

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

T5. COURSE REPORT (CR)

A separate Course Report (CR) should be submitted for every course and for each section or campus location where the course is taught, even if the course is taught by the same person. Each CR is to be completed by the course instructor at the end of each course and given to the program coordinator

A combined, comprehensive CR should be prepared by the course coordinator and the separate location reports are to be attached.

Course Report

For guidance on the completion of this template, refer to the NCAAA handbooks.

Institution : Umm AL-Qurra University	Date of CR;	10/5/2018
College/ Department; Faculty of Applied Science / Phys	sics Department	

A Course Identification and General Information

1. Course title; Physics of Nuclear Medicine Code ; 403495-4 Section ; G1, G2						
2. Name of co	2. Name of course instructor; Ramadan Ali Hassan Location; Main campus(Abdiia)					
3. Year and set	3. Year and semester to which this report applies. 1438-1439, semester 2 (382)					
4. Number of s	4. Number of students starting the course? 14 Students completing the course? 14					
5. Course com	ponents (act	tual total cont	tact hours and c	redits per semes	ter):	
	Lecture	Tutorial	Laboratory/ Studio	Practical	Other:	Total
Contact Hours	55hr	55 hr	55 hr			
Credit						

B- Course Delivery

1. Coverage of Planned Program			
	Planned	Actual	Reason for Variations if there is a
Topics Covered	Contact	Contact	difference of more than 25% of
	Hours	Hours	the hours planned
 Basic of Nuclear Medicine Physics, 	1	3	
1. Fundamental concepts			
2. The power of nuclear medicine			
3. Historical overview			
4. Current practice of nuclear medicine			
5. The role of physics in nuclear medicine			
 Decay of Radioactivity 	2	6	

		1	
1. The Decay Constant ,2. Definition and			
Units of Activity			
B. EXPONENTIAL DECAY			
1. The Decay Factor, 2. Half-Life, 3.			
Average Lifetime			
C. METHODS FOR DETERMINING			
DECAY FACTORS			
1. Tables of Decay Factors, 2.Pocket			
Calculators, 3.Universal Decay Curve			
D. IMAGE-FRAME DECAY			
CORRECTIONS			
E. SPECIFIC ACTIVITY			
F. DECAY OF A MIXED			
RADIONUCLIDE SAMPLE			
G. PARENT-DAUGHTER DECAY			
1. The Bateman Equations, 2. Secular			
Equilibrium			
3.Transient Equilibrium, 4.No			
Equilibrium			
 Radionuclide and 	2	6	
Radiopharmaceutical Production			
A. REACTOR-PRODUCED			
RADIONUCLIDES			
1. Reactor Principles, 2. Fission Fragments, 3.			
Neutron Activation			
B. ACCELERATOR-PRODUCED			
RADIONUCLIDES			
1. Charged-Particle Accelerators, 2. Cyclotron			
Principles			
3. Cyclotron-Produced Radionuclides			
C. RADIONUCLIDE GENERATORS			
D. RADIONUCLIDES FOR NUCLEAR			
MEDICINE			
1.General Considerations, 2. Specific			
Considerations			
E. RADIOPHARMACEUTICALS FOR			
CLINICAL APPLICATIONS			
1.General Considerations, 2. Labeling			
Strategies			
3.Technetium-99m-Labeled			
Radiopharmaceuticals			
4.Radiopharmaceuticals Labeled with Positron			
Emitters			
5.Radiopharmaceuticals for Therapy			
Applications			
6.Radiopharmaceuticals in Clinical Nuclear			
Medicine			
 Radiation Detectors 	1	3	
A. GAS-FILLED DETECTORS			
1. Basic Principles			
	1	1	

