LOGIC
PROGRAMMING

1. Clauses

2|
0 Definition of Clause:

Apart from comments and blank lines, which are

ignored, a Prolog program consists of a succession
of clauses.

A clause can run over more than one line or there
may be several on the same line. A clause is
terminated by a dot character.

There are two types of clause: facts and rules.

1. Clauses — Facts (cont.)
IEN

1. Form of Facts:
head
head is called the head of the clause.

It takes the same form as a goal entered by the user
at the prompt, i.e. it must be an atom or a
compound term.

Atoms and compound terms are known collectively
as call terms.

1. Clauses - Facts (cont.)
N

Example:

hello.
likes(sara, flowers).

tasty(chocolate).

1. Clauses - Rules (cont.)

s P
1.2 Form of Rules:
hEﬂd:-‘l‘I,IE, sea II'I'[. “‘(:}=‘I]

0 head is called the head of the clause (or the head of the rule)
and

f

0 as for facts, must be a call term, i.e. an atom or «
compound term.

0 :- is called the neck of the clause (or the ‘neck operator’). It
is read as If.
o t,, t,, ..., t,is called the body of the clause (or the body of

the rule). It specifies the conditions that must be met in order
for the conclusion, represented by the head, to be satisfied.

1. Clauses — Rules (cont.)
S

0 The body consists of one or more components, separated
by commas. The components are goals and the commas are
read as ‘and’.

0 Each goal must be a call term, i.e. an atom or «
compound term.

0 A rule can be read as 'head is frue if tir ty oour B, are all
frue’

0 The head of a rule can also be viewed as a goal with the
components of its body viewed as subgoals.

0 Another reading of a rule is 'to achieve goal head, it is
necessary to achieve subgoals t;, t5, ..., f, in turn’.

1. Clauses — Rules (cont.)
=

0 Some examples of Rules are:

large animal (X) :-animal (X),large (X) .

grandparent (X,Y) : -father (X, 2Z) ,parent (Z,Y) .

go:-write('hello world'),nl.

1.Clauses (cont.)

™.
/* Animals Program 2 */

dog(fido). large(fido).
cat{mary). large(mary).

fido, mary, jane etc. are atoms,

i.e. consfants, indicated by their
dﬂg{rnver]' c:lnghune]. initial lower case letters.

dog(tom). large(tom). cat(harry). X and Y are variables, indicated
dt}g{fred]. dt}g{henr}r]. by their initial capital letfers.
The first 18 clavses are facts.

cat(bill). cat(steve). The final two clauses are rules.

small{henry). large(fred).
large(steve). large(jim).
large(mike).

large_animal(X):- dog(X),large(X).
large _animal(Z):- cat(Z),large(L).

2. Predicates
K

0 All the clauses (facts and rules) for which the head has
a given combination of functor and arity comprise @
definition of a predicate.

EICII"I"IP'E: It is possible for the
. program to include
arent(ali).
P (} clauses for which the

parent(ahmad, khaled). heads have the same
FJUFEHT(X,T}:-fohEF{X,Y}. functors, but a different

parent(X,Y):-mother(X,Y).
father(ahmad, khaled).

mother(maha,khaled).

arity (no. of arguments).

2. Predicates (cont.)

0 The clauses do not have to appear as consecutive
ines of a program but it makes programs easier to

read if they do.

O in textbooks, reference manuals etc., not inside
programs, the predicates are written as parent/2
and parent/1, to distinguish between them.

O A user's program comprises facts and rules that
define new predicates. These are called user-

defined predicates.

2. Predicates (cont.)
I

Declarative and Procedural Interpretations of Rules:

0 Rules have both a declarative and a procedural

interpretation. For example, the declarative

interpretation of the rule:
chases (X,Y) : -dog (X) ,cat (Y) ,write (X),

write(' chases ') ,write(Y),nl.
0 is: chases(X,Y) is true if dog(X) is true and cat(Y)

is true and write(X) is true, etc.’

2. Predicates (cont.)
S

Declarative and Procedural Interpretations of Rules:

0 The procedural interpretation is ‘To satisfy
chases(X,Y), first satisfy dog(X), then satisfy
cat(Y), then satisfy write(X), ete.’

0 The order of the clauses defining a predicate and
the order of the goals in the body of each rule are
irrelevant to the declarative interpretation but of
vital importance to the procedural interpretation.

The goals in the body of a rule are examined from
left to right.

