
Licensed to:

© 2011 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or by
any means—graphic, electronic, or mechanical, including but not limited
to photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act—without the prior written permission of the publisher.

Library of Congress Control Number: 2009938501

ISBN-13: 978-0-5387-4476-8

ISBN-10: 0-538-74476-6

Course Technology
20 Channel Center Street
Boston, MA 02210
USA

Some of the product names and company names used in this book have
been used for identifi cation purposes only and may be trademarks or
 registered trademarks of their respective manufacturers and sellers.

Course Technology, a part of Cengage Learning, reserves the right to revise
this publication and make changes from time to time in its content without
notice.

Cengage Learning is a leading provider of customized learning solutions with
offi ce locations around the globe, including Singapore, the United Kingdom,
Australia, Mexico, Brazil, and Japan. Locate your local offi ce at:
www.cengage.com/global

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

To learn more about Course Technology, visit
www.cengage.com/coursetechnology

Purchase any of our products at your local college store or at our preferred
online store www.ichapters.com

Programming Logic and Design,
 Comprehensive, Sixth Edition
Joyce Farrell

Executive Editor: Marie Lee

Acquisitions Editor: Amy Jollymore

Managing Editor: Tricia Coia

Developmental Editor: Dan Seiter

Content Project Manager: Jennifer Feltri

Editorial Assistant: Zina Kresin

Marketing Manager: Bryant Chrzan

Art Director: Marissa Falco

Text Designer: Shawn Girsberger

Cover Designer: Cabbage Design Company

Cover Image: iStockphoto

Print Buyer: Julio Esperas

Copy Editor: Michael Beckett

Proofreader: Vicki Zimmer

Indexer: Alexandra Nickerson

Compositor: Integra

Printed in Canada

1 2 3 4 5 6 7 14 13 12 11 10

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

C H A P T E R 1
An Overview of
Computers and
Programming

In this chapter, you will learn about:

Computer systems

Simple program logic

The steps involved in the program development cycle

Pseudocode statements and fl owchart symbols

Using a sentinel value to end a program

Programming and user environments

The evolution of programming models

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Understanding Computer Systems
A computer system is a combination of all the components required
to process and store data using a computer. Every computer system
is composed of multiple pieces of hardware and software.

Hardware • is the equipment, or the physical devices, associated
with a computer. For example, keyboards, mice, speakers, and
printers are all hardware. Th e devices are manufactured diff erently
for large mainframe computers, laptops, and even smaller comput-
ers that are embedded into products such as cars and thermostats,
but the types of operations performed by diff erent-sized comput-
ers are very similar. When you think of a computer, you often think
of its physical components fi rst, but for a computer to be useful it
needs more than devices; a computer needs to be given instruc-
tions. Just as your stereo equipment does not do much until you
provide music, computer hardware needs instructions that control
how and when data items are input, how they are processed, and
the form in which they are output or stored.

Software • is computer instructions that tell the hardware what to do.
Software is programs: instructions written by programmers. You can
buy prewritten programs that are stored on a disk or that you down-
load from the Web. For example, businesses use word-processing
and accounting programs, and casual computer users enjoy pro-
grams that play music and games. Alternatively, you can write your
own programs. When you write software instructions, you are
 programming. Th is book focuses on the programming process.

Software can be classifi ed as application software or system software.
Application software comprises all the programs you apply to a task—
word-processing programs, spreadsheets, payroll and inventory programs,
and even games. System software comprises the programs that you use
to manage your computer, including operating systems such as Windows,

Linux, or UNIX. This book focuses on the logic used to write application software pro-
grams, although many of the concepts apply to both types of software.

Together, computer hardware and software accomplish three major
operations in most programs:

Input • —Data items enter the computer system and are put into mem-
ory, where they can be processed. Hardware devices that perform input
operations include keyboards and mice. Data items include all the text,
numbers, and other information that are processed by a computer.

In business, much of the data used is facts and fi gures about such entities as
products, customers, and personnel. However, data can also be items such
as the choices a player makes in a game or the notes required by a music-
 playing program.

2

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Many computer professionals distinguish between the terms data, which
describes items that are input, and information, which describes data items
that have been processed and sent to a device where people can read and
interpret them. For example, your name, Social Security number, and
hourly pay rate are data items when they are input to a program, but the

same items are information after they have been processed and output on your
paycheck.

Processing • —Processing data items may involve organizing or sorting
them, checking them for accuracy, or performing calculations with
them. Th e hardware component that performs these types of tasks is
the central processing unit, or CPU.

Output • —After data items have been processed, the resulting infor-
mation usually is sent to a printer, monitor, or some other output
device so people can view, interpret, and use the results.

Some people consider storage as a fourth major computer operation.
Instead of sending output to a device such as a printer, monitor, or speaker
where a person can interpret it, you sometimes store output on storage
devices, such as a disk or fl ash media. People cannot read data directly
from these storage devices, but the devices hold information for later

retrieval. When you send output to a storage device, sometimes it is used later as input
for another program.

You write computer instructions in a computer programming
 language, such as Visual Basic, C#, C++, or Java. Just as some
people speak English and others speak Japanese, programmers also
write programs in diff erent languages. Some programmers work
exclusively in one language, whereas others know several program-
ming languages and use the one that is best suited to the task
at hand.

Every programming language has rules governing its word usage and
punctuation. Th ese rules are called the language’s syntax. If you ask,
“How the geet too store do I?” in English, most people can fi gure
out what you probably mean, even though you have not used proper
English syntax—you have mixed up the word order, misspelled a
word, and used an incorrect word. However, computers are not
nearly as smart as most people; in this case, you might as well have
asked the computer, “Xpu mxv ort dod nmcad bf B?” Unless the
 syntax is perfect, the computer cannot interpret the programming
language instruction at all.

When you write a program, you usually type its instructions using
a keyboard. When you type program instructions, they are stored
in computer memory, which is a computer’s temporary, internal

The instruc-
tions you write
using a pro-
gramming
language are

called program code;
when you write instruc-
tions, you are coding the
program.

3

Understanding Computer Systems

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

storage. Internal storage is volatile—its contents are lost when the
computer is turned off or loses power. Usually, you want to be able to
retrieve and perhaps modify the stored instructions later, so you also
store them on a permanent storage device, such as a disk. Permanent
storage devices are nonvolatile—that is, their contents are persistent
and are retained even when power is lost.

After a computer program is stored in memory, it must be trans-
lated from your programming language statements to machine
language that represents the millions of on/off circuits within the
computer. Each programming language uses a piece of software,
called a compiler or an interpreter, to translate your program
code into machine language. Machine language is also called
binary language, and is represented as a series of 0s and 1s. The
compiler or interpreter that translates your code tells you if any
programming language component has been used incorrectly.
Syntax errors are relatively easy to locate and correct because
the compiler or interpreter you use highlights every syntax error.
If you write a computer program using a language such as C++
but spell one of its words incorrectly or reverse the proper order
of two words, the software lets you know that it found a mistake
by displaying an error message as soon as you try to translate the
program.

Although there are differences in how compilers and interpreters work, their
basic function is the same—to translate your programming statements into
code the computer can use. When you use a compiler, an entire program is
translated before it can execute; when you use an interpreter, each instruc-
tion is translated just prior to execution. Usually, you do not choose which

type of translation to use—it depends on the programming language. However, there
are some languages for which both compilers and interpreters are available.

Only after program instructions are successfully translated to machine
code can the computer carry out the program instructions. When
instructions are carried out, a program runs, or executes. In a typical
program, some input will be accepted, some processing will occur,
and results will be output.

Besides the popular full-blown programming languages such as Java
and C++, many programmers use scripting languages (also called
 scripting programming languages or script languages) such as Python,
Lua, Perl, and PHP. Scripts written in these languages usually can be typed
directly from a keyboard and are stored as text rather than as binary execut-

able fi les. Scripting language programs are interpreted line by line each time the
 program executes, instead of being stored in a compiled (binary) form.