3 Proportional Countars			
4. Colore Müller Counters			
4. Geiger-Muller Counters			
B. SEMICONDUCTOR DETECTORS			
C. SCINTILLATION DETECTORS			
1. Basic Principles			
2. Photomultiplier Tubes			
3. Photodiodes			
4. Inorganic Scintillator			
5. Considerations in Choosing an Inorganic			
Scintillator			
6. Organic Scintillator			
The Gamma Camera: Basic Principles	1	3	
A GENERAL CONCEPTS OF	-	5	
RADIONIUCI IDE IMAGING			
R BASIC PRINCIPLES OF THE CAMMA			
D. DASIC FRINCIPLES OF THE OAWIVIA			
CAMERA 1 Status Comments			
1. System Components			
2. Detector System and Electronics			
3. Collimators			
4. Event Detection in a Gamma Camera			
C. TYPES OF GAMMA CAMERAS AND			
THEID CUNICAL USES First Deviadia Even			
THEIR CLINICAL USES FIrst Periodic Exam			
* The Gamma Camera: Performance	2	6	
Characteristics			
A. BASIC PERFORMANCE			
CHARACTERISTICS			
1. Intrinsic Spatial Resolution, 2. Detection			
Efficiency, 3. Energy Resolution, 4.			
Performance at High Counting Rates			
B. DETECTOR LIMITATIONS:			
NONUNIFORMITY AND			
NONLINFARITY			
1 Imaga Nonlinearity 2 Imaga			
Nonuniformity, 2. Nonuniformity, Compositor			
Technismes, 4. Comme Comme Technisme			
Techniques, 4. Gamma Camera Tuning			
C. DESIGN AND PERFORMANCE			
CHARACTERISTICS OF PARALLEL-			
HOLE COLLIMATORS			
1. Basic Limitations in Collimator			
Performance, 2. Septal Thickness			
3. Geometry of Collimator Holes, 4. System			
Resolution			
D. MEASUREMENTS OF GAMMA CAMERA			
PERFORMANCE			
1. Intrinsic Resolution. 2. System Resolution.			
3. Spatial Linearity			
4. Uniformity, 5. Counting Rate Performance			
6 Energy Resolution			
7 System Sensitivity			
Image Quality in Nuclear Medicine	1	2	
A. BASIC METHODS FOR	1	5	

CHARACTERIZING IMAGE QUALITY			
B. SPATIAL RESOLUTION			
1. Factors Affecting Spatial Resolution, 2.			
Methods for Evaluating Spatial Resolution			
C. CONTRAST			
D. NOISE			
1. Types of Image Noise, 2. Random Noise and			
Contrast-to-Noise Ratio			
E. OBSERVER PERFORMANCE STUDIES			
1. Contrast-Detail Studies, 2. Receiver			
Operating Characteristic Studies			
Single Photon Emission Computed	1	3	
Tomography		_	
A. SPECT SYSTEMS			
1. Gamma Camera SPECT Systems, 2.			
SPECT Systems for Brain Imaging, 3. SPECT			
Systems for Cardiac Imaging, 4. SPECT			
Systems for Small-Animal Imaging			
B. PRACTICAL IMPLEMENTATION OF			
SPECT			
1. Attenuation Effects and Conjugate Counting,			
2. Attenuation Correction, 3. Transmission			
Scans and Attenuation Maps, 4. Scatter			
Correction, 5. Partial-Volume Effects			
C. PERFORMANCE CHARACTERISTICS OF			
SPECT SYSTEMS			
1. Spatial Resolution, 2. Volume Sensitivity, 3.			
Other Measurements of Performance, 4.			
Quality Assurance in SPECT			
D. APPLICATIONS OF SPECT			
Positron Emission Tomography	2	6	
A. BASIC PRINCIPLES OF PET IMAGING		-	
1. Annihilation Coincidence Detection, 2. Time-			
of-Flight PET, 3. Spatial Resolution:			
Detectors, 4. Spatial Resolution: Positron			
Physics, 5. Spatial Resolution: Depth-of-			
Interaction Effect, 6. Spatial Resolution:			
Sampling, 7. Spatial Resolution:			
Reconstruction Filters, 8. Sensitivity, 9.			
Event Types in Annihilation Coincidence			
Detection			
B. PET DETECTOR AND SCANNER			
DESIGNS			
1. Block Detectors, 2. Modified Block Detectors,			
3.Whole-Body PET Systems, 4. Specialized			
PET Scanners, 5. Small-Animal PET			
Scanner			
C. DATA ACQUISITION FOR PE			
1. Two-Dimensional Data Acquisition, 2. Three-			
Dimensional Data Acquisition, 3. Data			
Acquisition for Dynamic Studies and Whole-			

