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PROPERTIES OF THE LAPLACE TRANSFORM

The properties of the Laplace transform help us to obtain transform
pairs without directly using Egq. As we derive each of these
properties, we should keep in mind the definition of the Laplace
transform in Eq.

Table 1 provides a list of the properties of the Laplace transform.
The last property (on convolution) will be proved later. There are
other properties, but these are enough for present purposes.

Table 2 summarizes the Laplace transforms of some common
functions. We have omitted the factor u(t) except where it is
necessary.



TABLE | Properties of the Laplace transform.

Property fit) Fis)
Linearity ay fi(t) +ax () a1 Fi(s) + a2 Fr(s)
Scaling flat) 1r (f)
o a
Time shift flt—a)u(t —a) e P Fi(s)
Frequency shift e M f(1) Fis 4+ a)
Time ﬁ sF(s)— f(07)
differentiation dt
d* f 5 _ e
j s2F(s) — sf(07) — f(07)
dit=
d? )
o S F(s) = 2 £(07) = sf'(07)
" (0"
s S"F(s) = "1 £(07) — 572 £1(07)

— . — f‘”‘”(D‘)



TABLE |  Properties of the Laplace transform.

Property fi(t) Fis)
’ 1
Time integration f fit)dt —Fis)
0 Ay
d
Frequency tf(t) — Fi(s)
differentiation >
r oo
Frequency m f F(s)ds
integration ! §
F
Time periodicity ~ f(t) = f(t +nT) IIL)T
— E_-T
Initial value F(0m) lim sF(s)
Final value f(oo) lina sFi(s)
Convolution filt) = fi(r) Fi(s)F5(s)




TABLE

2 Laplace transform pairs.

fir) Fi(s)
a(t) 1
1
u(t) —
5
E—ﬂ'r 1
54+ a
*‘ P
. n!
: 5n+1
jr{;_._ﬂ'r #
(s +a)?

TABLE .2 Laplace transform pairs.

f(r) F(s)
n!
Fi"! .—EH'
¢ (5 + ﬂ)n+1
. t ey
S111 o
52 + ”
p 5
COsw
52 + ?
sin(w? + 6) 3 sinﬂq + m::ns )
5 4+ w-
scost —wsinf
cos(awt + &) - -
5= 4 w-
. Ll
e " sin wt -
(s +a)y+ow
s+ a

e cos wt

(s +a)* + o*




EXAMPLE
Obtain the Laplace transform of f(r) = 8(t) 4+ 2u(t) —3e .t = 0.
SOLUTION

By the linearity property,
F(s) = LI0)] +2L[u(n)] = 3L[e™™]

B 1, 1  so+s5+4

=1+27 35—|—2  s(s+2)
EXAMPLE

Find the Laplace transform of £(¢) = cos2t + e~ .1 > 0.
SOLUTION
F(s) S 1 SE+3)+(*+4)
T AT s13 T S+ 45 +3)
252 +3S+4

(52 + 4)(S+3)



THE INVERSE LAPLACE TRANSFORM

Steps to Find the Inverse Laplace Transform:

1. Decompose F(s) into simple terms using partial fraction
eXPAansion.

b

2. Find the inverse of each term by matching entries in Table

Let us consider the three possible forms F(s) may take and how to apply
the two steps to each form.



| Simple Poles
a simple pole is a first-order pole. If F(s)
has only simple poles, then [)(s) becomes a product of factors, so that
N
Fis)= N(s) (.48)
(s+pis+p2)---(s+ pg)
where s = —py. —pa, ..., —p, are the simple poles. and p; # p; forall
i #£ j(i.e.,thepolesare distinct). Assuming that the degree of N(s) is less
than the degree of [)(s). we use partial fraction expansion to decompose
F(s)inEq.( .48)as

Py —2 o o K (1.49)

5) = P |
54+ m 5+ P S+ Pn

The expansion coefficients k;. Az, ..., k, are known as the residues of

F(s). There are many ways of finding the expansion coefficients. One
way 1s using the residue method. If we multiply both sides of Eq. ( .49)
by (s + p;). we obtain
(5 + p1)ks (s + p1)ky
P1) A p1)
5+ 5+ Py

Since p; # p;. setting s = —p; in Eq. ( .50) leaves only k; on the
right-hand side of Eq. (  .50). Hence.