Random
access
memory, or
RAM, is a
form of inter-

nal, volatile memory. It is
hardware on which the
programs that are cur-
rently running and the
data items that are
 currently being used
are stored for quick
access.

The program
statements
you write in a
programming
language are

known as source code.
The translated machine
language statements are
known as object code.

4

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

TWO TRUTHS & A LIE

Understanding Computer Systems

In each Two Truths and a Lie section, two of the numbered statements are true,
and one is false. Identify the false statement and explain why it is false.

1. Hardware is the equipment, or the devices, associated with a computer.
Software is computer instructions.

2. The grammar rules of a computer programming language are its syntax.

3. You write programs using machine language, and translation software con-
verts the statements to a programming language.

The false statement is #3. You write programs using a programming language
such as Visual Basic or Java, and a translation program (called a compiler or inter-
preter) converts the statements to machine language, which is 0s and 1s.

Understanding Simple Program Logic
A program with syntax errors cannot execute. A program with no syntax
errors can execute, but might contain logical errors, and produce incor-
rect output as a result. For a program to work properly, you must give the
instructions to the computer in a specifi c sequence, you must not leave
any instructions out, and you must not add extraneous instructions. By
doing this, you are developing the logic of the computer program.

Suppose you instruct someone to
make a cake as follows:

Get a bowl
Stir
Add two eggs
Add a gallon of gasoline
Bake at 350 degrees for 45 minutes
Add three cups of fl our

Even though you have used the English language syntax correctly, the
cake-baking instructions are out of sequence, some instructions are
missing, and some instructions belong to procedures other than baking
a cake. If you follow these instructions, you are not going to make an edi-
ble cake, and you most likely will end up with a disaster. Logical errors
are much more diffi cult to locate than syntax errors—it is easier for you
to determine whether “eggs” is spelled incorrectly in a recipe than it is
for you to tell if there are too many eggs or if they are added too soon.

The dangerous
cake-baking
instructions
are shown with
a Don’t Do It

icon. You will see this icon
when the book contains
an unrecommended pro-
gramming practice that is
used as an example of
what not to do.

If you misspell
a program-
ming language
word, you
commit a

syntax error, but if you
use an otherwise correct
word that does not make
sense in the current con-
text, programmers say
you have committed a
semantic error. Either
way, the program will not
execute.

Don’t Do It
Don't bake a cake like
this!

5

Understanding Simple Program Logic

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Just as baking directions can be given correctly in Mandarin, Urdu,
or Spanish, the same program logic can be expressed in any number
of programming languages. Because this book is not concerned with
any specifi c language, the programming examples could have been
written in Visual Basic, C++, or Java. For convenience, this book uses
instructions written in English!

Most simple computer programs include steps that perform input,
processing, and output. Suppose you want to write a computer
 program to double any number you provide. You can write such a
program in a programming language such as Visual Basic or Java,
but if you were to write it using English-like statements, it would
look like this:
input myNumber
set myAnswer = myNumber * 2
output myAnswer

Th e number-doubling process includes three instructions:

Th e instruction to • input myNumber is an example of an input
operation. When the computer interprets this instruction, it
knows to look to an input device to obtain a number. When you
work in a specifi c programming language, you write instructions
that tell the computer which device to access for input. For exam-
ple, when a user enters a number as data for a program, the user
might click on the number with a mouse, type it from a keyboard,
or speak it into a microphone. Logically, however, it doesn’t really
matter which hardware device is used, as long as the computer
knows to look for a number. When the number is retrieved from
an input device, it is placed in the computer’s memory at the
location named myNumber. Th e location myNumber is a variable. A
variable is a named memory location whose value can vary—for
example, the value of myNumber might be 3 when the program is
used for the fi rst time and 45 when it is used the next time.

From a logical perspective, when you input a value, the hardware device is
irrelevant. The same is true in your daily life. If you follow the instruction “Get
eggs for the cake,” it does not really matter if you purchase them from a
store or harvest them from your own chickens—you get the eggs either way.
There might be different practical considerations to getting the eggs, just as

there are for getting data from a large database as opposed to an inexperienced user.
For now, this book is only concerned with the logic of the operation, not the minor
details.

Th e instruction • set myAnswer = myNumber * 2 is an example
of a processing operation. Mathematical operations are not the
only kind of processing operations, but they are very typical. As
with input operations, the type of hardware used for processing

After you learn
French, you
automatically
know, or can
easily fi gure

out, many Spanish words.
Similarly, after you learn
one programming lan-
guage, it is much easier
to understand several
other languages.

You will learn
about the odd
elimination of
the space
between

words like my and
Number in Chapter 2.

Programmers
use an aster-
isk to indicate
multiplication.
You will learn

more about arithmetic
statements in Chapter 2.

6

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

is irrelevant—after you write a program, it can be used on comput-
ers of diff erent brand names, sizes, and speeds. Th e instruction
takes the value stored in memory at the myNumber location, mul-
tiplies it by 2, and stores the result in another memory location
named myAnswer.

In the number-doubling program, the • output myAnswer instruc-
tion is an example of an output operation. Within a particular
program, this statement could cause the output to appear on the
monitor (which might be a fl at-panel plasma screen or a cathode-
ray tube), or the output could go to a printer (which could be laser
or ink-jet), or the output could be written to a disk or DVD. Th e
logic of the output process is the same no matter what hardware
device you use. When this instruction executes, the value stored
in memory at the location named myAnswer is sent to an output
device.

Computer memory consists of millions of numbered locations where data
can be stored. The memory location of myNumber has a specifi c numeric
address—for example, 48604. Your program associates myNumber with
that address. Every time you refer to myNumber within a program, the com-
puter retrieves the value at the associated memory location. When you write

programs, you seldom need to be concerned with the value of the memory address;
instead, you simply use the easy-to-remember name you created.

Computer programmers often refer to memory addresses using hexadeci-
mal notation, or base 16. Using this system, they might use a value like
42FF01A to refer to a memory address. Despite the use of letters, such an
address is still a hexadecimal number. Appendix A contains information on

 this numbering system.

TWO TRUTHS & A LIE

Understanding Simple Program Logic

1. A program with syntax errors can execute but might produce incorrect results.

2. Although the syntax of programming languages differs, the same program
logic can be expressed in different languages.

3. Most simple computer programs include steps that perform input, process-
ing, and output.

The false statement is #1. A program with syntax errors cannot execute; a
 program with no syntax errors can execute, but might produce incorrect results.

Watch the
video A Simple
Program.

7

Understanding Simple Program Logic

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Understanding the Program
Development Cycle
A programmer’s job involves writing instructions (such as those in
the doubling program in the preceding section), but a professional
programmer usually does not just sit down at a computer keyboard
and start typing. Figure 1-1 illustrates the program development
cycle, which can be broken down into at least seven steps:

1. Understand the problem.

2. Plan the logic.

3. Code the program.

4. Use software (a compiler or interpreter) to translate the
 program into machine language.

5. Test the program.

6. Put the program into production.

7. Maintain the program.

Understand
the problem

Test the
program

Put the program
into production

Maintain the
program

Plan the
logic

Translate the
code

Write the
code

Figure 1-1 The program development cycle

Understanding the Problem
Professional computer programmers write programs to satisfy the
needs of others, called users or end users. Examples could include a
Human Resources department that needs a printed list of all employ-
ees, a Billing department that wants a list of clients who are 30 or
more days overdue on their payments, and an Order department that

8

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

needs a Web site to provide buyers with an online shopping cart in
which to gather their orders. Because programmers are providing a
service to these users, programmers must fi rst understand what the
users want. Although when a program runs, you usually think of the
logic as a cycle of input-processing-output operations; when you
plan a program, you think of the output fi rst. After you understand
what the desired result is, you can plan what to input and process to
achieve it.

