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CHAPTER OBJECTIVES

• Determine deformation of 

axially loaded members

• Develop a method to find 

support reactions when it 

cannot be determined from 

equilibrium equations (statically 

indeterminated problem)

• Analyze the effects of thermal 

stress and stress concentrations.
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CHAPTER OUTLINE

1. Saint-Venant’s Principle

2. Elastic Deformation of an Axially Loaded Member

3. Principle of Superposition

4. Statically Indeterminate Axially Loaded Member

5. Force Method of Analysis for Axially Loaded Member

6. Thermal Stress

7. Stress Concentrations
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• Localized deformation occurs at 

each end, and the deformations 

decrease as measurements are 

taken further away from the ends

4.1 SAINT-VENANT’S PRINCIPLE

• c-c is sufficiently far enough away 

from P so that localized deformation 

“vanishes”, i.e., minimum distance

• At section c-c, stress reaches 

almost uniform value as compared 

to a-a, b-b
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4.1 SAINT-VENANT’S PRINCIPLE

Section a-a Section b-b
Section c-c

savg
P

A
savg

P

A savg=
P

A

Section a-a Section b-b
Section c-c

savg
P

A
savg

P

A savg=
P

A

Section a-a Section b-b
Section c-c

savg
P

A
savg

P

A savg=
P

A

Load distorts line
located near load

Lines located away
from the local and
support remain 
straight

Load distorts line
located near support

Load distorts line
located near load

Lines located away
from the local and
support remain 
straight

Load distorts line
located near support

savg=
P

A

The pink area is the area of the uniform average 

normal stress, or   savg = P/A
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4.1 SAINT-VENANT’S PRINCIPLE

d

L

A long bar/rod, L >> d, is

subjected to a tensile force 

acting at its centroidal axis
d

d

P

P

Non-uniform 
normal stress

Non-uniform 
normal stress

Uniform 
normal stress

savg= P/A

This behavior discovered by 

Barré de Saint-Venant in 

1855, this the name of the 

principle

Saint-Venant Principle states 

that localized effects
caused by any load acting 

on the body, will 

dissipate/smooth out within 

regions that are sufficiently 
removed from location of 

load
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• Relative displacement (δ) of one end of bar with respect 

to other end caused by this loading

• Applying Saint-Venant’s Principle, ignore localized 

deformations at points of concentrated loading and 

where cross-section suddenly changes

4.2   ELASTIC DEFORMATION OF AN AXIALLY LOADED MEMBER
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Use method of sections, 

and draw free-body diagram

4.2 ELASTIC DEFORMATION OF AN AXIALLY LOADED MEMBER

σ =
P(x)

A(x)
 =

dδ

dx

σ = E

• Assume proportional limit not exceeded, 

thus apply Hooke’s Law

P(x)

A(x)
= E

dδ

dx
(   ) dδ =

P(x) dx

A(x) E
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4.2 ELASTIC DEFORMATION OF AN AXIALLY LOADED MEMBER

δ = ∫0

P(x) dx

A(x) E

L

δ = displacement of one point relative to another point

L = distance between the two points

P(x) = internal axial force at the section, located a distance x

from one end

A(x) = cross-sectional area of the bar, expressed as a function 

of x

E = modulus of elasticity for material
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4.2 ELASTIC DEFORMATION OF AN AXIALLY LOADED MEMBER

Constant load and cross-sectional area

δ = ∫0

P(x) dx

A(x) E

L

P, A, and E are constant δ =
PL

AE

P P

x

L
d
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4.2 ELASTIC DEFORMATION OF AN AXIALLY LOADED MEMBER

P1 P2 P3 P4

A1,E1
A2,E2 A3,E3

L1 L2 L3

A B C D

Internal force in segment BC: P1 P2
A B

PBC

Internal force in segment AB: P1
PAB

A

P4
D

PCDInternal force in segment CD: 



2005 Pearson Education South Asia Pte Ltd

4. Axial Load

11

4.2 ELASTIC DEFORMATION OF AN AXIALLY LOADED MEMBER

P1 P2 P3 P4

A1,E1
A2,E2 A3,E3

L1 L2 L3

A B C D

Displacement in segment AB: δAB = δ1 =
PAB L1

A1 E1

Displacement in segment BC: δBC = δ2 =
PBC L2

A2 E2

Displacement in segment CD: δCD = δ3 =
PCD L3

A3 E3

The displacement of one end of the 

bar with respect to the other is
δ =

PL

AE
 =  δ1 + δ2 + δ3
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4.2 ELASTIC DEFORMATION OF AN AXIALLY LOADED MEMBER

Sign convention

Sign Forces Displacement

Positive (+) Tension Elongation

Negative (−) Compression Contraction
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EXAMPLE 4-1

Composite A-36 steel bar shown made 

from two segments AB and BD. 

