CHAPTER 2

ELECTROMECHANICAL INSTRUMENTS

عنـاصر أجهزة القيـاس الإلكتوونية Elements of Electronic Instruments

(1) Transducer : لتُحويل الكحميات المقاسة غير الكهربائية إلى كميات كهربائية (Y) معـدل إثـارة Signal Modifier: لتعديل الإثشارة الكهربائيـة الآتيـة مـن محول الطاقـة ليججلهـا مناسبة للتطبيق على جهـاز البيـان. فقـد تكـون الإثـارة الـكهربائية مـثلا صـغيرة ويتطلب ذلـك
 والعكس صـحيح أيضـا ، فقـد تكـون الإشــارة الـكهربائيـة كـبيرة ويتطلـب ذلكـ تخفيضـها إلى
الدرجة التي يتحملها جهاز البيان فهو يعمل ٌِ هذه الحالة كهـخفض للإِثـارة.

جهـاز بيـان Indicating Device: وهـو جهـاز قيـاس كهر بـائي عـادي ذو ملف متحـرك وموششـر
وتدريج هثل جهاز قياس الجهد الككهربائي (Voltmeter) أو جهاز قياس التيار (Ammeter).

وأجهزة القياس الإلكترونية تستخخدم هٌِ العـادة لقيـاس إمـا الـكميـات الكهربائيـة المباشـرة مثل:
الجهد الكهربائي والتيار الكهربائي والمقاومة الكهربائية أو الكهيات الفيزيائية بعد تحويلها عن طريق
 الصـوت، أو هسـتوى الإضـاءة أو العديـد مـن الكـميـات الفيزيائيـة الأخرى. إلا أنـه فٌِ جميـع الأحـوال فـبان انحراف موششر الجهاز يكون بسبب تدفق التيـار الكـهربـائي يٌْ ملف الجهـاز ويعاير تدريج الجهـاز ليقرأ الكمية الفيزيائية المنوط بالجهاز قياسها.

اختيـارواستخدام والعنـاية بــجهزةةالقيـاس

Selection, Usage and Care of Measuring Instruments
بٌِ الواقـع فـبن معظـم أجهـزة القيـاس هـي أجهـزة حسـاسـة ويجـب أن تعامـل بعناية خاصـة وبطريقة صحيحة. وٌٌِ الحقيقة فإن أكثر الأجهزة المتاحـة دقة ، قـد لا تعطي قـراءات صحيحة إذا عوملت بطريقة

غير صحيحة ، ولذلك فبان هناك بعض القواعد الأساسية التي تؤمن سـلامة الجهاز ودقة نتائج القراءات.

قبـل اسـتخدام الجهــاز لابـد أن تكـون معتـادأعلى طريقـة اسـتخدامه. وأفضــل مصـدر للمعلومـات المطلوبة عن طريقة التعامل مع الجهـاز وطريقـة تشغيله هو كتيـب التعليمـات الخـاص بالجهـاز (الـكتالوج الخـاص بـه) أو (The operating and instructions manual)، الذي يحتوي كـل البيانـات التي ترجوهـا لاستخدام الجهاز. وهذا الكتالوج يجب أن يقرأ بكل عناية قبل استخدام الجهاز لأول مـرة للحصول على المعلومات اللازمة لوظائف الجهاز و طرق استخدامه وطرق حفظه وتخزينه والإجراءات التي يجب اتباعهـا لتـأمين سـلامته وموانع ونواهي استخخدامه (حدود الاستتخدام). ولاختيـار الجهـاز بصورة صـحيحة ، طبقاً للوظيفة بطبيعة الحال، فابن درجة الدقة المطلوبة من الجهاز تتتاسب مـع سـعر الجهـاز. وبعـد اختيـار الجهـاز لابد من فحص بصري للجهاز لملاحظة أي عيب ظاهر به مثل: مؤشر معوج، أطـراف توصيل تالفة ، تدريج
 الدائرة الكهربائية يجب التأكد من أن مفتاح اختيار الوظيفة مضبوط على الوضع الصحيح. يجب أيضاُ التأكد من الاختيار الصحيح لمدى القياس، أو اختيار أكبر مدى للقياس لضهمان سـلامة الجهاز ، ثمر يعـاد اختيـاره أثنـاء القـراءة إذا كــان المدى غير مناسـب وذلكـ للحصـول على القـراءة أقـرب مــا يكـون للمـدى الأقصر, كما ذك, سارقاً.

Learning Outcomes

- At the end of the chapter, students should be able to:
- Understand construction and operation of permanent magnet moving-coil (PMMC) instrument.
- Describe how PMMC instruments are used as galvanometers, dc ammeters, dc voltmeters, ac ammeters, and ac voltmeters.

Introduction

- PMMC instrument consists basically of a lightweight coil of copper wire suspended in the field of a permanent magnet. Current in the wire causes the coil to produce a magnetic field that interacts with the field from the magnet, resulting in partial rotation of the coil. A pointer connected to the coil deflects over a calibrated scale, indicating the level of current flowing in the wire.
- The PMMC instrument is essentially a low-level dc ammeter.

Introduction

- It can be employed to measure a wide range of direct current dc levels with the use of parallel-connected resistors.

الـدائرة الأساسية لزيادة مدى قياس التيـار.
- The instrument may also be used as a dc voltmeter by connecting appropriate-value resistors in series with the coil.

- Ohmmeters can be made from precision resistors, PMMC instrument, and batteries.

- Multirange meters are available that combine ammeter, voltmeter, and ohmmeter functions in one instrument

Ac ammeters and voltmeters can be constructed by using rectifier circuits with PMMC instruments.

The Half wave rectifier

Deflection Instrument Fundamentals

- A deflection instrument uses a pointer that moves over a calibrated scale to indicate a measured quantity.
- Three forces are operating in the electromechanical mechanism inside the instrument:
- Deflecting force
- Controlling force
- Damping force

Deflecting Force

■ The deflecting force causes the pointer to move from its zero position when a current flows.

- In the PMMC instrument, the deflecting force is magnetic.

