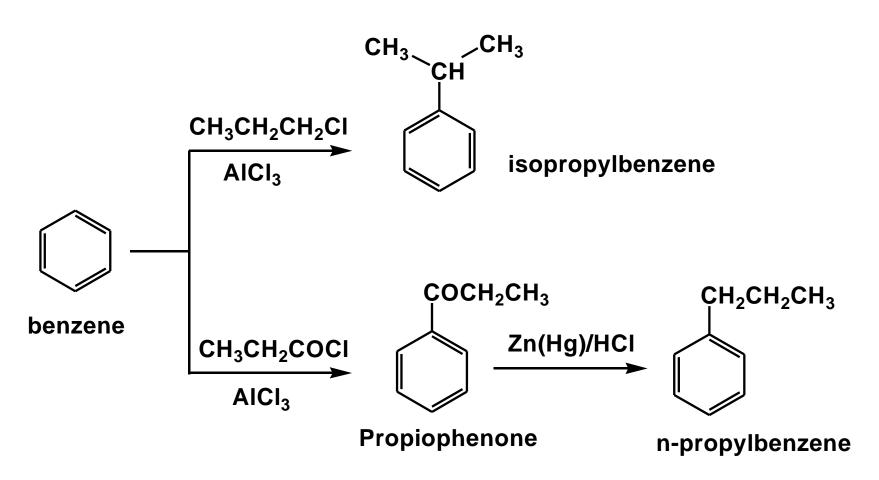
1) If the alkyl group is long (at least 3-carbons) it will carry out rearrangement. Primary carbocation $(R-CH_2)^+$ will convert into secondary carbocation $(R_2CH)^+$. Also, the secondary carbocation $(R_2CH)^+$ will convert into tertiary carbocation $(R_3C)^+$

2) Friedel-Crafts reaction could not occurred when the benzene ring have strong **Electron-withdrawing groups** (**EWG**) because these groups decrease the electron density on the ring.



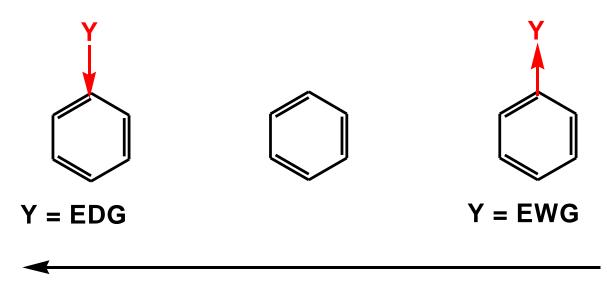
Q: How do you account for fact that: benzene in the presence of AlCl₃ react with isobutyl bromide to yield *tert*-butylbenzene?

3) Friedel-Crafts reaction could not occurred when the benzene ring have NH₂- NHR- or NR₂ groups because the lone pair of electron on nitrogen atom of these groups will react with Lewis acid (AlCl₃) and the group will become strong **EWG** so the reaction will not proceeded.


5) Friedel Crafts Alkylation

Acylbenzenes have many uses in organic chemistry as precursors for the preparation of n-alkylbenzenes withought rearrangement

Strarting from benzene, show how can you prepare i) iso-propyl benzene ii) n-propyl benzene

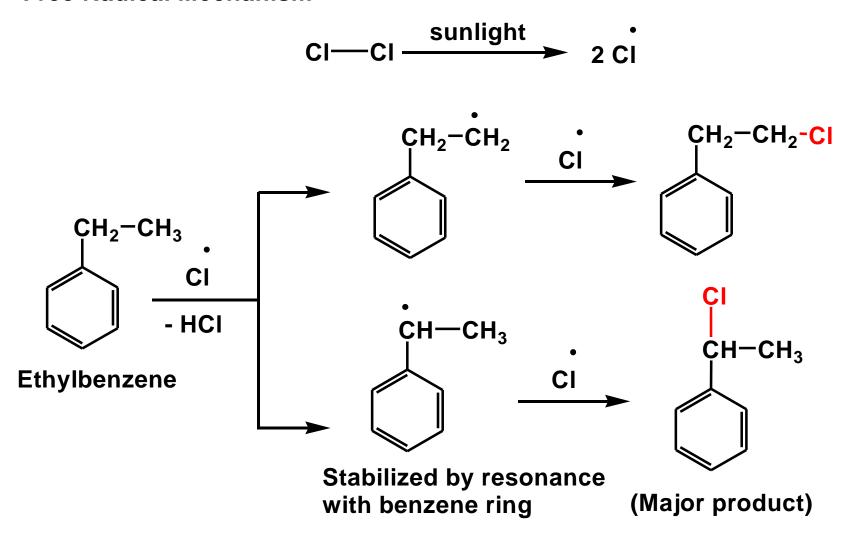


Effect of substituent on the reactivity of benzene ring

Electron donating group such as NH₂, OH, OR and Cl

will increases the electron density on benzene ring so the rate of electrophilic substitution reaction will increase.