Area AAB = 600 mm2 and ABD = 1200 

mm2.

Determine the vertical displacement of 

end A and displacement of B relative to C.
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EXAMPLE 4-1

Internal force

Due to external loadings, internal axial forces 

in segments AB, BC and CD are different.

Apply method of 

sections and equation 

of vertical force 

equilibrium as shown. 

Variation is also 

plotted.

PAB

PBC
PBC=35 kN

PAB=75 kN

PBC=35 kN

PCD

PBC=35 kN

PAB=75 kN

PCD=45 kN
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EXAMPLE 4-1

Displacement

From tables, Est = 210(103) MPa

Vertical displacement of A

relative to fixed support D is

δA/D =
PL

AE


EA

LP

EA

LP

EA

LP

CD

CDCD

BC

BCBC

AB

ABAB 

Substituting the appropriate value 

into the above equation, we have

dA/D =  +0.61 mm
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EXAMPLE 4-1

Since the result is positive, the bar 
elongates and, therefore, the 
displacement at A is upward

Displacement between B and C, 

δB/C =
PBC LBC

ABC E

= +0.104 mm

[+35 kN](0.75 m)(106)

[1200 mm2 (210)(103) kN/m2]
=

Here, B moves away from C, since 

segment elongates
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• After subdividing the load into components, the principle of 
superposition states that the resultant stress or 

displacement at the point can be determined by first finding 

the stress or displacement caused by each component load 

acting separately on the member.

• Resultant stress/displacement determined algebraically by 

adding the contributions of each component

4.3 PRINCIPLE OF SUPERPOSITION
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Conditions

1. The loading must be linearly related to the stress or 
displacement that is to be determined.

2. The loading must not significantly change the original 
geometry or configuration of the member

When to ignore deformations?

• Most loaded members will produce deformations  so 
small that change in position and direction of  loading 
will be insignificant and can be neglected

• Exception to this rule is a column carrying axial load, 
discussed in Chapter 13

4.3 PRINCIPLE OF SUPERPOSITION
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4.4   STATICALLY INDETERMINATE AXIALLY LOADED MEMBER

RD

We can find RD using the force

equilibrium equation.

+ Fy = 0,

Statically determinate : When the force 

equilibrium equation applied on a 

structure/bar is sufficient to find the reaction 

force at the support

RD = 45 kN
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If bar is fixed at both ends, 

then two unknown axial 

reactions occur, and the 

bar is 

statically indeterminate

4.4 STATICALLY INDETERMINATE AXIALLY LOADED MEMBER

+↑ F = 0;

FB + FA − P = 0       (a)

We cannot find the value of FA and FB.

Free body diagram

FB

FA

P
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• To establish addition equation, consider geometry of 

deformation. Such an equation is referred to as a 

compatibility or kinematic condition

• Since the end supports fixed are fixed, the 

compatibility condition is

4.4 STATICALLY INDETERMINATE AXIALLY LOADED MEMBER

δA/B = 0

• This equation can be expressed in terms of applied 

loads using a load-displacement relationship, which 

depends on the material behavior

δA/B =
PL

AE
 = 0
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For linear elastic behavior, 

compatibility equation can be

written as

4.4 STATICALLY INDETERMINATE AXIALLY LOADED MEMBER

FB

FA

P

FB

FA

P

FB

FA

Assume AE is constant, solve

Eqs.(a) & (b) simultaneously,

LCB

L
FA = P ( )

LAC

L
FB = P( )

FB

FA

P

FB

FA

FB

FA

FB

FA

P

FB

FA

FB

FA

FB + FA − P = 0       (a)

= 0
FA LAC

AE

FB LCB

AE
− (b)

δAC − δCB =  0
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EXAMPLE 4.2

Steel rod shown has diameter of 5 mm. Attached to fixed wall 

at A, and before it is loaded, there is a gap between the wall 

at B’ and the rod of 1 mm.

Determine reactions at A and B’ if rod is subjected to axial 

force of P = 20 kN.

Neglect size of collar at C. Take Est = 200 GPa

400 mm 800 mm

P = 20 kN

1 mm

A

C B
B’
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EXAMPLE 4.2

400 mm 800 mm

P = 20 kN

1 mm

A

C B
B’

P = 20 kNA

C B
20 kN

P = 20 kNA

C

B’

FA
FB

400 + dAC
800  (1 + dCB)

Compatibility 

equation:

δB/A = 0.001 = δAC + δCB
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EXAMPLE 4.2 (SOLN)

Equilibrium

Assume force P large 

enough to cause rod’s end B

to contact wall at B’. 