The pointer is fixed to the coil So, it moves over the scale as The coil rotates

The deflecting force in the PMMC instrument is provided by A current-carrying coil pivoted in a magnetic field.

Controlling Force

- The controlling force in the PMMC instrument is provided by spiral springs.
- The springs retain the coil \& pointer at their zero position when no current is flowing.
- The coil and pointer stop rotating when the controlling force becomes equal to the deflecting force.
- The spring material must be nonmagnetic to avoid any magnetic field influence on the controlling force.

The controlling force from the springs balances the deflecting force.

- The springs are also used to make electrical connection to the coil, they mush a low resistance(Phosphor bronze is the material usually employed).

Damping Force

- The damping force is required to minimize (or damp out) oscillations of the pointer and coil before settling down at their final position.
- The damping force must be present only when the coil is in motion; thus it must be generated by the rotation of the coil.
- In PMMC instruments, the damping
 force is normally provided by eddy currents.
- Eddy currents induced in the coil set up a magnetic flux that opposes the coil motion, thus damping the oscillations of the coil.

Damping Force

- The damping force in a PMMC instrument is provided by eddy currents induced in the aluminum coil former as it moves through the magnetic field.

The methods of supporting the moving system of a deflection instrument

1. Jeweled-bearing suspension

- Cone-shaped cuts in jeweled ends of shafts or pivots (mat be broken by shocks).
- low possible friction.
- Some jewel bearings are spring
 supported to absorb such shocks.

2. Taut-band method

- Much tougher than jeweled-bearing.

- Two flat metal ribbons (phosphor bronze or platinum alloy) are held under tension by spring to support the coil.
\square Because of the spring, the metal ribbons behave like rubber under tension. Thus, the ribbons also exert a controlling force as they twist.
\square The metal ribbons can be used as electrical connections to the moving coil.
- Much more sensitive than the jeweled-bearing type because there is less friction.
\square Extremely rugged, not easily be shattered.

PMMC Construction

- The main feature is a permanent magnet with two soft-iron pole shoes.
- A cylindrical soft-iron core is positioned between the core and the faces of the pole shoes.
- The lightweight moving coil pivoted to move within these narrow air gaps.
- The air gaps are made as narrow as possible in order to have the strongest possible level of magnetic flux crossing the gaps.

The current in the coil of a PMMC instrument must flow in one particular direction to cause the pointer to move (positively) from the zero position over the scale.
Because the PMMC is polarized, it can be used directed to measure alternating current.

PMMC Construction

D'Arsonval or
horseshoe magnet

جهـازدارسونفال للقياس ذي الملف المتحرك

Torque Equation and Scale

- When a current I flows through a one-turn coil situated in a magnetic field, a force F is exerted on each side of the coil
$F=(B I l) \times N$ newtons

(a) Force F acts on each side of the coil

(b) Area enclosed by
where N is the number of turns
- Total force on each side of the coil of N turns:

$$
F=2 B I l N \text { newtons }
$$

The force on each side acts at a radius r, producing a deflecting torque:

$$
\begin{aligned}
T_{D} & =2 B l I N r(N . m) \\
& =B l I N(2 r) \\
T_{D} & =B l I N D
\end{aligned}
$$

$$
T_{D}=B l I N(2 r)=B l I N D=B A I N
$$

$$
A=I . D \text {, Where } \mathrm{D} \text { is the coil diameter }
$$

The controlling torque exerted by the spiral springs is directly proportional to the deformation or windup of the springs.
\square Thus, the controlling torque is proportional to the actual angle of deflection of the pointer.

$$
T_{C}=K \theta \quad \text { where } K \text { is a constant }
$$

- For a given deflection, the controlling and deflecting torques are equal:

$$
\begin{aligned}
& K \theta=B l I N D \\
& \theta=\frac{B l N D}{K} I=C I \quad \text { where } C \text { is a constant }
\end{aligned}
$$

This equation shows that the pointer deflection is always proportional to the coil current.

Consequently, the scale of the instrument is linear, or uniformly divided.

Example 1

- A PMMC instrument with a 100 -turn coil has a magnetic flux density in its air gaps of $\mathrm{B}=0.2 \mathrm{~T}$. The coil dimensions are $\mathrm{D}=1 \mathrm{~cm}$ and $l=1.5 \mathrm{~cm}$. Calculate the torque on the coil for a current of 1 mA .
- Solution:

$$
\begin{aligned}
T_{D} & =\text { BlIND } \\
& =0.2 \times\left(1.5 \times 10^{-2}\right) \times 0.001 \times 100 \times\left(1 \times 10^{-2}\right) \\
T_{D} & =3 \times 10^{-6} \text { N.m }
\end{aligned}
$$

Galvanometer

- It is a PMMC instrument designed to be sensitive to extremely low current levels.
- The simplest galvanometer is a very sensitive instrument with the type of center-zero scale.
- Galvanometers are often employed to detect zero current or voltage in a circuit rather than to measure the actual level of current or voltage.
- The most sensitive moving-coil galvanometer use tautband suspension, and the controlling torque is generated by the twist in the suspension ribbon.
- For the for greatest sensitivity, the weight of the pointer can create a problem. The solution is by mounting a small mirror on the moving coil instead of a pointer

Basic deflection system of a galvanometer using a light beam

- An adjustable shunt resistor is employed to protect the coil of a galvanometer from destructively excessive current levels.
- The shunt resistance is initially set to zero, then gradually increased to divert current through the galvanometer.

Example 2

A galvanometer has a current sensitivity of $1 \mu \mathrm{~A} / \mathrm{mm}$ and a critical damping resistance of $1 \mathrm{k} \Omega$. Calculate (a) the voltage sensitivity and (b) the megaohm sensitivity.

- Solution:

$$
\begin{aligned}
\text { Voltage sensitivity } & =1 \mathrm{k} \Omega \times 1 \mu \mathrm{~A} / \mathrm{mm} \\
& =1 \mathrm{mV} / \mathrm{mm}
\end{aligned}
$$

For a voltage sensitivity of $1 \mathrm{~V} / \mathrm{mm}$,

$$
\text { megohm sensitivity }=\frac{1 \mathrm{~V} / \mathrm{mm}}{1 \mu A / \mathrm{mm}}=1 \mathrm{M} \Omega
$$

DC Ammeter

- An ammeter is always connected in series with a circuit in which current is to be measured.
- To avoid affecting the current level in the circuit, the ammeter must have a resistance much lower than the circuit resistance.