Suppose the director of Human Resources says to a programmer,
“Our department needs a list of all employees who have been here
over fi ve years, because we want to invite them to a special thank-you
dinner.” On the surface, this seems like a simple request. An experi-
enced programmer, however, will know that the request is incom-
plete. For example, you might not know the answers to the following
questions about which employees to include:

Does the director want a list of full-time employees only, or a list •
of full- and part-time employees together?

Does she want people who have worked for the company on a •
month-to-month contractual basis over the past fi ve years, or only
regular, permanent employees?

Do the listed employees need to have worked for the organization •
for fi ve years as of today, as of the date of the dinner, or as of some
other cutoff date?

What about an employee who, for example, worked three years, •
took a two-year leave of absence, and has been back for three years?

Th e programmer cannot make any of these decisions; the user (in this
case, the Human Resources director) must address these questions.

More decisions still might be required. For example:

What data should be included for each listed employee? Should •
the list contain both fi rst and last names? Social Security numbers?
Phone numbers? Addresses?

Should the list be in alphabetical order? Employee ID number •
order? Length-of-service order? Some other order?

Should the employees be grouped by any criteria, such as depart- •
ment number or years of service?

Several pieces of documentation are often provided to help the pro-
grammer understand the problem. Documentation consists of all the
supporting paperwork for a program; it might include items such
as original requests for the program from users, sample output, and
descriptions of the data items available for input.

The term end
user distin-
guishes those
who actually
use and ben-

efi t from a software prod-
uct from others in an
organization who might
purchase, install, or have
other contact with the
software.

9

Understanding the Program Development Cycle

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Really understanding the problem may be one of the most diffi cult
aspects of programming. On any job, the description of what the user
needs may be vague—worse yet, users may not really know what they
want, and users who think they know frequently change their minds
after seeing sample output. A good programmer is often part coun-
selor, part detective!

Planning the Logic
Th e heart of the programming process lies in planning the program’s
logic. During this phase of the process, the programmer plans the
steps of the program, deciding what steps to include and how to order
them. You can plan the solution to a problem in many ways. Th e two
most common planning tools are fl owcharts and pseudocode. Both
tools involve writing the steps of the program in English, much as you
would plan a trip on paper before getting into the car or plan a party
theme before shopping for food and favors.

Th e programmer shouldn’t worry about the syntax of any particu-
lar language at this point, but should focus on fi guring out what
sequence of events will lead from the available input to the desired
output. Planning the logic includes thinking carefully about all the
possible data values a program might encounter and how you want
the program to handle each scenario. Th e process of walking through
a program’s logic on paper before you actually write the program is
called desk-checking. You will learn more about planning the logic
throughout this book; in fact, the book focuses on this crucial step
almost exclusively.

Coding the Program
After the logic is developed, only then can the programmer write
the program. Hundreds of programming languages are available.
Programmers choose particular languages because some have built-in
capabilities that make them more effi cient than others at handling
certain types of operations. Despite their diff erences, programming
languages are quite alike in their basic capabilities—each can handle
input operations, arithmetic processing, output operations, and other
standard functions. Th e logic developed to solve a programming
problem can be executed using any number of languages. Only after
choosing a language must the programmer be concerned with proper
punctuation and the correct spelling of commands—in other words,
using the correct syntax.

Some very experienced programmers can successfully combine
logic planning and program coding in one step. Th is may work for

Watch the video
The Program
Development
Cycle, Part 1.

You may hear
programmers
refer to
 planning a
program as

“developing an algorithm.”
An algorithm is the
sequence of steps neces-
sary to solve any problem.

You will learn
more about
fl owcharts
and pseudo-
code later in
this chapter.

In addition to
fl owcharts and
pseudocode,
programmers
use a variety

of other tools to help in
program development.
One such tool is an IPO
chart, which delineates
input, processing, and
output tasks. Some
object-oriented program-
mers also use TOE
charts, which list tasks,
objects, and events.

10

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

planning and writing a very simple program, just as you can plan and
write a postcard to a friend using one step. A good term paper or a
Hollywood screenplay, however, needs planning before writing—and
so do most programs.

Which step is harder: planning the logic or coding the program?
Right now, it may seem to you that writing in a programming lan-
guage is a very diffi cult task, considering all the spelling and syntax
rules you must learn. However, the planning step is actually more
diffi cult. Which is more diffi cult: thinking up the twists and turns to
the plot of a best-selling mystery novel, or writing a translation of an
existing novel from English to Spanish? And who do you think gets
paid more, the writer who creates the plot or the translator? (Try
 asking friends to name any famous translator!)

Using Software to Translate the Program
into Machine Language
Even though there are many programming languages, each computer
knows only one language: its machine language, which consists of 1s
and 0s. Computers understand machine language because they are
made up of thousands of tiny electrical switches, each of which can
be set in either the on or off state, which is represented by a 1 or 0,
respectively.

Languages like Java or Visual Basic are available for programmers
because someone has written a translator program (a compiler or
interpreter) that changes the programmer’s English-like high-level
programming language into the low-level machine language that
the computer understands. If you write a programming language
statement incorrectly (for example, by misspelling a word, using a
word that doesn’t exist in the language, or using “illegal” grammar),
the translator program doesn’t know how to proceed and issues
an error message identifying a syntax error, which is a misuse of a
 language’s grammar rules. Although making errors is never desirable,
syntax errors are not a major concern to programmers, because the
compiler or interpreter catches every syntax error and displays a mes-
sage that notifi es you of the problem. Th e computer will not execute a
program that contains even one syntax error.

Typically, a programmer develops a program’s logic, writes the code,
and compiles the program, receiving a list of syntax errors. Th e pro-
grammer then corrects the syntax errors and compiles the program
again. Correcting the fi rst set of errors frequently reveals new errors
that originally were not apparent to the compiler. For example, if you
could use an English compiler and submit the sentence “Th e dg chase

When you
learn the syn-
tax of a pro-
gramming
language, the

commands you learn will
work on any machine on
which the language soft-
ware has been installed.
However, your com-
mands are translated to
machine language, which
differs depending on your
computer make and
model.

Watch the video
The Program
Development
Cycle, Part 2.

11

Understanding the Program Development Cycle

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

the cat,” the compiler at fi rst might point out only one syntax error.
Th e second word, “dg,” is illegal because it is not part of the English
language. Only after you corrected the word to “dog” would the com-
piler fi nd another syntax error on the third word, “chase,” because it is
the wrong verb form for the subject “dog.” Th is doesn’t mean “chase”
is necessarily the wrong word. Maybe “dog” is wrong; perhaps the
subject should be “dogs,” in which case “chase” is right. Compilers
don’t always know exactly what you mean, nor do they know what the
proper correction should be, but they do know when something is
wrong with your syntax.

When writing a program, a programmer might need to recompile the
code several times. An executable program is created only when the
code is free of syntax errors. When you run an executable program, it
typically also might require input data. Figure 1-2 shows a diagram of
this entire process.

Write and correct
the program code

Compile the
program

Executable
program

Data that the
program uses

List of
syntax
error

messages

Program
output

If there are no
syntax errors

If there are
syntax errors

Figure 1-2 Creating an executable program

Testing the Program
A program that is free of syntax errors is not necessarily free of logi-
cal errors. A logical error results when you use a syntactically correct
statement but use the wrong one for the current context. For exam-
ple, the English sentence “Th e dog chases the cat,” although syntacti-
cally perfect, is not logically correct if the dog chases a ball or the cat
is the aggressor.

After a pro-
gram has
been trans-
lated into
machine lan-

guage, the machine lan-
guage program is saved
and can be run any num-
ber of times without
repeating the translation
step. You only need to
retranslate your code if
you make changes to
your source code
statements.

12

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Once a program is free of syntax errors, the programmer can
test it—that is, execute it with some sample data to see whether
the results are logically correct. Recall the number-doubling
program:
input myNumber
set myAnswer = myNumber * 2
output myAnswer

If you execute the program, provide the value 2 as input to the pro-
gram, and the answer 4 is displayed, you have executed one successful
test run of the program.

