

Course Specifications

Course Title:	Plant Physiology II
Course Code:	4013272-
Program:	BSc Biology
Department:	Biology Department
College:	Applied science
Institution:	Umm Al-Qura university

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
ير معرّفة	خطأ! الإشارة المرجعية غ
2. Course Main Objective	
3. Course Learning Outcomes	5
C. Course Content	5
D. Teaching and Assessment	7
1. Alignment of Course Learning Outcomes with Teaching Strategies and A Methods	
2. Assessment Tasks for Students	8
E. Student Academic Counseling and Support	9
F. Learning Resources and Facilities	9
1.Learning Resources	9
2. Facilities Required	9
G. Course Quality Evaluation	10
H. Specification Approval Data	10

A. Course Identification

1. Credit hours:			
2. Course type			
a. University College Department Others			
b. Required Elective			
3. Level/year at which this course is offered:			
4. Pre-requisites for this course (if any): Plant Physiology I (4013261-3)			
5. Co-requisites for this course (if any):			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	3 hrs per weeks	100%
2	Blended		
3	E-learning		
4	Correspondence		
5	Other		

7. Actual Learning Hours (based on academic semester)

No	Activity	Learning Hours			
Conta	Contact Hours				
1	Lecture	42			
2	Laboratory/Studio	3			
3	Tutorial				
4	Others (specify)				
	Total				
Other	Learning Hours*				
1	Study				
2	Assignments				
3	Library				
4	Projects/Research Essays/Theses				
5	Others (specify)				
	Total				

* The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

B. Course Objectives and Learning Outcomes

This course will cover the concepts and importance of enzymes and plant metabolism (photosynthesis, respiration, and metabolite anabolism & catabolism). It focuses on the machinery of enzyme action, CO₂ reduction, glucose oxidation, and associated metabolic cycles. Also, it includes the relations between C3, C4 and CAM plants as well as between glycolysis, fermentation and Krebs cycle. Moreover, biosynthesis and biodegradation of 1-ry metabolic products (the energy-rich compounds) as well as ATP yielded from anaerobic and

aerobic respiration. Using instruments in chemical and quantitative analyses of metabolic products will be also covered. The course aims to give the student an idea of the basics of the various processes within the plant in terms of metabolic activity as well as a brief picture of the chemistry of organic compounds manufactured within the plant.

This course will cover the concepts and importance of enzymes and plant metabolism (photosynthesis, respiration, and metabolite anabolism & catabolism). It focuses on the machinery of enzyme action, CO₂ reduction, glucose oxidation, and associated metabolic cycles. Also, it includes the relations between C3, C4 and CAM plants as well as between glycolysis, fermentation and Krebs cycle. Moreover, biosynthesis and biodegradation of 1-ry metabolic products (the energy-rich compounds) as well as ATP yielded from anaerobic and aerobic respiration. Using instruments in chemical and quantitative analyses of metabolic products will be also covered. The course aims to give the student an idea of the basics of the various processes within the plant in terms of metabolic activity as well as a brief picture of the chemistry of organic compounds manufactured within the plant.

2. Course Main Objective

After completing this course student should be able to:

- Know the fundamental concepts, importance of enzymes, plant metabolism and the underlying processes.
- Understand the structure, properties, occurrence, nomenclature, mechanism of action, specificity and classification of enzymes as well as enzyme activators and inhibitors, and factors affecting enzyme activity.
- Understand the relationship between photosynthesis and respiration on one hand, and between anabolism and catabolism of 1-ry plant metabolites (carbohydrates, lipids, proteins & nucleic acids) on the other hand.
- Differentiate between the structure and functions of metabolic organelles as well as those of the photosynthetic pigments and systems.
- Give a description of the photosynthetic and respiratory phosphorylation (electron transport).
- Acquire a comprehensive knowledge and understanding about the machinery of CO2 reduction and glucose oxidation as well as between the underlying mechanisms of each process.
- Build and design the various photosynthetic and respiratory cycles.
- Determine and deduce the similarities and differences between C3, C4 and CAM plants as well as between glycolysis, fermentation and Krebs cycle.
- Learn and discuss the biochemical reactions involving in the biosynthesis and biodegradation of the 1-ry plant metabolites (carbohydrates, lipids, proteins & nucleic acids)
- Develop understanding about the biosynthesis of the energy-rich compounds (GTP, ATP, FADH2, NADH2 and NADPH2), and about the net ATP yielded from anaerobic and aerobic respiration.
- Understand the photorespiration process, and recognize the factors affecting photosynthesis and respiration.
- Acquire the essential practical skills relevant to the use of instruments in chemical analysis.
- Develop their abilities to apply laboratory equipment in studying kinetics of chemical reactions, carry-out quantitative analysis and determine physiological criteria