- For larger currents, the instrument must be modified so that most of the current to be measured is shunted (a very low shunt resister) around the coil of the meter.
- Only a small portion of the current passes through the moving coil.
- A dc ammeter consists of a PMMC instrument and a lowresistance shunt.

Example 3

- A PMMC instrument has FSD of $100 \mu \mathrm{~A}$ and a coil resistance of $1 \mathrm{k} \Omega$. Calculate the required shunt resistance value to convert the instrument into an ammeter with (a) $\mathrm{FSD}=100 \mathrm{~mA}$ and (b) $\mathrm{FSD}=1 \mathrm{~A}$.

Solution:

(a) $\mathrm{FSD}=100 \mathrm{~mA}$

$$
\begin{aligned}
V_{m} & =I_{m} R_{m}=100 \mu \mathrm{~A} \times 1 \mathrm{k} \Omega=100 \mathrm{mV} \\
I & =I_{s}+I_{m} \\
I_{s} & =I-I_{m}=100 \mathrm{~mA}-100 \mu \mathrm{~A}=99.9 \mathrm{~mA} \\
R_{s} & =\frac{V_{m}}{I_{s}}=\frac{100 \mathrm{mV}}{99.9 \mathrm{~mA}}=1.001 \Omega
\end{aligned}
$$

(b) $\mathrm{FSD}=1 \mathrm{~A}$

$$
\begin{aligned}
& V_{m}=I_{m} R_{m}=100 \mathrm{mV} \\
& I_{s}=I-I_{m}=1 \mathrm{~A}-100 \mu \mathrm{~A}=999.9 \mathrm{~mA} \\
& R_{s}=\frac{V_{m}}{I_{s}}=\frac{100 \mathrm{mV}}{999.9 \mathrm{~mA}}=0.1001 \Omega
\end{aligned}
$$

Example: An ammeter has a PMMC instrument with a coil resistance of R_{m} $=99 \Omega$ and FSD current of 0.1 mA . Shunt resistance $R_{s}=1 \Omega$. Determine the total current passing through the ammeter at :
a) FSD,
b) 0.5 FSD , and
c) 0.25 FSD

Solution

(a) At FSD

meter voltage $V_{m}=I_{m} R_{m}$

$$
=0.1 \mathrm{~mA} \times 99 \Omega=9.9 \mathrm{mV}
$$

and

$$
\begin{aligned}
I_{s} R_{s} & =V_{m} \\
I_{s} & =\frac{V_{m}}{R_{s}}=\frac{9.9 \mathrm{mV}}{1 \Omega}=9.9 \mathrm{~mA}
\end{aligned}
$$

$$
\text { total current } \quad I=I_{s}+I_{m}=9.9 \mathrm{~mA}+0.1 \mathrm{~mA}
$$

$$
=10 \mathrm{~mA}
$$

(b) At 0.5 FSD

$$
\begin{aligned}
& I_{m}=0.5 \times 0.1 \mathrm{~mA}=0.05 \mathrm{~mA} \\
& V_{m}=I_{m} R_{m}=0.05 \mathrm{~mA} \times 99 \Omega=4.95 \mathrm{mV} \\
& I_{s}=\frac{V_{m}}{R_{s}}=\frac{4.95 \mathrm{mV}}{1 \Omega}=4.95 \mathrm{~mA}
\end{aligned}
$$

total current $\quad I=I_{s}+I_{m}=4.95 m A+0.5 \mathrm{~mA}=5 \mathrm{~mA}$
(c) At 0.25 FSD

$$
\begin{aligned}
& I_{m}=0.25 \times 0.1 \mathrm{~mA}=0.025 \mathrm{~mA} \\
& V_{m}=I_{m} R_{m}=0.025 \mathrm{~mA} \times 99 \Omega=2.475 \mathrm{mV} \\
& I_{s}=\frac{V_{m}}{R_{s}}=\frac{2.475 \mathrm{mV}}{1 \Omega}=2.475 \mathrm{~mA}
\end{aligned}
$$

total current

$$
I=I_{s}+I_{m}=2.475 m A+0.025 m A=2.5 m A
$$

Thus, the ammeter scale may be calibrated linearly from zero to 10 mA

Ammeter Swamping Resistance

- The moving coil in a PMMC instrument is wound with thin copper wire, and its resistance can change significantly when its temperature changes.
- The heating effect of the coil current may be enough to produce a resistance change, which will introduce an error.
- To minimize this error, a swamping resistance made of manganin or constantan is connected in series with the coil: (manganin and constantan have resistance temperature coefficients very close
 to zero).
- The ammeter shunt must also be made of manganin or constantan to avoid shunt resistance variations with temperature.

Multirange Ammeters

Make-before-break switch

- The instrument is not left without a shunt in parallel with it even for a brief instant. If this occurred, the high resistance of the instrument would affect the current flowing in the circuit.
- During switching there are actually two shunts in parallel with the instrument.

Make-before-break switch

Ayrton Shunt

The figure shows another method of protecting the deflection instrument of an ammeter from excessive current flow when switching between shunts. Resistors R_{1}, R_{2}, and R_{3} constitute an Ayrton Shunts

(b) $\underbrace{\left(R_{1}+R_{2}\right)}_{R_{s h}}$ in parallel with $\underbrace{\left(R_{m}+R_{3}\right)}_{R_{m}^{*}}$

Example: A PMMC instrument has a three-resistor Ayrton shunt connected across it to make an ammeter as shown in the figure. The resistance values are $\mathrm{R}_{1}=0.05 \Omega, \mathrm{R}_{2}=0.45 \Omega$ and $\mathrm{R}_{3}=4.5 \Omega$. The meter has $\mathrm{R}_{\mathrm{m}}=1 \mathrm{k} \Omega$ and $\mathrm{FSD}=50 \mu \mathrm{~A}$. Calculate the three ranges of the ammeter.