However, if the answer 40 is displayed, maybe the program contains
a logical error. Maybe the second line of code was mistyped with an
extra zero, so that the program reads:
input myNumber
set myAnswer = myNumber * 20
output myAnswer

Placing 20 instead of 2 in the
multiplication statement caused a logical error. Notice that nothing is
syntactically wrong with this second program—it is just as reasonable
to multiply a number by 20 as by 2—but if the programmer intends
only to double myNumber, then a logical error has occurred.

Programs should be tested with many sets of data. For example, if
you write the program to double a number, then enter 2 and get an
output value of 4, that doesn’t
necessarily mean you have
a correct program. Perhaps
you have typed this program
by mistake:
input myNumber
set myAnswer = myNumber + 2
output myAnswer

An input of 2 results in an answer of 4, but that doesn’t mean your
program doubles numbers—it actually only adds 2 to them. If you test
your program with additional data and get the wrong answer—for
example, if you enter 7 and get an answer of 9—you know there is a
problem with your code.

Selecting test data is somewhat of an art in itself, and it should be
done carefully. If the Human Resources department wants a list
of the names of fi ve-year employees, it would be a mistake to test
the program with a small sample fi le of only long-term employees.
If no newer employees are part of the data being used for testing,
you do not really know if the program would have eliminated them

The process
of fi nding and
correcting
program
errors is

called debugging.

Don’t Do It
The programmer typed
"20" instead of "2".

Don’t Do It
The programmer typed
"+" instead of "*".

13

Understanding the Program Development Cycle

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

from the fi ve-year list. Many companies do not know that their
software has a problem until an unusual circumstance occurs—for
example, the fi rst time an employee has more than nine depen-
dents, the fi rst time a customer orders more than 999 items at a
time, or when (as well-documented in the popular press) a new
century begins.

Putting the Program into
Production
Once the program is tested adequately, it is ready for the organi-
zation to use. Putting the program into production might mean
simply running the program once, if it was written to satisfy a
user’s request for a special list. However, the process might take
months if the program will be run on a regular basis, or if it is one
of a large system of programs being developed. Perhaps data-entry
people must be trained to prepare the input for the new program;
users must be trained to understand the output; or existing data
in the company must be changed to an entirely new format to
 accommodate this program. Conversion, the entire set of actions
an organization must take to switch over to using a new pro-
gram or set of programs, can sometimes take months or years to
accomplish.

Maintaining the Program
After programs are put into production, making necessary
changes is called maintenance. Maintenance can be required for
many reasons: new tax rates are legislated, the format of an input
fi le is altered, or the end user requires additional information
not included in the original output specifi cations, to name a few.
Frequently, your fi rst programming job will require maintaining
previously written programs. When you maintain the programs
others have written, you will appreciate the eff ort the original pro-
grammer put into writing clear code, using reasonable variable
names, and documenting his or her work. When you make changes
to existing programs, you repeat the development cycle. Th at is, you
must understand the changes, then plan, code, translate, and test
them before putting them into production. If a substantial number
of program changes are required, the original program might be
retired, and the program development cycle might be started for a
new program.

Chapter 4
contains more
information on
testing
programs.

Watch the video
The Program
Development
Cycle, Part 3.

14

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

TWO TRUTHS & A LIE

Understanding the Program Development Cycle

1. Understanding the problem that must be solved can be one of the most dif-
fi cult aspects of programming.

2. The two most commonly used logic-planning tools are fl owcharts and
pseudocode.

3. Flowcharting a program is a very different process if you use an older
 programming language instead of a newer one.

The false statement is #3. Despite their differences, programming languages are
quite alike in their basic capabilities—each can handle input operations, arithmetic
processing, output operations, and other standard functions. The logic developed
to solve a programming problem can be executed using any number of languages.

Using Pseudocode Statements
and Flowchart Symbols
When programmers plan the logic for a solution to a programming
problem, they often use one of two tools: pseudocode (pronounced
 “sue-doe-code”) or fl owcharts. Pseudocode is an English-like repre-
sentation of the logical steps it takes to solve a problem. A flowchart
is a pictorial representation of the same thing. Pseudo is a prefi x that
means “false,” and to code a program means to put it in a programming
language; therefore, pseudocode simply means “false code,” or sentences
that appear to have been written in a computer programming language
but do not necessarily follow all the syntax rules of any specifi c language.

Writing Pseudocode
You have already seen examples of statements that represent pseudo-
code earlier in this chapter, and there is nothing mysterious about
them. Th e following fi ve statements constitute a pseudocode repre-
sentation of a number-doubling problem:
start
 input myNumber
 set myAnswer = myNumber * 2
 output myAnswer
stop

15

Using Pseudocode Statements and Flowchart Symbols

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Using pseudocode involves writing down all the steps you will use in
a program. Usually, programmers preface their pseudocode with a
beginning statement like start and end it with a terminating state-
ment like stop. Th e statements between start and stop look like
English and are indented slightly so that start and stop stand out.
Most programmers do not bother with punctuation such as periods
at the end of pseudocode statements, although it would not be wrong
to use them if you prefer that style. Similarly, there is no need to capi-
talize the fi rst word in a sentence, although you might choose to do
so. Th is book follows the conventions of using lowercase letters for
verbs that begin pseudocode statements and omitting periods at the
end of statements.

Pseudocode is fairly fl exible because it is a planning tool, and not the
fi nal product. Th erefore, for example, you might prefer any of the
following:

Instead of • start and stop, some pseudocode developers would
use the terms begin and end.

Instead of writing • input myNumber, some developers would write
get myNumber or read myNumber.

Instead of writing • set myAnswer = myNumber * 2, some develop-
ers would write calculate myAnswer = myNumber times 2 or
compute myAnswer as myNumber doubled.

Instead of writing • output myAnswer, many pseudocode devel-
opers would write display myAnswer, print myAnswer, or
write myAnswer.

Th e point is, the pseudocode statements are instructions to retrieve
an original number from an input device and store it in memory
where it can be used in a calculation, and then to get the calculated
answer from memory and send it to an output device so a person can
see it. When you eventually convert your pseudocode to a specifi c
programming language, you do not have such fl exibility because spe-
cifi c syntax will be required. For example, if you use the C# program-
ming language and write the statement to output the answer, you will
code the following:
Console.Write (myAnswer);

Th e exact use of words, capitalization, and punctuation are important
in the C# statement, but not in the pseudocode statement.

16

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Drawing Flowcharts
Some professional programmers prefer writing pseudocode to
 drawing fl owcharts, because using pseudocode is more similar to
writing the fi nal statements in the programming language. Others
prefer drawing fl owcharts to represent the logical fl ow, because fl ow-
charts allow programmers to visualize more easily how the program
statements will connect. Especially for beginning programmers, fl ow-
charts are an excellent tool to help them visualize how the statements
in a program are interrelated.

When you create a fl owchart, you draw geometric shapes that contain
the individual statements and that are connected with arrows. You
use a parallelogram to represent
an input symbol, which indicates
an input operation. You write an
input statement in English inside the
 parallelogram, as shown in Figure 1-3.

Arithmetic operation statements
are examples of processing. In a
fl owchart, you use a rectangle as the
processing symbol that contains a
processing statement, as shown in
Figure 1-4.

To represent an output state-
ment, you use the same symbol as
for input statements—the output
 symbol is a parallelogram, as shown
in Figure 1-5.

Some software programs that use fl owcharts (such as Visual Logic) use
a left-slanting parallelogram to represent output. As long as the fl owchart
creator and the fl owchart reader are communicating, the actual shape
used is irrelevant. This book will follow the most standard convention
of always using the right-slanting parallelogram for both input and output.