Equilibrium requires

− FA − FB + 20(103) N = 0    (a)

P = 20 kNA

C

B’

FA
FB

Compatibility

Compatibility equation:

δB/A = δAC + δCB

0.001 m =
FA LAC

AE

FB LCB

AE
(b)

FA
FA

FB
FB

Solving Eq.(a) & (b) yields, FA = 16.6 kN FB = 3.39 kN
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• Used to also solve statically indeterminate problems by using 

superposition of the forces acting on the free-body diagram

• First, choose any one of the two supports as “redundant” and 

remove its effect on the bar

• Thus, the bar becomes statically determinate

• Apply principle of superposition and solve the equations 

simultaneously

4.5    FORCE METHOD OF ANALYSIS FOR AXIALLY LOADED MEMBERS
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dB

FB

dB is displacement at 

B  only when redundant 

force at B is applied

4.5 FORCE METHOD OF ANALYSIS FOR AXIALLY LOADED MEMBERS

dP is displacement at B

when redundant force

at B is removed

dP

P +=

PLAC

AE
dP = FB L

AE
dB = 

dP – dB = 0
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EXAMPLE 4-3

A-36 steel rod shown has diameter of 5 mm. It’s attached to 

fixed wall at A, and before it is loaded, there’s a gap between 

wall at B’ and rod of 1 mm.

Determine reactions at A and B’.

400 mm 800 mm

P = 20 kN

1 mm

A

C B
B’



2005 Pearson Education South Asia Pte Ltd

4. Axial Load

29

P = 20 kN

A

C B
B’

Initial

position

1 mm

Compatibility

Consider support at B’ as 
redundant. 

Use principle of superposition, 

( + ) dP = positive

dB = negative

Compatibility equation: 0.001 m = δP −δB Eq. 1

EXAMPLE 4-3

A

C B’

dB

FB

Final

position

P = 20 kN

A

C B

dP
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P = 20 kN

A

C B
B’

Initial

position

1 mm

EXAMPLE 4-3

Compatibility equation:

0.001 m = δP −δB Eq. 1

Displacement due to P, or dP

PLAC

AE
dP = = …= 0.002037 m

FB LAB

AE
dB = = … 

= 0.3056(10-6)FB

Subst dP & dB yields: FB = 3.40 kN

Displacement due to FB, or dB

400 mm 800 mm

A

C B’

dB

FB

P = 20 kN

A

C B

dP

Final

position
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EXAMPLE 4-3

Equilibrium

From free-body diagram

− FA + 20 kN − 3.40 kN = 0+ Fx = 0;

FA = 16.6 kN

P = 20 kN

A C B

FB = 3.4 kNFA
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4.6 THERMAL STRESS

• Expansion or contraction of material is linearly  related to 

temperature increase or decrease that occurs (for homogenous 

and isotropic material)

• From experiment, deformation of a member having length L is

δT = α ∆T L

α = liner coefficient of thermal expansion. Unit measure 

strain per degree of temperature: 1/
o
C (Celsius) or 1/

o
K

(Kelvin)
∆T = algebraic change in temperature of member

δT = algebraic change in length of member
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4.6 THERMAL STRESS

• For a statically indeterminate member, 

the thermal displacements can be 

constrained by the supports, producing 

thermal stresses that must be considered 

in design.



2005 Pearson Education South Asia Pte Ltd

4. Axial Load

34

4.6 THERMAL STRESS

L T1 L T2 > T1

dT

A bar has initial length L and

temperature T1.

When the temperature is  

increased to T2, the change in

length of the beam is

dT = a DTL = a(T2 – T1)L

No thermal stress produces in the

bar because thermal stress will 

occur when the expansion of the

bar is constrained
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4.6 THERMAL STRESS

L T1 L DT(x)

dT
If the change in temperature varies

throughout the length of the bar,

i.e., DT = DT(x), or it varies along the

length, then the change in length is



L

T Tdx

0

Dad



2005 Pearson Education South Asia Pte Ltd

4. Axial Load

36

EXAMPLE 4-3

A-36 steel bar shown is constrained to just fit 
between two fixed supports when T1 = 30

o
C.