Solution

Switch at contact B

$$
V_{s}=I_{m} R_{m}=50 \mu \mathrm{~A} \times 1 \mathrm{k} \Omega=50 \mathrm{mV}
$$

$$
\begin{aligned}
I_{s} & =\frac{V_{s}}{R_{1}+R_{2}+R_{3}}=\frac{50 \mathrm{mV}}{0.05 \Omega+0.45 \Omega+4.5 \Omega}=10 \mathrm{~mA} \\
I & =I_{m}+I_{s}=50 \mu \mathrm{~A}+10 \mathrm{~mA} \\
& =10.05 \mathrm{~mA}
\end{aligned}
$$

Switch at contact C

$$
\begin{aligned}
V_{s} & =I_{m}\left(R_{m}+R_{3}\right)=50 \mu A(1 \mathrm{k} \Omega+4.5 \Omega) \approx 50 \mathrm{mV} \\
I_{s} & =\frac{V_{s}}{R_{1}+R_{2}}=\frac{50 \mathrm{mV}}{0.05 \Omega+0.45 \Omega}=100 \mathrm{~mA} \\
I & =I_{\mathrm{m}}+I_{s}=50 \mu A+100 \mathrm{~mA} \\
& =100.05 \mathrm{~mA}
\end{aligned}
$$

Switch at contact D

$$
\begin{aligned}
V_{s} & =I_{m}\left(R_{m}+R_{3}+R_{2}\right)=50 \mu 0(1 \mathrm{k} \Omega+4.5 \Omega+0.45 \Omega) \approx 50 \mathrm{mV} \\
I_{s} & =\frac{V_{s}}{R_{l}}=\frac{50 \mathrm{mV}}{0.05 \Omega}=1 \mathrm{~A} \\
I & =I_{m}+I_{s}=50 \mu 0+1 \mathrm{~A} \\
& =1.00005 \mathrm{~A}
\end{aligned}
$$

Accuracy and Ammeter Loading Effects

- Internal resistance of ideal ammeter is zero Ohm, but in practice, the internal resistance has some values which affect the measurement results.
- This error can be reduced by using higher range of measurement. Let us calculate the relationship between the true value and the measured value

$$
\begin{aligned}
& I_{T}(\text { true value })=\frac{V_{T h}}{R_{T h}} \\
& \begin{aligned}
I_{m}(\text { measured value }) & =\frac{V_{T h}}{R_{T h}+R_{i n}} \\
\text { Accuracy } & =\frac{I_{m}}{I_{T}}=\frac{R_{T h}}{R_{T h}+R_{i n}} \\
\% \text { Acc } & =\frac{I_{m}}{I_{T}} \times 100 \% \\
& =\frac{R_{T h}}{R_{T h}+R_{i n}} \times 100 \%
\end{aligned}
\end{aligned}
$$

Example: For a DC Circuit as shown in the figure, given $\mathrm{R}_{1}=2 \mathrm{k} \Omega, \mathrm{R}_{2}=2 \mathrm{k} \Omega$ with voltage of 2 V . By measuring the current flow through R_{3} with a dc ammeter with internal resistance of $R_{\text {in }}=100 \Omega$, calculate percentage of accuracy and percentage of error.

Solution

$R_{T h}=\left(R_{1} / / R_{2}\right)+R_{3}=2 \mathrm{k} \Omega$
$V_{T h}=\left(\frac{E}{R_{1}+R_{2}}\right) R_{2}=\left(\frac{2 \mathrm{~V}}{2 \mathrm{k} \Omega+2 \mathrm{k} \Omega}\right) \times 2 \mathrm{k} \Omega=1 \mathrm{~V}$

$I_{T}=\frac{V_{T h}}{R_{T h}}=\frac{1 \mathrm{~V}}{2 \mathrm{k} \Omega}=500 \mu \mathrm{~A}$
$I_{m}=\frac{V_{T h}}{R_{T h}+R_{i n}}=\frac{1 \mathrm{~V}}{2 \mathrm{k} \Omega+100 \Omega}=476.19 \mu \mathrm{~A}$
$\% \mathrm{Acc}=\frac{\mathrm{I}_{\mathrm{m}}}{\mathrm{I}_{T}} \times 100 \%=\frac{476.19 \mu \mathrm{~A}}{500 \mu \mathrm{~A}}=95.24 \% \quad \%$ Error $=1-\%$ Acc $=1-95.24 \%=4.76 \%$

DC Voltmeter

- The deflection of a PMMC instrument is proportional to the current flowing through the moving coil. The coil current is directly proportional to the voltage across the coil.

(a) Construction of dc voltmeter
- The coil resistance is normally quite small, and thus the coil voltage is also usually very small. Without any additional series (multiplier resistance) resistance the PMMC instrument would only measure very low voltage.
- The voltmeter range is easily increased by connecting a resistance in series with the

(b) Voltmeter circuit instrument.
- The meter current is directly proportional to the applied voltage, so that the meter scale can be calibrated to indicate the voltage.
- The voltmeter range is increased by connecting a multiplier resistance with the instrument (single or individual type of extension of range).

$$
\begin{aligned}
& R_{V}=R_{s}+R_{m} \\
& V=I_{m} R_{V}=I_{m} R_{s}+I_{m} R_{m} \\
& R_{s}=\frac{1}{I_{m}} \times V-R_{m}
\end{aligned}
$$

- Last equation can be used to select the multiplier resistance value ($\boldsymbol{R}_{\boldsymbol{s}}$) for certain voltage range (FSD). In this case I_{m} will be the full scale current.
- A multiplier resistance that is nine times the coil resistance will increase the voltmeter range by a factor of 10 (multiplier resistance + coil resistance)
- The voltmeter sensitivity (S) is defined as the total voltmeter resistance (internal resistance $\boldsymbol{R}_{\text {in }}$) divided by the voltage range (full scale)

$$
\begin{aligned}
& \text { Sensitivity }(S)=\frac{\text { Total Resistance } R_{\text {in }}}{\text { Range }} \\
&= \frac{1}{\text { Full Scale Deflection Voltage }\left(V_{F S D}\right)} \quad \mathrm{K} \Omega / \mathrm{V}
\end{aligned}
$$

Example:

A PMMC instrument with FSD of $100 \mu \mathrm{~A}$ and a coil resistance of $1 \mathrm{k} \Omega$ is to be converted into a voltmeter. Determine the required multiplier resistance if the voltmeter is to measure 50 V at full scale and Voltmeter sensitivity. Also calculate the applied voltage when the instrument indicate $0.8,0.5$, and 0.2 of FSD.