2. Predicates (cont.)

I T
Simplifying Entry of Goals:

o In developing or testing programs it can be tedious
to enter repeatedly at the system prompt a lengthy

sequence of goals such as
?-dog(X), large(X), write(X),write(’ is a large dog’),nl.

o A commonly used programming technique is to define
a predicate such as go/0 or start/0, with the above
sequence of goals as the right-hand side of a rule,

2. Predicates (cont.)

s P
Simplifying Entry of Goals:

Example:

go:-dog(X),large(X),write(X),

write(' is a large dog'),nl.

0 This enables goals entered at the prompt to be kept
brief, e.q.

O ?-go.

2. Predicates (cont.)
L PR

O Recursion:

o0 An important technique for defining predicates, is to
define them in terms of themselves. This is known as

a recursive definition.

0 Example:
likes(ali, X):-likes(X,Y),cat(Y).

which can be interpreted as ‘Ali likes anyone who

likes at least one cat'.

4. Variables

e
Variables in Goals:

0 Variables in goals can be interpreted as meaning 'find
values of the variables that make the goal satisfied'.

0 Example: (This example is addition to those clauses in

Slide#8):
chases(X,Y):- dog(X),cat(Y),

write(X),write(' chases '),write(Y),nl.

/* chases is a predicate with two arguments*/

go:-chases(A,B).

4. Variables (cont.)
B

Variables in Goals:

0 A goal such as
?-chases(X,Y).

0 means find values of variables X and Y to satisfy
chases(X,Y).

0 To do this, Prolog searches through all the clauses defining
the predicate chases (there is only one in this case) from top
to bottom until a matching clause is found.

0 It then works through the goals in the body of that clause
one by one, working from left to right, attempting to satisfy
each one in turn.

4. Variables (cont.)

Binding Variables:

o Initially all variables used in a clause are said to be
unbound, meaning that they do not have values.

0 When the Prolog system evaluates a goal some
variables may be given values. This is known as
binding the variables.

o0 A variable that has been bound may become
unbound again and possibly then bound to a

different value by the process of backtracking.

4. Variables (cont.)

o
Universally Quantified Variables:

0 If a variable appears in the head of a rule or fact it

is taken to indicate that the rule or fact applies for all
possible values of the variable.

0 For example, the rule
large_animal(X):-dog(X),large(X).

o can be read as 'for all values of X, X is a large

animal if X is a dog and X is large’.

O Variable X is said to be universally quantified

4. Variables (cont.)
B

Existentiall vantified Variables:

0 Suppose now that the database contains the following clauses:
person(frances,wilson,female,28,architect).
person(fred,jonesmale,62,doctor).
person(paul,smith,male,45,engineer).
person(martin,williams,male,23,chemist).
person(mary,jones,female,24,programmer).
person(martin,johnson,male, 47 teacher).
man(A):-person(A,B,male,C,D).

0 The last clause is a rule, defined using the person predicate,
which also has a natural interpretation, i.e. 'for all A, Ais a
man if A is a person whose sex is male’.

4. Variables (cont.)

Existentially Quantified Variables:

O

More helpful interpretation would be to take variable B to
mean 'for at least one value of B and similarly for variables C
and D.

The key distinction between variable A and variables B, C and
D in the definition of predicate man is that B, C and D do not

appear in the head of the clause.

The convention used by Prolog is that if a variable, say Y,
appears in the body of a clause but not in its head it is taken to
mean 'there is (or there exists) at least one value of Y'. Such
variables are said to be existentially quantified. Thus the rule

houseowner(X):-house(Y),owns(X,Y).

can be interpreted as meaning for all values of X, X is a house
owner if there is some Y such that Y is a house and X owns Y.

4. Variables (cont.)
N

The Anonymous Variable:

0 The underscore character _ denotes a special variable, called the
anonymous variable. This is used when the user does not care about the
value of the variable.

0 Example: to check whether there is someone with name paul in the

database, an easier way is to use the goal:
?- person(paul _,_,_,).
frue.

0 Example: If only the surname of any people named paul is of

interest, this can be found
0 by making the other three variables anonymous in a goal, e.q.

?- person(paul Surname, , ,).

Surmame = smith

4. Variables (cont.)

I T
The Anonymous Variable:

o Similarly, if only the ages of all the people named
martin in the database are of interest, it would be
simplest to enter the goail:

?2- person(martin, , ,Age,).

0 This will give two answers by backtracking.
Age = 23 ;
Age = 47

0 The three anonymous variables are not bound, i.e. given
values,

4. Variables (cont.)

L
The Anonymous Vdriable:

0 Note that there is no assumption that all the anonymous
variables have the same value (in the above examples

they do not). Entering the alternative goal

?2- person(martin, X, X,Age, X).

0 with variable X instead of underscore each time, would
produce the answer

false

0 as there are no clauses with first argument martin where
the second, third and fifth arguments are identical.