D. DATA CORRECTIONS AND			
QUANTITATIVE ASPECTS OF PET			
1. Normalization, 2. Correction for Random			
Coincidences, 3. Correction for Scattered			
Radiation, 4. Attenuation Correction, 5.			
Dead Time Correction, 6. Absolute			
Quantification of PET Images			
E. PERFORMANCE CHARACTERISTICS OF			
PET SYSTEMS			
F. CLINICAL AND RESEARCH			
APPLICATIONS OF PET			
Radiation Safety and Health Physics	1	3	
A. QUANTITIES AND UNITS			
1.Dose-Modifying Factors, 2. Exposure and			
Air Kerma			
B. REGULATIONS THE USE OF			
RADIONUCLIDES			
1. Nuclear Regulatory Commission Licensing			
and Regulations, 2. Restricted and			
Unrestricted Areas, 3.Dose Limits,			
4.Concentrations for Airborne Radioactivity			
in Restricted Areas, 5.Environmental			
Concentrations and Concentrations for			
Sewage Disposal, 6.Record-Keeping			
Requirements, 7. Recommendations of			
Advisory Bodies			
C. SAFE HANDLING OF RADIOACTIVE			
MATERIALS			
1. The ALARA Concept, 2. Reduction of			
Radiation Doses from External Sources, 3.			
Reduction of Radiation Doses from Internal			
Sources, 4.Laboratory Design, 5.Procedures			
for Handling Spills			
D. DISPOSAL OF RADIOACTIVE WASTE			
E. RADIATION MONITORING			
1. Survey Meters and Laboratory Monitors, 2.			
Personnel Dosimeter, 3. Wipe Testing.			
Revision and Solved problems, Second	1	3	
Periodic Exam			

2. Consequences of Non-Coverage of Topics

For any topics where the topic was not taught or practically delivered, comment on how significant you believe the lack of coverage is for the course learning outcomes or for later courses in the program. Suggest possible compensating action.

Topics (if any) not Fully Covered	Effected Learning Outcomes	Possible Compensating Action

3. Course learning outcome assessment.

	List course learning outcomes	List methods of assessment for each LO	Summary analysis of assessment results for each LO
1			
2			
3			
4			
5			
6			
7			
8			

Summarize any actions you recommend for improving teaching strategies as a result of evaluations in table 3 above.

4. Effectiveness of Planned Teaching Strategies for Intended Learning Outcomes set out in the Course Specification. (Refer to planned teaching strategies in Course Specification and description of Domains of Learning Outcomes in the National Qualifications Framework)

	Were They	Difficulties Experienced (if any) in
List Teaching Methods set out in Course	Effective?	Using the Strategy and Suggested

Specification	No	Yes	Action to Deal with Those
-			Difficulties.
 Demonstrating the basic information and 		Yes	
principles through lectures and the			
achieved applications			
 Discussing phenomena with illustrating 			
pictures and diagrams		Yes	
 Lecturing method: 		Vac	
 Projector 		Ves	
 Power point 		Ves	
 e-learning 		Yes	
 Tutorials 		Yes	
 Revisit concepts 		Yes	
 Discussions 		Yes	
 Brain storming sessions 		Yes	
 Start each chapter by general idea and the benefit of it 		Yes	
 Learn the student background of the subject; 		Yes	
• Show the best ways to deal with problem;		Yes	
always there		Yes	
 Preparing main outlines for teaching 		Yes	
 Following some proofs 		* 7	
 Define duties for each chapter 		Yes	
 Home work assignments 		res	
Encourage the student to look for the		Ves	
information in different references		105	
Ask the student to attend lectures for		Yes	
practice solving problem			
 Doing small research 		Yes	