Solution

- At 50 V FSD

$$
\begin{aligned}
& V=I_{m} R_{V}=I_{m} R_{s}+I_{m} R_{m} \\
& R_{s}=\frac{V}{I_{m}}-R_{m} \\
& I_{m}=100 \mu \mathrm{~A} \quad \Rightarrow \quad R_{s}=\frac{50 \mathrm{~V}}{100 \mu \mathrm{~A}}-1 \mathrm{k} \Omega=499 \mathrm{k} \Omega
\end{aligned}
$$

- Since the voltmeter has a total resistance of $\boldsymbol{R}_{v}=R_{s}+R_{m}=500 \mathrm{k} \Omega$, then its resistance per volt or sensitivity is $500 \mathrm{k} \Omega / 50 \mathrm{~V}=10 \mathrm{k} \Omega / \mathrm{V}$.
- At 0.8 of FSD

$$
\begin{aligned}
I_{m} & =0.8 \times 100 \mu \mathrm{~A}=80 \mu \mathrm{~A} \\
V & =I_{m}\left(R_{s}+R_{m}\right) \\
& =80 \mu \mathrm{~A}(499 \mathrm{k} \Omega+1 \mathrm{k} \Omega)=40 \mathrm{~V}
\end{aligned}
$$

- At 0.5 of FSD

$$
\begin{aligned}
I_{m} & =50 \mu \mathrm{~A} \\
V & =50 \mu \mathrm{~A}(499 \mathrm{k} \Omega+1 \mathrm{k} \Omega)=25 \mathrm{~V}
\end{aligned}
$$

- At 0.2 of FSD

$$
\begin{aligned}
I_{m} & =20 \mu \mathrm{~A} \\
V & =20 \mu \mathrm{~A}(499 \mathrm{k} \Omega+1 \mathrm{k} \Omega)=10 \mathrm{~V}
\end{aligned}
$$

Thus, the voltmeter scale may be calibrated linearly from zero to 50 V

Voltmeter Swamping Resistance

$\square \quad$ As in the case of ammeter, the change in coil resistance $\left(R_{m}\right)$ with temperature change can introduce errors in a PMMC voltmeter.

- The presence of the voltmeter multiplier resistance $\left(R_{s}\right)$ tends to swamp coil resistance changes, except for low voltage ranges where \boldsymbol{R}_{s} is not very much larger than $\boldsymbol{R}_{\boldsymbol{m}}$.
$>$ In some cases it might be necessary to construct the multiplier resistance form manganin or constantan.

Multirange Voltmeters

Individual or series connected resistors may be used as shown in the following configurations

Multirange voltmeter with ranges $V=I_{m}\left(R_{m}+R\right)$ where R can be R_{1}, R_{2}, or R_{3}

Example:

A PMMC instrument with $\mathrm{FSD}=50 \mu \mathrm{~A}$ and $R_{m}=1700 \Omega$ is to be employed as a voltmeter with ranges of $10 \mathrm{~V}, 50 \mathrm{~V}$, and 100 V . Calculate the required values of multiplier resistors for the two circuits shown in the previous slides.

Solution

For the circuit shown

Switch contact at (1) $\quad R_{m}+R_{l}=\frac{V}{I_{m}}$

$$
\begin{aligned}
R_{l} & =\frac{V}{I_{m}}-R_{m} \\
& =\frac{10 \mathrm{~V}}{50 \mu \mathrm{~A}}-1700 \Omega=200 \mathrm{k} \Omega-1.7 \mathrm{k} \Omega \\
& =198.3 \mathrm{k} \Omega
\end{aligned}
$$

$$
\text { Switch contact at (2) } \quad \begin{aligned}
R_{2} & =\frac{50 \mathrm{~V}}{50 \mu \mathrm{~A}}-1700 \Omega \\
& =998.3 \mathrm{k} \Omega
\end{aligned}
$$

Switch contact at (3) $\quad R_{3}=\frac{100 \mathrm{~V}}{50 \mu \mathrm{~A}}-1700 \Omega$

$$
=1.9983 M \Omega
$$

For the circuit shown

Switch contact at (1)

$$
\begin{aligned}
& R_{m}+R_{1}=\frac{V_{1}}{I_{m}} \\
& R_{1}=\frac{V_{1}}{I_{m}}-R_{m}=\frac{10 \mathrm{~V}}{50 \mu \mathrm{~A}}-1700 \Omega=198.3
\end{aligned}
$$

Switch contact at (2)

$$
\begin{aligned}
& R_{m}+R_{1}+R_{2}=\frac{V_{2}}{I_{m}} \\
& R_{2}=\frac{V_{2}}{I_{m}}-R_{1}-R_{m}=\frac{50 \mathrm{~V}}{50 \mu \mathrm{~A}}-198.3 \mathrm{k} \Omega-1700 \Omega=800 \mathrm{k} \Omega
\end{aligned}
$$

Switch contact at (3)

$$
\begin{aligned}
& R_{m}+R_{1}+R_{2}+R_{3}=\frac{V_{3}}{I_{m}} \\
& R_{3}=\frac{V_{3}}{I_{m}}-R_{2}-R_{1}-R_{m}=\frac{100 \mathrm{~V}}{50 \mu \mathrm{~A}}-800 \mathrm{k} \Omega-198.3 \mathrm{k} \Omega-1700 \Omega=1 \mathrm{M} \Omega
\end{aligned}
$$

Accuracy and Voltmeter Loading Effect

Let us calculate the relationship between the true value $\left(V_{T}\right)$ and the measured value $\left(V_{m}\right)$

$$
\begin{aligned}
& V_{T}=V_{T h} \\
& V_{m}=\frac{V_{T h}}{R_{i n}+R_{T h}} \times R_{i n}
\end{aligned}
$$

$$
\begin{aligned}
\text { Accuracy } & =\frac{V_{m}}{V_{T}}=\frac{R_{i n}}{R_{i n}+R_{T h}} \\
\% A c c & =\frac{V_{m}}{V_{T}} \times 100 \% \\
\% A c c & =\frac{R_{i n}}{R_{i n}+R_{T h}} \times 100 \%
\end{aligned}
$$

Example:

A voltmeter with sensitivity of $20 \mathrm{k} \Omega / \mathrm{V}$ is used for measuring a voltage across R_{2} with range of 50 V as shown in the figure below.