Know the fundamental concepts, importance of enzymes, plant metabolism and the underlying processes.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge:	
1.1	After completing this course student should be able to:	
	Know the fundamental concepts, importance of enzymes, plant	
	metabolism and the underlying processes.	
1.2	Understand the structure, properties, occurrence, nomenclature,	
	mechanism of action, specificity and classification of enzymes as well as	
1.0	enzyme activators and inhibitors, and factors affecting enzyme activity.	
1.3	Understand the relationship between photosynthesis and respiration on	
	one hand, and between anabolism and catabolism of 1-ry plant	
	metabolites (carbohydrates, lipids, proteins & nucleic acids) on the other hand.	
1.4	Differentiate between the structure and functions of metabolic organelles	
1.7	as well as those of the photosynthetic pigments and systems.	
1.5	Give a description of the photosynthetic and respiratory phosphorylation	
1.5	(electron transport).	
1.6	Acquire a comprehensive knowledge and understanding about the	
1.0	machinery of CO2 reduction and glucose oxidation as well as between	
	the underlying mechanisms of each process.	
1.7	Acquire the essential practical skills relevant to the use of instruments in	
	chemical analysis.	
2	Skills :	
2.1	After successfully completed the course students should be able to:	
	Compare between metabolic cycles, between C3, C4 and CAM plants,	
	and between glycolysis, fermentation and Krebs cycle.	
2.2	Differentiate between the biosynthesis and biodegradation of the 1-ry	
	plant metabolites, and the energy-rich compounds.	
2.3	Calculate the ATP yielded from anaerobic and aerobic respiration	
2.4	Aquire the essential practical skills relevant to the use of instruments in	
	chemical analysis.	
2.5	Carry-out quantitative analysis and determine physiological criteria	
2.6	Analyse physiological experimental data and draw sensible conclusions	
	from such data.	
2.7	Interpret results of oriented problems, whether graphically or	
	algebraically	
3	Competence:	
3.1	- Developing oral presentations.	
3.2	- Communicating personal ideas and thoughts.	
22	- Work independently and as part of a team to finish some assignments.	
3.3	work independently and as part of a team to finish some assignments.	

C. Course Content

No	List of Topics	Contact Hours
	Introduction to the course.	2
1	Main physiological concepts	
	Course syllabus and grading	

	Enzymes	6
	Enzymes.	U
	• Definition, occurrence, nomenclature and properties.	
	• Structural composition of proteins and enzymes.	
	• Mechanism of enzyme action and activation energy.	
	• Specificity of enzymes.	
2	• Factors affecting enzyme activity.	
	• Enzymatic reaction kinetics and Michael's constant Km.	
	Classification of Enzymes.	
	• Denaturation of enzyme.	
	• Enzyme activators and inhibitors.	
	The existence and distribution of enzymes in plant cells	
	Photosynthesis.	6
	• Definition & importance.	
	• Origin of O ₂ evolved during photosynthesis.	
	• Structure and functions of chloroplasts as well as photosynthetic	
	pigments.	
	• Photosystems and energy transfer.	
2	• Photochemical (light) reaction and electron transport.	
3	• Non-cyclic photophosphorylation.	
	• Cyclic photophosphorylation (electron transport).	
	• Biochemical (dark) reaction.	
	• $C O_2 - fixation (reduction).$	
	• C3 plants (Calvin cycle).	
	• C4 plants (Hatch and Slack pathway).	
	CAM plants (Crassulacean-acid metabolism).	
	Respiration.	6
	• Introduction to respiration.	
	• Dark respiration.	
	-Glycolysis.	
	-Fermentation (absence of O ₂).	
4	-Krebs (Citric acid) cycle (presence of O ₂).	
	• Energy yielded from anaerobic and aerobic respiration.	
	• Respiratory electron-transport and the biosynthesis of energy-	
	rich compound (ATP).	
	• Respiratory rate and quotient.	
	Photorespiration.	
	Metabolism of 1-ry metabolic products	8
	• Introduction to metabolic pathways (anabolism & catabolism) and	
	metabolic products.	
	Carbohydrate Metabolism	
	-Biosynthesis & biodegradation (monosaccharides – disaccharides -	
1	oligosaccharides – polysaccharides).	
5	-Relationship between polysaccharides and lipids.	
	Lipid Metabolism	
	-Biosynthesis & biodegradation of lipids (fatty acids – triglyceride	
1	phospholipid).	
	• Synthesis of plant acids.	
	Protein Metabolism	
	-Classification of amino acids.	