(s + p)Fi(s) =k + (3.50)

(s +pOF () |__, =k ( 51)



2 Repeated Poles

Suppose F(s) has n repeated poles at § = —p. Then we may represent
Fis) as
'F":H ku— k
F(S}: 4 1_1_|_..._|_ 2 5
(s+p)" 4+ p)r (s +p) .
" :
+ . ~+ F1 (.’F}
S+ P

where Fj(s) is the remaining part of F'(s) that does not have a pole at
5§ = — p. We determine the expansion coefficient k,, as

kn=(s+p)"F(s) | __, (.59



as we did above. To determine £, _;. we multiply each termin Eq. (. .54)
by (s + p)" and differentiate to get rid of £,,. then evaluate the result at
§ = — p to get rid of the other coefficients except k,_;. Thus, we obtain

d 1
knt = —[(s + p)"F(5)] - ( 56)

Repeating this gives

~

1
kn—? = Edsz

[(s + p)"F(s5)] |s=_F ( .57)

The mth term becomes
m

kn—m =

[(s+ p)"F(s)] |,__ (.58

m! dgm P

wherem = 1,2,..., n — 1. One can expect the differentiation to be
difficult to handle as m increases. Once we obtain the values of £y,
ka, ..., k, by partial fraction expansion, we apply the inverse transform

i:—l 1 B rn—lf—ar ( Fg)
s+a)r | m=1) N

to each term in the right-hand side of Eq. ( .54) and obtain

k'i b
f(0) =kie ™ +kate™ + —17e™ "
i B ( 60)
o T RO




3 Complex Poles

A pair of complex poles 1s simple 1f it 1s not repeated; it 1s a double or
multiple pole if repeated. Simple complex poles may be handled the
same as simple real poles. but because complex algebra is involved the
result 1s always cumbersome. An easier approach i1s a method known as
completing the square. The 1dea 1s to express each complex pole pair (or
quadratic term) in D(s) as a complete square such as (s + «)* + - and
then use Table 2 to find the inverse of the term.

Since N(s) and D(s) always have real coefficients and we know
that the complex roots of polynomials with real coefficients must occur
in conjugate pairs, F'(s) may have the general form

Alf + A,

Fis)= — _ Fi(s) 61
( 5-’—|—as—|—b+ 1 (61




where Fij(s) 1s the remaining part of F(s) that does not have this pair of
complex poles. If we complete the square by letting

sPtas+b=s"42as+a*+ =G+a)Y+5° (62

and we also let

A+ A =As4+a)+ Bip ( .63)
then Eq. ( .61) becomes
Ay(s + o) B\p

Fi(s) - + Fi(s) (64

= 3 '.|+ ) )
(s+a)r4+p (+a)+p

From Table 2. the inverse transform is

f(t) = Aje ™ cos ft + Bie ™ sin it + f1(1) (65

The sine and cosine terms can be combined using Eq. ( 12).



EXAMPLE

Determine the inverse Laplace transform of

55
P =1+ 3~ Fr1e
SOLUTION \

§(t)+ e — Scosdt.t = 0.

EXAMPLE
Find f(f) given that

574+ 12
SOLUTION F(s) =
s(s+2)(s 4+ 3)

Unlike in the previous example where the partial fractions have been
provided, we first need to determine the partial fractions. Since there are
three poles. we let

s2 412 A B C

S(8 4+ 2)(s 4+ 3) ~ +3—|—2+3—|—3




where A. B. and C are the constants to be determined. We can find the
constants using two approaches.

METHOD n Residue method:

52_|_12 12
A:SF{5}|_D: = :2
§= (5 4+ 2)(5 + 3) s=0 (2)(3)
57412 4412
B=(s+2)F(s5)|__,= s(s +3) e (=)
=(s+3 = = =7
C {5+ }FIE} §=—3 S{S"‘E} =3 {—3}{—1}

Thus A=2. B =—8,C =7.and Eq. (15.9.1) becomes

Fs) == - —— 4 —
5§)=— —
5 s+ 2 §4+3

By finding the inverse transform of each term, we obtain

f(t) =2u(t) —8e " +7e™, t > 0.