Calculate a) reading voltage. b) accuracy of measurement. c) error of measurement

Solution

$$
\begin{aligned}
& V_{T h}=V_{T}=\left(\frac{E}{R_{1}+R_{2}}\right) R_{2}=\left(\frac{100 \mathrm{~V}}{200 \mathrm{k} \Omega+200 \mathrm{k} \Omega}\right) \times 200 \mathrm{k} \Omega=50 \\
& R_{T h}=R_{1} / / R_{2}=200 \mathrm{k} \Omega / / 200 \mathrm{k} \Omega=100 \mathrm{k} \Omega
\end{aligned}
$$

a) $\quad R_{\text {in }}=S \times$ Range $=\frac{20 \mathrm{k} \Omega}{V} \times 50 \mathrm{~V}=1 \mathrm{M} \Omega$

$$
V_{m}=\left(\frac{R_{i n}}{R_{i n}+R_{T h}}\right) V_{T}=\left(\frac{1 M \Omega}{1 M \Omega+100 \mathrm{k} \Omega}\right) \times 50 \mathrm{~V}=45.45 \mathrm{~V}
$$

b) Accuracy $=\frac{V_{m}}{V_{T}}=\frac{45.45 \mathrm{~V}}{50 \mathrm{~V}}=0.909 \quad$ or $\quad \% \mathrm{Acc}=90.9 \%$

c) Error $=1-A c c=1-0.909=0.091 \quad$ or $\quad \%$ Error $=9.1 \%$

AC Voltmeter

- Full-Wave Rectifier Voltmeter
- Half-Wave Rectifier Voltmeter
- Half-Wave Full Bridge Rectifier Voltmeter

AC Ammeter and Voltmeter

B When an alternating current (sinusoidal) with a very low frequency (0.1 Hz or lower) is passed through a PMMC instrument, the pointer tends to follow the instantaneous level of the AC.

- As the current grows positively, the pointer deflection increases to a maximum at the peak of the ac.
- Then as the instantaneous current level falls, the pointer deflection decreases towards zero.
- When the ac goes negative, the pointer is deflected (off-scale) to the left of zero.

With the normal 50 Hz or higher supply frequencies, the damping mechanisms and the inertia of the meter movement prevent the pointer from following the changing instantaneous levels of the signal.

- The instruments pointer settles at the average value of the current flowing through the moving coil which is zero.
B PMMC instrument can be modified by one of the following circuits to measure AC signals

1. Full-Wave Bridge Rectifier Voltmeter

- When the input is positive, diodes D_{1} and D_{4} conduct, causing current to flow through the meter from top to bottom (red solid path).
- When the input goes negative, diodes D_{2} and D_{3} conduct, current flows through the meter from the positive to the negative terminal (blue dashed path).
- The ac voltmeter uses a series-connected multiplier
resistor $\left(R_{s}\right)$ to limit the current flow through the instrument.
- The meter deflection is proportional to the average
current $\left(I_{a v}\right)$, which is $0.637 \times$ peak current $\left(I_{p}\right.$ or

The meter deflection is proportional to the average
current $\left(I_{a v}\right)$, which is $0.637 \times$ peak current $\left(I_{p}\right.$ or I_{m}).

- But the actual current (or voltage) to be indicated in ac measurement is normally the $I_{r m s}=0.707 \times I_{p}\left(\right.$ or $\left.I_{m}\right)$.

$$
\left(\text { note } I_{r m s}=1.11 \times I_{a v} \quad I_{p}\left(\text { or } I_{m}\right)=1.414 \times I_{r m s}\right)
$$

- When other than pure sine waves are applied, the voltmeter will not indicate the rms voltage.

$I_{m}=\frac{\operatorname{applied} \text { peak voltage }\left(V_{p}\right) \text {-rectifiers voltage drop }}{\text { totat circuit resistance }}=\frac{1.414 V_{m s}-2 V_{F}}{R_{s}+R_{m}}$
V_{F} is rectifier voltage drops for D_{1} and D_{2} or D_{3} and D_{4}
Peak current $I_{m}=I_{a v} / 0.637=I_{F S D} / 0.637$

Example:

A PMMC instrument with $\mathrm{FSD}=100 \mu \mathrm{~A}$ and $R_{m}=1 \mathrm{k} \Omega$ is to be employed as an ac voltmeter with $\mathrm{FSD}=200 \mathrm{~V}$ (rms). Silicon diodes with $V_{F}=0.7 \mathrm{~V}$ are used in the bridge rectifier circuit of shown above. Calculate: (a) the multiplier resistance value required, (b) the pointer indications the rms input voltage is (i) 100 V and (ii) 50 V .