To show the correct sequence of these statements, you use arrows, or
flowlines, to connect the steps. Whenever possible, most of a fl ow-
chart should read from top to bottom or from left to right on a page.
Th at’s the way we read English, so when fl owcharts follow this con-
vention, they are easier for us to understand.

You can draw
a fl owchart by
hand or use
software,
such as

Microsoft Word and
Microsoft PowerPoint,
that contains fl owcharting
tools. You can use sev-
eral other software pro-
grams, such as Visio and
Visual Logic, specifi cally
to create fl owcharts.

Because the
parallelogram
is used for
both input and
output, it is
often called

the input/output
 symbol or I/O symbol.

Appendix B
contains a
summary of
all the fl ow-
chart symbols

you will see in this book.

input myNumber

Figure 1-3 Input symbol

set myAnswer =
myNumber * 2

Figure 1-4 Processing symbol

output myAnswer

Figure 1-5 Output symbol

17

Using Pseudocode Statements and Flowchart Symbols

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

To be complete, a fl owchart should include two more elements:
 terminal symbols, or start/stop symbols, at each end. Often, you
place a word like start or begin in the fi rst terminal symbol and a
word like end or stop in the other. Th e standard terminal symbol is
shaped like a racetrack; many programmers refer to this shape as a
lozenge, because it resembles the shape of the medication you might
use to soothe a sore throat. Figure 1-6 shows a complete fl owchart
for the program that doubles a number, and the pseudocode for the
same problem. You can see from the fi gure that the fl owchart and
pseudocode statements are the same—only the presentation format
diff ers.

start

Flowchart Pseudocode

stop

input myNumber

output myAnswer

set myAnswer =
myNumber * 2

start

 input myNumber

 set myAnswer = myNumber * 2

 output myAnswer

stop

Figure 1-6 Flowchart and pseudocode of program that doubles a number

Repeating Instructions
After the fl owchart or pseudocode has been developed, the
 programmer only needs to: (1) buy a computer, (2) buy a language
 compiler, (3) learn a programming language, (4) code the pro-
gram, (5) attempt to compile it, (6) fi x the syntax errors, (7) com-
pile it again, (8) test it with several sets of data, and (9) put it into
production.

“Whoa!” you are probably saying to yourself. “Th is is simply not worth
it! All that work to create a fl owchart or pseudocode, and then all those
other steps? For fi ve dollars, I can buy a pocket calculator that will

Programmers
seldom create
both pseudo-
code and a
fl owchart for

the same problem. You
usually use one or the
other. In a large program,
you might even prefer to
use pseudocode for
some parts and draw a
fl owchart for others.

18

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

double any number for me instantly!” You are absolutely right. If this
were a real computer program, and all it did was double the value of a
number, it would not be worth the eff ort. Writing a computer program
would be worthwhile only if you had many—let’s say 10,000—numbers
to double in a limited amount of time—let’s say the next two minutes.

Unfortunately, the number-doubling program represented in
Figure 1-6 does not double 10,000 numbers; it doubles only one. You
could execute the program 10,000 times, of course, but that would
require you to sit at the computer and tell it to run the program over
and over again. You would be better off with a program that could
process 10,000 numbers, one after the other.

One solution is to write the program shown in Figure 1-7 and execute
the same steps 10,000 times. Of course, writing this program would
be very time consuming; you might as well buy the calculator.

Figure 1-7 Ineffi cient pseudocode for program that doubles 10,000 numbers

start
 input myNumber
 set myAnswer = myNumber * 2
 output myAnswer
 input myNumber
 set myAnswer = myNumber * 2
 output myAnswer
 input myNumber
 set myAnswer = myNumber * 2
 output myAnswer
 …and so on for 9,997 more times

A better solution is to have the computer execute the same set of
three instructions over and over again, as shown in Figure 1-8. Th e
repetition of a series of steps is called a loop. With this approach, the
computer gets a number, doubles it, displays the answer, and then
starts over again with the fi rst instruction. Th e same spot in memory,
called myNumber, is reused for the second number and for any subse-
quent numbers. Th e spot in memory named myAnswer is reused each
time to store the result of the multiplication operation. Th e logic illus-
trated in the fl owchart in Figure 1-8 contains a major problem—the
sequence of instructions never ends. Th is programming situation is
known as an infinite loop—a repeating fl ow of logic with no end. You
will learn one way to handle this problem later in this chapter; you
will learn a superior way in Chapter 3.

When you tell
a friend how
to get to your
house, you
might write a

series of instructions or
you might draw a map.
Pseudocode is similar to
written, step-by-step
instructions; a fl owchart,
like a map, is a visual
representation of the
same thing.

Don’t Do It
You would never want to
write such a repetitious
list of instructions.

19

Using Pseudocode Statements and Flowchart Symbols

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

start

input myNumber

output myAnswer

set myAnswer =
myNumber * 2

Don’t Do It
This logic saves
steps, but it has a
fatal flaw – it never
ends.

Figure 1-8 Flowchart of infi nite number-doubling program

TWO TRUTHS & A LIE

Using Pseudocode Statements and Flowchart Symbols

1. When you draw a fl owchart, you use a parallelogram to represent an input
operation.

2. When you draw a fl owchart, you use a parallelogram to represent a process-
ing operation.

3. When you draw a fl owchart, you use a parallelogram to represent an output
operation.

The false statement is #2. When you draw a fl owchart, you use a rectangle to
 represent a processing operation.

Using a Sentinel Value to End
a Program
Th e logic in the fl owchart for doubling numbers, shown in Figure 1-8,
has a major fl aw—the program contains an infi nite loop. If, for exam-
ple, the input numbers are being entered at the keyboard, the program
will keep accepting numbers and outputting doubles forever. Of course,
the user could refuse to type any more numbers. But the computer is
very patient, and if you refuse to give it any more numbers, it will sit
and wait forever. When you fi nally type a number, the program will
double it, output the result, and wait for another. Th e program cannot

20

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

progress any further while it is waiting for input; meanwhile, the pro-
gram is occupying computer memory and tying up operating system
resources. Refusing to enter any more numbers is not a practical solu-
tion. Another way to end the program is simply to turn off the com-
puter. But again, that’s neither the best way nor an elegant solution.

A superior way to end the program is to set a predetermined value for
myNumber that means “Stop the program!” For example, the program-
mer and the user could agree that the user will never need to know
the double of 0, so the user could enter a 0 to stop. Th e program could
then test any incoming value contained in myNumber and, if it is a 0,
stop the program. Testing a value is also called making a decision.

You represent a decision in a fl owchart by drawing a decision symbol,
which is shaped like a diamond. Th e diamond usually contains a
question, the answer to which is one of two mutually exclusive
options—often yes or no. All good computer questions have only
two mutually exclusive answers, such as yes and no or true and false.
For example, “What day of the year is your birthday?” is not a good
computer question because there are 366 possible answers. However,
“Is your birthday June 24?” is a good computer question because, for
everyone in the world, the answer is either yes or no.

Th e question to stop the doubling program should be “Is the value
of myNumber just entered equal to 0?” or “myNumber = 0?” for short. Th e
complete fl owchart will now look like the one shown in Figure 1-9.

stopmyNumber
= 0?

Yes

No

start

input myNumber

output myAnswer

set myAnswer =
myNumber times 2

Don’t Do It
This logic is not
structured; you will
learn about structure
in Chapter 3.

Figure 1-9 Flowchart of number-doubling program with sentinel value of 0

A yes-or-no
decision is
called a
binary deci-
sion, because

there are two possible
outcomes.