If temperature is raised to T2 = 60
o
C, determine 

the average normal thermal stress developed in the 
bar.
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EXAMPLE 4-3

Free expansion

dT

Free expansion,

dT = a(T2 – T1)L

Constrained,
F L

AE
dF = 

Compatibility condition,

dA/B =  0 =  dT – dF

L
DT

A

B

Substituting the appropriate relation,

0 = a(T2 – T1)L –
F L

AE

L

dF

F

F

Constrained
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EXAMPLE 4-3

Free expansion

dT

L

dF
F

F

Constrained

From compatibility condition,

L
DT

A

B

0 = a(T2 – T1)L –
F L

AE

Solving the above equation

for force F,
F = a(T2 – T1)AE

Data from inside back cover,

asteel = 12(10-6) oC-1

Substituting all values into the eq., we get F = 7.2 kN

The average thermal stress is then, s =
F

A
= … = 72 MPa
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4.7 STRESS CONCENTRATIONS

• Force equilibrium requires magnitude of resultant force 

developed by the stress distribution to be equal to P. In 

other words,

• This integral represents graphically the volume under 

each of the stress-distribution diagrams shown.

P = ∫A σ dA

Undistorted

Distorted

P P

P P

a

Actual stress distribution

Average stress distribution

P

P

smax

savg
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4.7 STRESS CONCENTRATIONS

• In engineering practice, actual stress distribution not needed, 

only maximum stress at these sections must be known. 

Member is designed to resist this stress when axial load P is 

applied.

• K is defined as a ratio of the maximum stress to the average 

stress acting at the smallest cross section:

K =
σmax

σavg
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4.7 STRESS CONCENTRATIONS

K

r

h

w

h
= 4.0
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4.7 STRESS CONCENTRATIONS

K

r

w
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4.7 STRESS CONCENTRATIONS

• K is independent of the bar’s geometry and the type of 

discontinuity, only on the bar’s geometry and the type of 

discontinuity.

• As size r of the discontinuity is decreased, stress 

concentration is increased.

• It is important to use stress-concentration factors in design 

when using brittle materials, but not necessary for ductile 

materials

• Stress concentrations also cause failure structural 

members or mechanical elements subjected to fatigue 
loadings
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EXAMPLE 4-4

Steel bar shown below has allowable 

stress, σallow = 115 MPa. 

Determine largest axial force P that 

the bar can carry.
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EXAMPLE 4-4

Because there is a shoulder fillet, stress-concentrating 

factor determined using the graph shown

K

r

h
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K

r

h

EXAMPLE 4-4

Geometric parameters:

r

h
=

10 mm

20 mm
= 0.50

w

h

40 mm

20 mm
= 2=

From the graph, K = 1.4
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EXAMPLE 4-4

Average normal stress at smallest cross-section,

P

(20 mm)(10 mm)
σavg = = 0.005P N/mm2

which σallow = σmax yields

115 N/mm2 = 1.4(0.005P)

P = 16.43(103) N = 16.43 kN

σallow = K σavg

K =
σmax

σavg
Applying Eqn
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CHAPTER REVIEW

• When load applied on a body, a stress distribution is created 

within the body that becomes more uniformly distributed at 

regions farther from point of application. This is the Saint-

Venant’s principle.

• Relative displacement at end of axially loaded member 

relative to other end is determined from

δ = ∫0

P(x) 

dx

A(x) E

L
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CHAPTER REVIEW

• Make sure to use sign convention for internal load P

and that material does not yield, but remains linear 

elastic

• Superposition of load & displacement is possible 

provided material remains linear elastic and no 

changes in geometry occur

• If series of constant external forces are applied and AE is 

constant, then

δ =
PL

AE

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CHAPTER REVIEW

• Reactions on statically indeterminate bar determined using 

equilibrium and compatibility conditions that specify 

displacement at the supports. Use the load-displacement 

relationship,  d = PL/AE

• Change in temperature can cause member made from 

homogenous isotropic material to change its length by

d = aDTL . If member is confined, expansion will produce 

thermal stress in the member
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CHAPTER REVIEW

• Holes and sharp transitions at cross-section create stress 

concentrations. For design, obtain stress concentration 

factor K from graph, which is determined empirically. The 

K value is multiplied by average stress to obtain 

maximum stress at cross-section, smax = Ksavg

• If loading in bar causes material to yield, then stress 

distribution that’s produced can be determined from the 

strain distribution and stress-strain diagram
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CHAPTER REVIEW

• For perfectly plastic material, yielding causes stress 

distribution at cross-section of hole or transition to 

even out and become uniform

• If member is constrained and external loading causes 

yielding, then when load is released, it will cause 

residual stress in the material