Solution

At FSD, the average current flowing through the PMMC instrument is $100 \mu \mathrm{~A}$
$I_{\mathrm{m}}=\frac{I_{a v}}{0.637}=157 \mu \mathrm{~A}$

$V_{p}=1.414 V_{r m s}=1.414 \times 200=282.8$ Volt
(a) $\quad I_{m}=\frac{V_{p}-2 V_{F}}{R_{s}+R_{m}}$

$$
R_{s}=\frac{V_{p}-2 V_{F}}{I_{m}}-R_{m}
$$

$$
=\frac{(282.8-1.4) V}{\left(157 \times 10^{-3}\right) m A}-1 \mathrm{k} \Omega=1791.36 \mathrm{k} \Omega
$$

(b) i-for the rms input voltage is $\mathbf{1 0 0 V} \quad I_{m}{ }^{\prime}=\frac{V_{p}{ }^{`}-2 V_{F}}{R_{s}+R_{m}}=\frac{1.414 \times 100-1.4}{(1791.36+1) k \Omega}=78.11 \mu \mathrm{~A}$

$$
I_{a v}{ }^{\prime}=0.607 \times I_{m}{ }^{\prime}=49.76 \mu A \cong 50 \mu A=0.5 F S D
$$

ii- Similarly, for the rms input voltage is 50 V

$$
I_{a v}{ }^{" 1} \cong 25 \mu A=0.25 F S D
$$

2. Half-Wave Rectifier Voltmeter

- R_{SH} shunting the meter is included to cause a relatively large current to flow through diode D_{1} (larger than the meter current) when the diode is forward biased. This is ensure that the diode is biased beyond the knee and will into the linear range of its characteristics.
- Diode D_{2} conducts during the negative half-cycles of the input. When conducting, D_{2} cause a small voltage drop across D_{1} and the meter, thus preventing the flow of any significant reverse leakage current (and reverse voltage) through the meter via D_{1}.

In the half wave rectifier

$$
I_{a v}=0.5 * 0.637 I_{m}
$$

Half-Bridge Full-Wave Rectifier Voltmeter

- During the positive half-cycle of the input, diode D_{1} is forward biased and D_{2} is reverse biased. Current flows from terminal 1 through D_{1} and the meter and then through R_{2} to terminal 2. but R_{1} is in parallel with the meter and R_{2}. Therefore, much of the current flowing in D_{1} pass through R_{1} while only part of it flows through the meter and R_{2}
- During the negative half-cycle, diode D_{2} is forward biased and D_{1} is reverse biased. Current flows from terminal 2 through R_{1} and the meter and then through D_{2} to terminal 1. New, R_{2} is in parallel with the series connected meter and R_{1}
- This arrangement forces the diodes to operate beyond the knee of their characteristics and helps to compensate for differences that might occur in the characteristics of D_{1} and D_{2}.

AC Ammeter

- Like a dc ammeter, an ac ammeter must have a very low resistance because it is always connected in series with the circuit in which current is to be measured.
- This low-resistance requirement means that the voltage drop across the ammeter must be very small, typically not greater than 1000 mV .
- The voltage drop across a diode is 0.3 to 0.7 V .
- The use of a current transformer gives the ammeter a low terminal resistance and low voltage drop.

Ohmmeter

A. Series Ohmmeter

- Basic Circuit and Scale
\square The simplest circuit consists of a voltage source $\left(E_{b}\right)$ connected in series with a pair of terminals (A \& B), a standard resistance $\left(R_{1}\right)$, and a low-current PMMC instrument.

- The resistance to be measured $\left(R_{x}\right)$ is connected across terminal A and B.
- The meter current $I_{m}=E_{b} /\left(R_{x}+R_{l}+R_{m}\right)$
- When the ohmmeter terminals are shorted $\left(R_{x}=0\right)$ meter full-scale deflection occurs. $I_{F S D}=E_{b} /\left(R_{1}+R_{m}\right)$
- At half-scale deflection $R_{x}=R_{l}+R_{m}$
- At zero deflection the terminals are open-circuited $\left(R_{x}=\infty\right)$.

Example : The series ohmmeter shown in Figure is made up of a 1.5 V battery, a $100 \mu \mathrm{~A}$ meter, and a resistance R_{1} which makes $\left(R_{1}+R_{m}\right)=15 \mathrm{k} \Omega$.
a) Determine the instrument indication when $R_{x}=0$.
b) Determine how the resistance scale should be marked at $0.75 \mathrm{FSD}, 0.5 \mathrm{FSD}$ and 0.25 FSD

Solution
a) $I_{m}=\frac{E_{b}}{R_{x}+R_{1}+R_{m}}=\frac{1.5 \mathrm{~V}}{0+15 k \Omega}=100 \mu \mathrm{~A}(F S D)$
b) At $0.75 \mathrm{FSD}: \quad I_{m}=\frac{3 \times 100 \mu A}{4}=75 \mu A \quad \& \quad R_{x}+R_{1}+R_{m}=\frac{E_{b}}{I}$

$$
\begin{aligned}
R_{x} & =\frac{E_{b}}{I}-\left(R_{1}+R_{m}\right) \\
& =\frac{1.5 \mathrm{~V}}{75 \mu A}-15 k \Omega=5 k \Omega
\end{aligned}
$$

$$
\text { At } 0.5 F S D: \quad I_{m}=\frac{100 \mu A}{2}=50 \mu A \quad \& \quad R_{x}=\frac{1.5 V}{50 \mu A}-15 k \Omega=15 k \Omega
$$

$$
\text { At } 0.25 F S D: I_{m}=\frac{100 \mu A}{4}=25 \mu A \quad \& \quad R_{x}=\frac{1.5 \mathrm{~V}}{25 \mu \mathrm{~A}}-15 \mathrm{k}=45 \mathrm{k} \Omega
$$

The ohmmeter scale is now marked as shown in the figure. It is clear that the ohmmeter scale is nonlinear.

Comments: disadvantages of simple series ohmmeter

- The simple ohmmeter described in last example will operate satisfactorily as long as the battery voltage remains exactly at 1.5 V . When the battery voltage falls, the instrument scale is no longer correct.
- Although R_{\curvearrowleft} were adjusted to give FSD when terminals A and B are shortcircuited, the scale would still be in error because now mid-scale would represent a resistance equal to the new value of $R_{l}+R_{m}$.

Ohmmeter with Zero Adjust

Falling battery voltage can be taken care by an adjustable resistor (R_{2}) connected in parallel with the meter.