While, Electron withdrawing group such as C=O, NO₂, SO₃H and COOH will decreases the electron density on benzene ring so the rate of electrophilic substitution reaction will decrease.

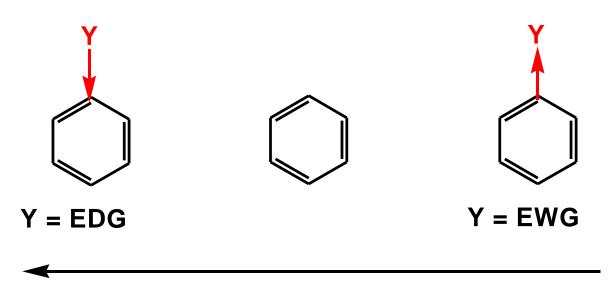


Increase in the rate of electrophilic substitution reactions

Reaction of alkyl side chain

1) Halogenation

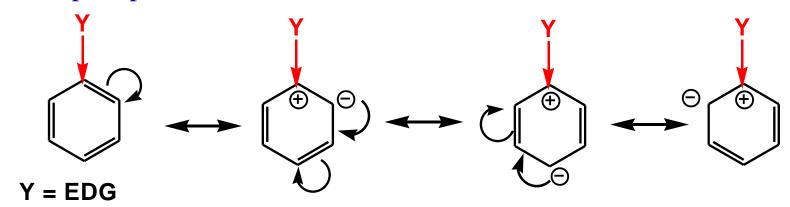
Free Radical Mechanism

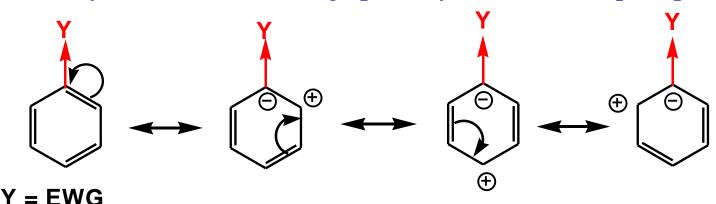

2) Oxidation of alkyl side-chain

 $R, R' = CH_3, CH_3CH_2,$

Effect of substituent on the reactivity of benzene ring

Electron donating group such as NH₂, OH, OR and Cl will increases the electron density on benzene ring so the rate of electrophilic substitution reaction will increase.


While, Electron withdrawing group such as C=O, NO₂, SO₃H and COOH will decreases the electron density on benzene ring so the rate of electrophilic substitution reaction will decrease.


Increase in the rate of electrophilic substitution reactions

Effect of substituent on the orientation in benzene ring

Electron-Donating Group (ortho and para directing group) will increase the electron density on the benzene ring specially on ortho and para positions.

Electron-Withdrawing Group (meta directing group) will decrease the electron density on the benzene ring specially on ortho and para positions.

Substituent	Orientation effect	Effect on reactivity
-NH ₂ , -NHR, -NR ₂ -OH, -OR	ortho-para directing	Strongly activating
-NHCOR, -OCOR,	ortho-para directing	Moderatley activating
-R, -Ar, -CH=CR ₂	ortho-para directing	Weakly activating
-F, -Cl, -Br, -I	ortho-para directing	Weakly deactivating
-CHO, -COR, -COCI -COOH	meta directing	Moderately deactivating
-CN, -+SO ₃ H, -+NH ₃ -+NH ₂ R, -+NHR ₂ , -+NR ₃ -NO ₂	meta directing	Strongly deactivating

Q:How can you prepare the following compounds from benzene (assume that a pure para isomer can be separated from an ortho, para mixture)?

- 1) p-nitrotoluene
- 2) p-bromonitrobenzene
- 3) p-bromobenzoic acid
- 4) m-bromobenzenesulfonic acid
- 5) p-chlorophenol

REFERENCES

- 1. J. D. Hepworth, D. R. Waring and M. J. Waring. "Aromatic Chemistry", RSC 2002, ISBN: 0-85404-662-3.
- 2. J. McMurry. "Organic Chemistry", 9th Edition, Cengage Learning, 2015