METHOD H Algebraic method: Multiplying both sides of Eq.
(15.9.1) by 5(s 4+ 2)(s 4 3) gives

s+ 12=A(s+2)(s +3)+ Bs(s +3) + Cs(s + 2)
or
57412 = A(s? + 55 4+ 6) + B(s* 4+ 35) + C(s5> + 25)

Equating the coefficients of like powers of 5 gives

Constant: 12 =6A — A=2
5 =S5SA4+384+2C — 3B 4 2C =10
5t 1=A4+B4+C - B+C =-1

Thus A =2, B = —8,C = 7.and Eq. (15.9.1) becomes

Fi(s) 2 5 + ’
5= — —
5 s+ 2 s 43

By finding the inverse transform of each term. we obtain

f(t) =2u(t) —8e™" +7e™, t = 0.



APPLICATION TO CIRCUITS

Having mastered how to obtain the Laplace transform and its inverse,
we are now prepared to employ the Laplace transform to analyze
circuits. This usually involves three steps.

Steps in applying the Laplace transform :
1. Transform the circuit from the time domain to the s domain.

2. Solve the circuit using nodal analysis, mesh analysis, source
transformation, superposition, or any circuit analysis technique
with which we are familiar.

3. Take the Inverse transform of the solution and thus obtain the
solution In the time domain.



Only the first step is new and will be discussed here. As we did in phasor
analysis, we transform a circuit in the time domain to the frequency or s
domain by Laplace transforming each term in the circuit.

For a resistor, the voltage-current relationship in the time domain is

vit) = Ri(t)

Taking the Laplace transform. we get

Vis) = RI(s)




For an inductor, the voltage-current relationship in the time domain is

di(t)
dt
Taking the Laplace transform of both sides gives

Viis)y=L[sl(s)—i(07)]=sLI(s)— Li(07)

v(t) =L

The S-domain equivalents are shown in Fig, where the initial
condition is modeled as a voltage or current source.

i(1) I(s) i(s)
o— o
+ + +

s | e 22 @
Li(0)

Iy D—— ',

(a) Time-domain  (b,C) S-domain equivalents




For a capacitor, the voltage-current relationship in the time domain is

i) = Cdv(f“y

which transforms into the s domain as
[{s)y=C[sV(s) —v(07)] =sCV(s) —Cuv(07)

or

1 v{07™)
Vis)= —1(s)+ ——
sC 5

The S-domain equivalents are shown in Fig, where the initial
condition i1s modeled as a voltage or current source.

i(1) I(s) 1(s)
— — o —
+ + +

+ — 1 -

_ T sC
Wy V0 =—cC Hs) 5{ | s) % = . cve) =V(0)/s/1/sC
- (0 —

5

o— | "
(a) (b) (c)

F]gure || Representation of a capacitor: (a) time-domain. (b.c) s-domain equivalents.




If we assume zero initial conditions for the inductor and capacitor,
the above equations reduced to:

Resistor: Vis)y= RI(s)
Inductor:  V(s) = sLI(s)

1
Capacitor: Vi(s) = —1I(s)
sC

The S-domain equivalents are shown in Figure

i(t) 1(s) i(f) I(s) ﬂ iﬂ.,
D—‘ 9—[ o— D—L + +
< < =) 2 P{r:l- —_— V{S} —_— 1
) = R ns) =R W) =L ns) = sL sC
_ \ _ _ B ‘ - _
C C o C
@) ®) ©

FIEUI'E |2 Time-domain and s-domain representations of passive  elements under zero mitial conditions.



We define the impedance in the s-domain as the ratio of the voltage
transform to the current transform under zero initial conditions, this is

Vis)
I(5)
Thus the impedances of the three elements are

Resistor: Z(s)=R

Inductor: Z(s)=sL

1
C itor:  Z(5) = —
apacitor (5) -
Table 3 summarizes these. The admittance in the s domain in the reciprocal

of the impedance, or

£(s) =

TABLE 3 Impedance of an
1 _ I(s) element in the s domain.-

Yis) = =
Z(s) Vis) Element Zisy=Vis)/I(s)

The use of the Laplace transform in circuit analysis facilitates the use Resist R

. . . . 2515101
of various signal sources such as impulse, step, ramp. exponential. and Inductor <L
sinusoidal. Capacitor 1/sC




EXAMPLE

Find v, () in the circuit in Fig. 13, assuming zero initial conditions.