21

Using a Sentinel Value to End a Program

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

One drawback to using 0 to stop a program, of course, is that it won’t
work if the user does need to fi nd the double of 0. In that case, some
other data-entry value that the user will never need, such as 999 or –1,
could be selected to signal that the program should end. A preselected
value that stops the execution of a program is often called a dummy
value because it does not represent real data, but just a signal to stop.
Sometimes, such a value is called a sentinel value because it repre-
sents an entry or exit point, like a sentinel who guards a fortress.
Not all programs rely on user data entry from a keyboard; many read
data from an input device, such as a disk. When organizations store
data on a disk or other storage device, they do not commonly use
a dummy value to signal the end of the fi le. For one thing, an input
record might have hundreds of fi elds, and if you store a dummy record
in every fi le, you are wasting a large quantity of storage on “nondata.”
Additionally, it is often diffi cult to choose sentinel values for fi elds
in a company’s data fi les. Any balanceDue, even a zero or a negative
number, can be a legitimate value, and any customerName, even “ZZ”,
could be someone’s name. Fortunately, programming languages can
recognize the end of data in a fi le automatically, through a code that
is stored at the end of the data. Many programming languages use the
term eof (for “end of fi le”) to refer to this marker that automatically
acts as a sentinel. Th is book, therefore, uses eof to indicate the end of
data whenever using a dummy value is impractical or inconvenient. In
the fl owchart shown in Figure 1-10, the eof question is shaded.

stopeof?
Yes

No

start

input myNumber

output myAnswer

set myAnswer =
myNumber times 2

Don’t Do It
This logic is not
structured; you will
learn about structure
in Chapter 3.

Figure 1-10 Flowchart using eof

22

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

TWO TRUTHS & A LIE

Using a Sentinel Value to End a Program

1. A program that contains an infi nite loop is one that never ends.

2. A preselected value that stops the execution of a program is often called a
dummy value or a sentinel value.

3. Many programming languages use the term fe (for “fi le end”) to refer to a
marker that automatically acts as a sentinel.

The false statement is #3. The term eof (for “end of fi le”) is the common term for
a fi le sentinel.

Understanding Programming
and User Environments
Many approaches can be used to write and execute a computer pro-
gram. When you plan a program’s logic, you can use a fl owchart or
pseudocode, or a combination of the two. When you code the pro-
gram, you can type statements into a variety of text editors. When
your program executes, it might accept input from a keyboard,
mouse, microphone, or any other input device, and when you provide
a program’s output, you might use text, images, or sound. Th is section
describes the most common environments you will encounter as a
new programmer.

Understanding Programming Environments
When you plan the logic for a computer program, you can use paper
and pencil to create a fl owchart, or you might use software that
allows you to manipulate fl owchart shapes. If you choose to write
pseudocode, you can do so by hand or by using a word-processing
program. To enter the program into a computer so you can trans-
late and execute it, you usually use a keyboard to type program
statements into an editor. You can type a program into one of the
following:

A plain text editor •

A text editor that is part of an integrated development •
environment

23

Understanding Programming and User Environments

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

A text editor is a program that you use to create simple text fi les. It
is similar to a word processor, but without as many features. You can
use a text editor such as Notepad that is included with Microsoft
Windows. Figure 1-11 shows a C# program in Notepad that accepts
a number and doubles it. An advantage to using a simple text editor
to type and save a program is that the completed program does not
require much disk space for storage. For example, the fi le shown in
Figure 1-11 occupies only 314 bytes of storage.

This line contains a
prompt that tells the user
what to enter. You will
learn more about prompts
in Chapter 2.

Figure 1-11 A C# number-doubling program in Notepad

You can use the editor of an integrated development environment
(IDE) to enter your program. An IDE is a software package that pro-
vides an editor, compiler, and other programming tools. For example,
Figure 1-12 shows a C# program in the Microsoft Visual Studio IDE,
an environment that contains tools useful for creating programs in
Visual Basic, C++, and C#.

Figure 1-12 A C# number-doubling program in Visual Studio

24

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Using an IDE is helpful to programmers because IDEs usually provide
features similar to those you fi nd in many word processors. In particu-
lar, an IDE’s editor commonly includes such features as the following:

It uses diff erent colors to display various language components, •
making elements like data types easier to identify.

It highlights syntax errors visually for you. •

It employs automatic statement completion; when you start to type •
a statement, the IDE suggests a likely completion, which you can
accept with a keystroke.

It provides tools that allow you to step through a program’s execu- •
tion one statement at a time so you can more easily follow the pro-
gram’s logic and determine the source of any errors.

When you use the IDE to create and save a program, you occupy
much more disk space than when using a plain text editor. For exam-
ple, the program in Figure 1-12 occupies more than 49,000 bytes of
disk space.

Although various programming environments might look diff erent
and off er diff erent features, the process of using them is very similar.
When you plan the logic for a program using pseudocode or a fl ow-
chart, it does not matter which programming environment you will
use to write your code, and when you write the code in a program-
ming language, it does not matter which environment you use to
write it.

Understanding User Environments
A user might execute a program you have written in any number
of environments. For example, a user might execute the number-
doubling program from a command line like the one shown in
Figure 1-13. A command line is a location on your computer screen
at which you type text entries to communicate with the computer’s
operating system. In the program in Figure 1-13, the user is asked for
a number, and the results are displayed.

Figure 1-13 Executing a number-doubling program in a
command-line environment

25

Understanding Programming and User Environments

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Many programs are not run at the command line in a text environ-
ment, but are run using a graphical user interface, or GUI (pro-
nounced “gooey”), which allows users to interact with a program in
a graphical environment. When running a GUI program, the user
might type input into a text box or use a mouse or other pointing
device to select options on the screen. Figure 1-14 shows a number-
doubling program that performs exactly the same task as the one in
Figure 1-13, but this program uses a GUI.

Figure 1-14 Executing a number-doubling program
in a GUI environment

A command-line program and a GUI program might be written in
the same programming language. (For example, the programs shown
in Figures 1-13 and 1-14 were both written using C#.) However, no
matter which environment is used to write or execute a program, the
logical process is the same. Th e two programs in Figures 1-13 and
1-14 both accept input, perform multiplication, and perform output.
In this book, you will not concentrate on which environment is used
to type a program’s statements, nor will you care about the type of
environment the user will see. Instead, you will be concerned with the
logic that applies to all programming situations.

TWO TRUTHS & A LIE

Understanding Programming and User Environments

1. You can type a program into an editor that is part of an integrated develop-
ment environment, but using a plain text editor provides you with more pro-
gramming help.

2. When a program runs from the command line, a user types text to provide input.

3. Although GUI and command-line environments look different, the logic
 processes of input, processing, and output apply to both program types.

The false statement is #1. An integrated development environment provides more
programming help than a plain text editor.

26

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Understanding the Evolution
of Programming Models
People have been writing modern computer programs since the
1940s. Th e oldest programming languages required programmers to
work with memory addresses and to memorize awkward codes asso-
ciated with machine languages. Newer programming languages look
much more like natural language and are easier to use, partly because
they allow programmers to name variables instead of using awkward
memory addresses. Also, newer programming languages allow pro-
grammers to create self-contained modules or program segments
that can be pieced together in a variety of ways. Th e oldest computer
programs were written in one piece, from start to fi nish, but modern
programs are rarely written that way—they are created by teams of
programmers, each developing reusable and connectable program
procedures. Writing several small modules is easier than writing one
large program, and most large tasks are easier when you break the
work into units and get other workers to help with some of the units.

Currently, two major models or paradigms are used by programmers
to develop programs and their procedures. One technique, proce-
dural programming, focuses on the procedures that programmers
create. Th at is, procedural programmers focus on the actions that
are carried out—for example, getting input data for an employee and
writing the calculations needed to produce a paycheck from the data.
Procedural programmers would approach the job of producing a pay-
check by breaking down the process into manageable subtasks.

Th e other popular programming model, object-oriented
 programming, focuses on objects, or “things,” and describes their
features (or attributes) and their behaviors. For example, object-
oriented programmers might design a payroll application by think-
ing about employees and paychecks, and describing their attributes
(e.g. employees have names and Social Security numbers, and pay-
checks have names and check amounts). Th en the programmers
would think about the behaviors of employees and paychecks, such as
employees getting raises and adding dependents and paychecks being
calculated and output. Object-oriented programmers would then
build applications from these entities.