- With terminals A and B short-circuited, the total circuit resistance is $\boldsymbol{R}_{1}+\left(\boldsymbol{R}_{2} / / \boldsymbol{R}_{\boldsymbol{m}}\right)$.
- Since \boldsymbol{R}_{1} is always very much larger than $\boldsymbol{R}_{2} / / \boldsymbol{R}_{m}$,
 the total circuit resistance can be assumed to equal R_{1}

$$
I_{b}=\frac{E_{b}}{R_{x}+R_{l}+R_{2} \| R_{m}} \quad \text { if } R_{2} \| R_{m} \ll R_{l} \text { then } \quad I_{b} \approx \frac{E_{b}}{R_{x}+R_{l}}
$$

Also, the meter voltage is $V_{m}=I_{b}\left(R_{2} \| R_{m}\right)$ which give meter current as $I_{m}=\frac{I_{b}\left(R_{2} \| R_{m}\right)}{R_{m}}$

- When R_{x} equal to R_{I} the circuit resistance is doubled and the circuit current is halved. This cause both I_{2} and I_{m} to be reduced to halfof their previous level. Thus the mid-scale measured resistance is again equal to \boldsymbol{R}_{1}.
- Each time the ohmmeter is used, terminals A and B are first short circuited, and \boldsymbol{R}_{2} is adjusted for zero-ohm indication on the scale
- The series ohmmeter can be converted to a multi-range ohmmeter by employing several values of standard resistance R_{1} and a rotatory switch

© The major inconvenience of such a circuit is that a large adjustment of the zero control $\left(R_{2}\right)$ would have to be made every time the resistance range $\left(R_{l}\right)$ is changed.

Example:

An ohmmeter as shown in the figure with $\quad E_{b}=$ $1.5 \mathrm{~V}, R_{1}=15 \mathrm{k} \Omega, R_{m}=R_{2}=50 \Omega$ and $I_{\mathrm{FSD}}=50 \mu \mathrm{~A}$. Calculate, (a) R_{x} at 0.5 FSD , (b) when $E_{b}=1.3 \mathrm{~V}$ what is the value of R_{2} to get full-scale current and (c) when $E_{b}=1.3 \mathrm{~V}$ what is the value of R_{x} at half-
 scale current.

Solution

Since $\left(R_{m} / / R_{2}\right)=25 \Omega \ll R_{l}$ then at half scale $R_{x}=R_{l}=15 \mathrm{k} \Omega$ independent of E_{b}
(a)

$$
\begin{aligned}
& V_{m}=I_{m} R_{m}=25 \mu \mathrm{~A} \times 50 \Omega=1.25 \mathrm{mV} \\
& I_{2}=\frac{V_{m}}{R_{2}}=\frac{1.25 m \mathrm{~V}}{50 \Omega}=25 \mu \mathrm{~A} \\
& I_{b}=I_{2}+I_{m}=25 \mu \mathrm{~A}+25 \mu \mathrm{~A}=50 \mu \mathrm{~A} \\
& R_{x}+R_{1} \approx \frac{E}{I_{b}}=\frac{1.5 \mathrm{~V}}{50 \mu \mathrm{~A}}=30 \mathrm{k} \Omega \\
& R_{x}=\left(\frac{E}{I_{b}}\right)-R_{1}=30 \mathrm{k} \Omega-15 \mathrm{k} \Omega=15 \mathrm{k} \Omega
\end{aligned}
$$

(b)

$$
\begin{aligned}
I_{b} & =\frac{E_{b}}{R_{x}+R_{1}}=\frac{1.3 \mathrm{~V}}{0+15 \mathrm{k} \Omega}=86.67 \mu \mathrm{~A} \\
I_{2} & =I_{b}-I_{m(F S D)}=86.67 \mu \mathrm{~A}-50 \mu \mathrm{~A}=36.67 \mu \mathrm{~A} \\
V_{m} & =I_{m(F S D)} R_{m}=50 \mu \mathrm{~A} \times 50 \Omega=2.5 \mathrm{mV} \\
R_{2} & =\frac{V_{m}}{I_{2}}=\frac{2.5 \mathrm{~m} V}{36.67 \mu \mathrm{~A}}=68.18 \Omega
\end{aligned}
$$

(c)

$$
\begin{aligned}
& V_{m}=I_{m} R_{m}=25 \mu \mathrm{~A} \times 50 \Omega=1.25 \mathrm{mV} \\
& I_{2}=\frac{V_{m}}{R_{2}}=\frac{1.25 \mathrm{~m}}{68.18 \Omega}=18.33 \mu \mathrm{~A} \\
& I_{b}=I_{2}+I_{m}=18.33 \mu \mathrm{~A}+25 \mu \mathrm{~A}=43.33 \mu \mathrm{~A} \\
& R_{x}+R_{1} \approx \frac{E}{I_{b}}=\frac{1.3 \mathrm{~V}}{43.33 \mu \mathrm{~A}}=30 \mathrm{k} \Omega \\
& R_{x}=30 \mathrm{k} \Omega-R_{1}=30 \mathrm{k} \Omega-15 \mathrm{k} \Omega \\
& R_{x}=15 \mathrm{k} \Omega
\end{aligned}
$$

B. Shunt Ohmmeter

- Basic Circuit and Scale
- The simplest circuit consists of a voltage source (E) connected with an adjusted Resistor $\left(R_{A d j}\right)$ and a low-current PMMC instrument.

- The resistance to be measured $\left(R_{x}\right)$ is connected across terminal A and B.
- When $R_{x}=0$, short circuit between A and B, there will be no current flow in the coil branch and the scale point at zero on the left hand side.
- When $\boldsymbol{R}_{\boldsymbol{x}}=\infty$, open circuit between A and B. Then adjust $\boldsymbol{R}_{A d j}$ to get FSD. The meter will point infinity at the right of the scale.

$$
I_{m}=I_{F S D}=\frac{E}{R_{A d j}+R_{m}}
$$

- For any \boldsymbol{R}_{x} we have,

$$
I_{m}=\frac{E R_{x}}{R_{A d j} R_{m}+R_{x}\left(R_{A d j}+R_{m}\right)}
$$

- Scale of shunt ohmmeter is opposite to the scale of series ohmmeter when connecting with $\boldsymbol{R}_{\boldsymbol{x}}$

THANK YOU FOR YOUR ATTENTION!!