	 Biosynthesis & biodegradation of proteins. Structure and importance of proteins. Electrical properties, precipitation and denaturation of proteins. Nucleic acids metabolism Introduction to nucleic acids & nucleotides (structure & types). Biosynthesis & biodegradation of nucleic acids. Differences between DNA and RNA. 	
Total		28 hrs

D. Teaching and Assessment

Course Specifications 1440/2018

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessme	nt
Methods	

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
	_	Teaching Strategies	Assessment Methous
1.0 1.1	KnowledgeAfter completing this course studentshould be able to:Know the fundamental concepts,importance of enzymes, plantmetabolism and the underlying		
1.2	processes. Understand the structure, properties, occurrence, nomenclature, mechanism of action, specificity and classification of enzymes as well as enzyme activators and inhibitors, and factors affecting enzyme activity.		
1.3	Understand the relationship between photosynthesis and respiration on one hand, and between anabolism and catabolism of 1-ry plant metabolites (carbohydrates, lipids, proteins & nucleic acids) on the other hand.	 Lectures Interactive presentations Scientific discussion Video Shows 	• Exams (Oral test - Periodic tests)
1.4	Differentiate between the structure and functions of metabolic organelles as well as those of the photosynthetic pigments and systems.	(Educational Videos) • Web-based study	Group discussions
1.5	Give a description of the photosynthetic and respiratory phosphorylation (electron transport).		
1.6	Acquire a comprehensive knowledge and understanding about the machinery of CO2 reduction and glucose oxidation as well as between the underlying mechanisms of each process.		
1.7	Acquire the essential practical skills relevant to the use of instruments in chemical analysis.		
2.0	Skills		

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
2.1	After successfully completed the course students should be able to: Compare between metabolic cycles, between C3, C4 and CAM plants, and between glycolysis, fermentation and Krebs cycle.		
2.2	Differentiate between the biosynthesis and biodegradation of the 1-ry plant metabolites, and the energy-rich compounds.	 Lectures Scientific discussion. 	- Laboratory lessons through practical tests to asses
2.3	Calculate the ATP yielded from anaerobic and aerobic respiration	Presentation skills and throw through the	research related to the course are
2.4	Aquire the essential practical skills relevant to the use of instruments in chemical analysis.	activities and duties required to be displayed to the	viewing on students in the evaluation discussion groups
2.5	Carry-out quantitative analysis and determine physiological criteria	students in seminars	
2.6	Analyse physiological experimental data and draw sensible conclusions from such data.		
2.7	Interpret results of oriented problems, whether graphically or algebraically		
3.0	Competence		
3.1	- Developing oral presentations.		Evaluation of student
3.2	- Communicating personal ideas and thoughts.	Oral presentations.	essays and assignments.
3.3	- Work independently and as part of a team to finish some assignments.	assignments and essays.	Evaluating the laboratory written
3.4	- Communicate results of work to others	 and utilization of computer in the course requirements. Students will be asked for delivering a summary regarding certain topics related to the course. 	reports. Marks given to for good reports and presentations Evaluating during the discussion in lecture and reports. Part of the grad is put for student's written participation

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, search or presentation	4th and	10 %
		8th weeks	
2	Midterm "Written Test (1)"	8th week	30%
3	Final Exam "Practical Test"	15th week	20%
4	Final Exam Written Test		40%
5			
6			
7			
8		T	

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Office scheduled hours (6 hours) during the school week to communicate with the students

F. Learning Resources and Facilities

1.Learning Resources

Tilleurining Resources		
Required Textbooks	Course notes and Laboratory manual authorized by the Council of Department of Biology, Botany Branch. Initially, students are provided with a limited number of references relating to their subject area, but then are expected to search the literature on their own	
Essential References Materials	 Biochemistry by Donald Voet (Hardcover - Mar 9, 2004). Lehninger Principles of Biochemistry, Fourth Edition by David L. Nelson and Michael M. Cox (Hardcover – April 23, 2004). Fundamentals of Biochemistry: Life at the Molecular Level by Donald J. Voet, Judith G. Voet, and Charlotte W. Pratt (Hardcover - Mar 31, 2005). Biochemistry (Biochemistry (Berg)) by Jeremy M. Berg, John L. Tymoczko, and Lubert Stryer (Hardcover - May 19, 2006). William Plaxton and Michael McManus (2006). Control of Primary Metabolism in Plants. Blackwell, ISBN: 1405130962. Lincoln Taiz and Eduardo Zeiger (2010): Plant Physiology. 5th Edition, Sinauer Associates, Inc., ISBN: 978-0-87893-511-6. Photosynthesis Research Protocols. Series: Methods in Molecular Biology, Vol. 684. Carpentier, Robert (Ed.) 2nd ed., 2011, XIV, 395 p. 71 illus., Hardcove. 	
Electronic Materials	www.plantphysiol.org/content/152/4/1763.full. www.biology-online.org//9_plant_meta	
Other Learning Materials		

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classrooms, laboratories
Technology Resources (AV, data show, Smart Board, software, etc.)	data show, Smart Board

Item	Resources
Other Resources	
(Specify, e.g. if specific laboratory	
equipment is required, list requirements or	
attach a list)	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	