With either approach, procedural or object oriented, you can produce a
correct paycheck, and both models employ reusable program modules.
Th e major diff erence lies in the focus the programmer takes during the
earliest planning stages of a project. For now, this book focuses on pro-
cedural programming techniques. Th e skills you gain in programming
procedurally—declaring variables, accepting input, making decisions,
producing output, and so on—will serve you well whether you eventually
write programs in a procedural or object-oriented fashion, or in both.

Ada Byron
Lovelace pre-
dicted the
development
of software in

1843; she is often
regarded as the fi rst pro-
grammer. The basis for
most modern software
was proposed by Alan
Turing in 1935.

You can write
a procedural
program in
any language
that supports

object orientation. The
opposite is not always
true.

Object-
oriented
 programming
employs a
large vocabu-

lary; you can learn this
terminology in Chapter 10
of the comprehensive
version of this book.

You will learn
to create pro-
gram modules
in Chapter 2.

27

Understanding the Evolution of Programming Models

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

TWO TRUTHS & A LIE

Understanding the Evolution of Programming Models

1. The oldest computer programs were written in many separate modules.

2. Procedural programmers focus on actions that are carried out by a program.

3. Object-oriented programmers focus on a program’s objects and their attri-
butes and behaviors.

The false statement is #1. The oldest programs were written in a single piece;
newer programs are divided into modules.

Chapter Summary

Together, computer hardware (physical devices) and software •
(instructions) accomplish three major operations: input, processing,
and output. You write computer instructions in a computer pro-
gramming language that requires specifi c syntax; the instructions
are translated into machine language by a compiler or interpreter.
When both the syntax and logic of a program are correct, you can
run, or execute, the program to produce the desired results.

For a program to work properly, you must develop correct logic. •
Logical errors are much more diffi cult to locate than syntax errors.

A programmer’s job involves understanding the problem, plan- •
ning the logic, coding the program, translating the program into
machine language, testing the program, putting the program into
production, and maintaining it.

When programmers plan the logic for a solution to a program- •
ming problem, they often use fl owcharts or pseudocode. When
you draw a fl owchart, you use parallelograms to represent input
and output operations, and rectangles to represent processing.
Programmers also use decisions to control repetition of instruc-
tion sets.

To avoid creating an infi nite loop when you repeat instructions, •
you can test for a sentinel value. You represent a decision in a
 fl owchart by drawing a diamond-shaped symbol that contains a
question, the answer to which is either yes or no.

28

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

You can type a program into a plain text editor or one that is part •
of an integrated development environment. When a program’s
data values are entered from a keyboard, they can be entered at the
command line in a text environment or in a GUI. Either way, the
logic is similar.

Procedural and object-oriented programmers approach problems •
diff erently. Procedural programmers concentrate on the actions
performed with data. Object-oriented programmers focus on
objects and their behaviors and attributes.

Key Terms
A computer system is a combination of all the components required
to process and store data using a computer.

Hardware is the collection of physical devices that comprise a com-
puter system.

Software consists of the programs that tell the computer what to do.

Programs are sets of instructions for a computer.

Programming is the act of developing and writing programs.

Application software comprises all the programs you apply
to a task.

System software comprises the programs that you use to manage
your computer.

Input describes the entry of data items into computer memory using
hardware devices such as keyboards and mice.

Data items include all the text, numbers, and other information pro-
cessed by a computer.

Processing data items may involve organizing them, checking them
for accuracy, or performing mathematical operations on them.

Th e central processing unit, or CPU, is the hardware component that
processes data.

Output describes the operation of retrieving information from mem-
ory and sending it to a device, such as a monitor or printer, so people
can view, interpret, and work with the results.

Storage devices are types of hardware equipment, such as disks, that
hold information for later retrieval.

Programming languages, such as Visual Basic, C#, C++, Java,
or COBOL, are used to write programs.

29

Key Terms

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Program code is the set of instructions a programmer writes in a
programming language.

Coding the program is the act of writing programming language
instructions.

Th e syntax of a language is its grammar rules.

Computer memory is the temporary, internal storage within a
computer.

Volatile describes storage whose contents are lost when power
is lost.

Nonvolatile describes storage whose contents are retained when
power is lost.

Random access memory (RAM) is temporary, internal computer
storage.

Machine language is a computer’s on/off circuitry language.

A compiler or interpreter translates a high-level language into
machine language and tells you if you have used a programming
 language incorrectly.

Binary language is represented using a series of 0s and 1s.

Source code is the statements a programmer writes in a program-
ming language.

Object code is translated machine language.

To run or execute a program is to carry out its instructions.

Scripting languages (also called scripting programming lan-
guages or script languages) such as Python, Lua, Perl, and PHP
are used to write programs that are typed directly from a keyboard.
Scripting languages are stored as text rather than as binary execut-
able fi les.

A logical error occurs when incorrect instructions are performed, or
when instructions are performed in the wrong order.

You develop the logic of the computer program when you give
instructions to the computer in a specifi c sequence, without omitting
any instructions or adding extraneous instructions.

A semantic error occurs when a correct word is used in an incorrect
context.

A variable is a named memory location whose value can vary.

Th e program development cycle consists of the steps that occur
 during a program’s lifetime.

30

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Users (or end users) are people who employ and benefi t from com-
puter programs.

Documentation consists of all the supporting paperwork for a
program.

An algorithm is the sequence of steps necessary to solve any
problem.

An IPO chart is a program development tool that delineates input,
processing, and output tasks.

A TOE chart is a program development tool that lists tasks, objects,
and events.

Desk-checking is the process of walking through a program solution
on paper.

A high-level programming language supports English-like syntax.

Machine language is the low-level language made up of 1s and 0s
that the computer understands.

A syntax error is an error in language or grammar.

Debugging is the process of fi nding and correcting program errors.

Conversion is the entire set of actions an organization must take to
switch over to using a new program or set of programs.

Maintenance consists of all the improvements and corrections made
to a program after it is in production.

Pseudocode is an English-like representation of the logical steps it
takes to solve a problem.

A flowchart is a pictorial representation of the logical steps it takes to
solve a problem.

An input symbol indicates an input operation and is represented by a
parallelogram in fl owcharts.

A processing symbol indicates a processing operation and is repre-
sented by a rectangle in fl owcharts.

An output symbol indicates an output operation and is represented
by a parallelogram in fl owcharts.

An input/output symbol or I/O symbol is represented by a parallelo-
gram in fl owcharts.

Flowlines, or arrows, connect the steps in a fl owchart.

A terminal symbol, or start/stop symbol, is used at each end of a
fl owchart. Its shape is a lozenge.

31

Key Terms

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

A loop is a repetition of a series of steps.

An infinite loop occurs when repeating logic cannot end.

Making a decision is the act of testing a value.

A decision symbol is shaped like a diamond and used to represent
decisions in fl owcharts.

A binary decision is a yes-or-no decision with two possible outcomes.

A dummy value is a preselected value that stops the execution of a
program.

A sentinel value is a preselected value that stops the execution of a
program.

Th e term eof means “end of fi le.”

A text editor is a program that you use to create simple text fi les; it is
similar to a word processor, but without as many features.

An integrated development environment (IDE) is a software package
that provides an editor, compiler, and other programming tools.

Microsoft Visual Studio IDE is a software package that contains useful
tools for creating programs in Visual Basic, C++, and C#.

A command line is a location on your computer screen at which
you type text entries to communicate with the computer’s operating
system.

A graphical user interface, or GUI (pronounced “gooey”), allows
users to interact with a program in a graphical environment.

Procedural programming is a programming model that focuses on
the procedures that programmers create.

Object-oriented programming is a programming model that focuses
on objects, or “things,” and describes their features (or attributes) and
their behaviors.