 Learn how to search the internet and use the library. 	Yes	
 Learn how to cover missed lectures 	Yes	
 Learn how to summarize lectures or to 		
collect materials of the course.	Yes	
Learn how to solve difficulties in learning:		
solving problems – enhance educational skills.	Yes	
 Develop her interest in Science through :(lab work, field trips, visits to scientific and research. 	Yes	
 Encourage the student to attend lectures regularly by: Giving bonus marks for attendance assigning marks for attendance 	Yes	
	Yes	
• Know the basic mathematical principles.	Yes	
• Use the web for research.	Yes	
 Discuss with the student. 	Yes	
• Exams to measure the mathematical skill.	Yes	
 Clear the weakness point that should be eliminated. 	Yes	
 Encourage the student to ask for help if needed. 	Yes	
 Computational analysis. Data representation 	Yes	
 Data representation. Focusing on some real results and its 	Yes	
physical meaning.	Yes	
 Lectures for problem solution 	res	
 Encourage the student to ask good question 		
to help solve the problem	Yes	
	Yes	

Note: In order to analyze the assessment of student achievement for each course learning outcome, student performance results can be measured and assessed using a KPI, a rubric, or some grading system that aligns student work, exam scores, or other demonstration of successful learning.

C. Results

Letter	Number of	Student	Analysis of Distribution of Grades
Grade	Students	Percentage	
А	0	0%	
В	9	60%	
С	4	30%	
D	1	10%	
F	0	0%	
Denied Entry	0	0	
n Progress	0	0	
ncomplete	0	0	
Pass	14	100%	
Fail	0	0%	
Withdrawn	0	0	

2. Analyze special factors (if any) affecting the results

 3. Variations from planned student assessment processes (if any) (see Course Specifications).
 a. Variations (if any) from planned assessment schedule (see Course Specifications)

 Variation
 Reason

 Variations (if any) from planned assessment processes in Domains of Learning (see Course

b. Variations (if any) from planned assessment processes in Domains of Learning (see Course Specifications)

Variation	Reason

4. Student	Grade	Achievement	Verification	(eg.	cross-check	of	grade	validity	by	independent
evaluator).										

Method(s) of Verification	Conclusion
The instructors of the course are	TRUE
checking together and put a unique	
process of evaluation	
Check marking of a sample of	Equal with the level of student in written tests
papers by others in the department.	
Feedback evaluation of teaching	TRUE
from independent organization	

D Resources and Facilities

1. Difficulties in access to resources or	2. Consequences of any difficulties experienced for
facilities (if any)	student learning in the course.
Shortage the hand books in Arabic and WEB	All students must take all of the requirements before start in
rooms available for student to be useful at any	this course
time between lectures	

E. Administrative Issues

1 Organizational or administrative	2. Consequences of any difficulties experienced for
difficulties encountered (11 any)	student learning in the course.

F Course Evaluation

1 Student evaluation of the course (Attach summary of survey results)
1 Student evaluation of the course (Attach summary of survey results)
a. List the most important recommendations for improvement and strengths
b. Response of instructor or course team to this evaluation
2. Other Evaluation (eg. by head of department, peer observations, accreditation review, other stakeholders)
a. List the most important recommendations for improvement and strengths
b. Response of instructor or course team to this evaluation

G Planning for Improvement

1. Progress on actions proposed for improving the course in previous course reports (if any).						
Actions recommended from the most recent course report(s)	Actions Taken	Action Results	Action Analysis			
a. New chapter was added to cover the the heat and life interaction	Was applied successfully					
b. New chapter was added to cover the nanoparticle applications	Was applied successfully					

2. List what other actions have been taken to improve the course (based on previous CR, surveys, independent opinion, or course evaluation).

3. Action Plan for Next Semester/Year						
Actions Recommended for Further Improvement	Intended Action Points (should be measurable)	Start Date	Completion Date	Person Responsible		
a. Updating the course according to the recent publications						
b. Visit to Researches Lab.						
с.						

Name of Course Instructor: _ Ramadan Ali Hassan Ali _

Signature:	Ramadan Ali	 Date Report Completed:	_2017-2018
Program Coord	inator:	 	

 Signature:

 Date Received:
 ______15/5/2018___