SOLUTION 10 50
We first transform the circuit from the time to VWV VWA ‘
The s domain 57
1 ulf) (t) ir— 1H = %)
H{F} e — 3 =
: [
1 H = sL =5
1 I3 Figure 13
3 sC 58
The resulting s-domain circuit is in Fig. 14. we now apply mesh analysis.
analysis. For mesh 1.
14 562
1 3 3
— = (1 —|— —) " 1 — — " 7 |: 1) A AN
s 5 5 .
For mesh 2, % C) % — 5 3 V(s)

3 3
DZ——ﬁ—I—(S—i—ﬁ—i——).’;
s s

or

1
f125{5'+55+3}h ( 2]

Figure 14

IMesh analysis of the frequency-

domain equivalent of the same circuit.



Substituting this into Eq. (1),
1 3

1, 3
— = (1 —|——) —{-.'I-I'L +§5+3}‘.‘2 __"2
(3 /) 3 §

Multiplying through by 35 gives

. . 3
3=(5" 4+ 85"+ 185) /1, — I, = — _
+ + ) 52 4+ 85- 4+ 185§

3 3 V2
2485+ 18 2 (s 4+4)2 4 (V/2)2

Taking the mnverse transform yields

3 1 .
v, (1) = ——e M sin/2t V, t =0

NG



EXAMPLE

Find v,(f) in the circuit of Fig.  16. Assume 1v,(0) =5V
10 €2

—ANAN

106 u(f) WV . 10 €2

w(f) == 0.1 F . 28() V

—AANAN—

Figure 16

We transform the circuit to the s domain as shown in Fig. 17. the initial condition is
included in the from of the current source CV, (0)= 0.1(5)=0.5A.
We apply nodal analysis at the top node,

10 £2 I’{:.gj
1{:' (S —|_ ].l:' - V V V AR S - “
/ 24 2405=—24 2 AN 1
10 10~ 10/s f
0.Q© we:z 7 0.5A 2A
] Lo 2V, sV, 1 V(s +2) 1
) = = — 5
5+ 1 * 10 + 10 10 ° t

FIgI.J re |7 Nodal analysis of the equivalent of the circuit in
Fig. 16.



Multiplying through by 10,

10
g4+ 1

+25=V,(s +2)

or
255435 A N B
s+ D(s+2) s+1 0 s+42

V,

where
255435
s=—1 (s +2)

255 4 35
B =(s+2)V,(s) |r=—3 - f;‘:_l}

A= (s+1)V,(s) |

1 1

f=—

Thus.

1D_|_15
5+ 1 §4+ 2

Taking the inverse Laplace transform, we obtain

Fﬂ{'ﬂ —

v, (1) = (10e™" 4+ 15¢ ™ u(t)



The R-L-E load and denoting the initial current at t=0 as I,

- di
VZTI_I_LE +E
Taking Laplace transform

=rl(s)+L(sl(s)-1,) + g

Wl n| <

E
=rl(s)+Lsl(s)-LI, + 5

T :I(S)[l‘l‘LS] — Lfﬂ

. V-E LI,
I(S)_Ls(s+r/L)+L(s+r/L)
V—E/

o) s LI,

_|_
r+Ls r+Ls



The first term of the equation can be resolved as:

V—E A B
=—+

Where ’ (S i T/L) S (S T T/L)

V—-F V—-E
A=gz5 —_—

'
Ls (S + T/L)
s=0

r V—F V—-F
B:{:S—l‘z) = —

LS(S—l—r/ ) ]
—r
S5=—7F"

V—-E1 V-E I,

I(s) =

_I_
r s s47
. . /L s + T/L
Taking the inverse Laplace transform:

V-E V—E _rt _ _it
i((t) = e L +1e L

T T
V —F _rt _rt
i(6) = —— (1 —eT1) +1,e