Review Questions

1. Computer programs are also known as .

a. hardware

b. software

c. data

d. information

32

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

2. Th e major computer operations include .

a. hardware and software

b. input, processing, and output

c. sequence and looping

d. spreadsheets, word processing, and data
communications

3. Visual Basic, C++, and Java are all examples of computer
 .

a. operating systems

b. hardware

c. machine languages

d. programming languages

4. A programming language’s rules are its .

a. syntax

b. logic

c. format

d. options

5. Th e most important task of a compiler or interpreter
is to .

a. create the rules for a programming language

b. translate English statements into a language the computer
can understand, such as Java

c. translate programming language statements into machine
language

d. execute machine language programs to perform useful
tasks

6. Which of the following is temporary, internal storage?

a. CPU

b. hard disk

c. keyboard

d. memory

33

Review Questions

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

7. Which of the following pairs of steps in the programming
process is in the correct order?

a. code the program, plan the logic

b. test the program, translate it into machine language

c. put the program into production, understand the
problem

d. code the program, translate it into machine
language

8. Th e programmer’s most important task before planning the
logic of a program is to .

a. decide which programming language to use

b. code the problem

c. train the users of the program

d. understand the problem

9. Th e two most commonly used tools for planning a program’s
logic are .

a. fl owcharts and pseudocode

b. ASCII and EBCDIC

c. Java and Visual Basic

d. word processors and spreadsheets

10. Writing a program in a language such as C++ or Java is
known as the program.

a. translating

b. coding

c. interpreting

d. compiling

11. An English-like programming language such as Java or Visual
Basic is a programming language.

a. machine-level

b. low-level

c. high-level

d. binary-level

34

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

12. Which of the following is an example of a syntax error?

a. producing output before accepting input

b. subtracting when you meant to add

c. misspelling a programming language word

d. all of the above

13. Which of the following is an example of a logical error?

a. performing arithmetic with a value before
inputting it

b. accepting two input values when a program requires
only one

c. dividing by 3 when you meant to divide by 30

d. all of the above

14. Th e parallelogram is the fl owchart symbol representing
 .

a. input

b. output

c. both a and b

d. none of the above

15. In a fl owchart, a rectangle represents .

a. input

b. a sentinel

c. a question

d. processing

16. In fl owcharts, the decision symbol is a .

a. parallelogram

b. rectangle

c. lozenge

d. diamond

35

Review Questions

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

17. Th e term “eof” represents .

a. a standard input device

b. a generic sentinel value

c. a condition in which no more memory is available for
storage

d. the logical fl ow in a program

18. When you use an IDE instead of a simple text editor to
develop a program, .

a. the logic is more complicated

b. the logic is simpler

c. the syntax is diff erent

d. some help is provided

19. When you write a program that will run in a GUI environ-
ment as opposed to a command-line environment,
 .

a. the logic is very diff erent

b. some syntax is diff erent

c. you do not need to plan the logic

d. users are more confused

20. As compared to procedural programming, with object-
 oriented programming .

a. the programmer’s focus diff ers

b. you cannot use some languages, such as Java

c. you do not accept input

d. you do not code calculations; they are created
automatically

36

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Exercises

1. Match the defi nition with the appropriate term.

 1. Computer system devices a. compiler

 2. Another word for programs b. syntax

 3. Language rules c. logic

 4. Order of instructions d. hardware

 5. Language translator e. software

2. In your own words, describe the steps to writing a computer
program.

3. Match the term with the appropriate shape.

4. Draw a fl owchart or write pseudocode to represent the logic
of a program that allows the user to enter a value. Th e pro-
gram multiplies the value by 10 and outputs the result.

A.1. Input

C.3. Output

E.5. Terminal

D.4. Decision

B.2. Processing

37

Exercises

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

5. Draw a fl owchart or write pseudocode to represent the logic
of a program that allows the user to enter a value for the
radius of a circle. Th e program calculates the diameter by
multiplying the radius by 2, and then calculates the circumfer-
ence by multiplying the diameter by 3.14. Th e program out-
puts both the diameter and the circumference.

6. Draw a fl owchart or write pseudocode to represent the logic
of a program that allows the user to enter two values. Th e
program outputs the sum of the two values.

7. Draw a fl owchart or write pseudocode to represent the logic
of a program that allows the user to enter three values. Th e
values represent hourly pay rate, the number of hours worked
this pay period, and percentage of gross salary that is with-
held. Th e program multiplies the hourly pay rate by the num-
ber of hours worked, giving the gross pay. Th en, it multiplies
the gross pay by the withholding percentage, giving the with-
holding amount. Finally, it subtracts the withholding amount
from the gross pay, giving the net pay after taxes. Th e pro-
gram outputs the net pay.

Find the Bugs

8. Since the early days of computer programming, program
errors have been called “bugs.” Th e term is often said to have
originated from an actual moth that was discovered trapped
in the circuitry of a computer at Harvard University in 1945.
Actually, the term “bug” was in use prior to 1945 to mean
trouble with any electrical apparatus; even during Th omas
Edison’s life, it meant an “industrial defect.” However, the
term “debugging” is more closely associated with correcting
program syntax and logic errors than with any other type of
trouble.

 Your student disk contains fi les named DEBUG01-01.txt,
DEBUG01-02.txt, and DEBUG01-03.txt. Each fi le starts with
some comments that describe the problem. Comments are lines
that begin with two slashes (//). Following the comments, each
fi le contains pseudocode that has one or more bugs you must
fi nd and correct.

38

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Game Zone

9. In 1952, A. S. Douglas wrote his University of Cambridge
Ph.D. dissertation on human-computer interaction, and
created the fi rst graphical computer game—a version of
Tic-Tac-Toe. Th e game was programmed on an EDSAC
vacuum-tube mainframe computer. Th e fi rst computer game
is generally assumed to be “Spacewar!”, developed in 1962 at
MIT; the fi rst commercially available video game was “Pong,”
introduced by Atari in 1972. In 1980, Atari’s “Asteroids”
and “Lunar Lander” became the fi rst video games to be
registered with the U. S. Copyright Offi ce. Th roughout the
1980s, players spent hours with games that now seem very
simple and unglamorous; do you recall playing “Adventure,”
“Oregon Trail,” “Where in the World Is Carmen Sandiego?,”
or “Myst”?

 Today, commercial computer games are much more complex;
they require many programmers, graphic artists, and tes-
ters to develop them, and large management and marketing
staff s are needed to promote them. A game might cost many
millions of dollars to develop and market, but a successful
game might earn hundreds of millions of dollars. Obviously,
with the brief introduction to programming you have had
in this chapter, you cannot create a very sophisticated game.
However, you can get started.

 Mad Libs© is a children’s game in which players provide a
few words that are then incorporated into a silly story. Th e
game helps children understand diff erent parts of speech
because they are asked to provide specifi c types of words. For
example, you might ask a child for a noun, another noun, an
adjective, and a past-tense verb. Th e child might reply with
such answers as “table,” “book,” “silly,” and “studied.” Th e newly
created Mad Lib might be:

 Mary had a little table

 Its book was silly as snow

 And everywhere that Mary studied

 Th e table was sure to go.

 Create the logic for a Mad Lib program that accepts fi ve
words from input, then creates and displays a short story or
nursery rhyme that uses those words.

39

Exercises

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Up for Discussion

10. Which is the better tool for learning programming—
fl owcharts or pseudocode? Cite any educational research you
can fi nd.

11. What is the image of the computer programmer in popular
culture? Is the image diff erent in books than in TV shows and
movies? Would you like that image for yourself?

40

C H A P T E R 1 An Overview of Computers and Programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	Chapter 1: An Overview of Computers and Programming
	Understanding Computer Systems
	Understanding Simple Program Logic
	Understanding the Program Development Cycle
	Using Pseudocode Statements and Flowchart Symbols
	Using a Sentinel Value to End a Program
	Understanding Programming and User Environments
	Understanding the Evolution of Programming Models
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	SealedMedia_User: iChapters User

