ATTACHMENT 2 (g)

Course Report

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

COURSE REPORT (CR)

A separate Course Report (CR) should be submitted for every course and for each section or campus location where the course is taught, even if the course is taught by the same person. Each CR is to be completed by the course instructor at the end of each course and given to the program coordinator

A combined, comprehensive CR should be prepared by the course coordinator and the separate location reports are to be attached.

Course Report

For guidance on the completion of this template refer to the NCAAA handbooks or the NCAAA Accreditation System help buttons.

Institution: Umm AL-Qurra University	Date of Course Report: 6/1/1437
College/ Department: Faculty of Applied Science	/ Physics Department

A. Course Identification and General Information

1. Course title	: Electromag	netism (I)	Code #	403201	Section # Three	;
2. Name of cou	2. Name of course instructor: Prof. Roshdi Seoudi Mohamed Location: El-Zaher Branch					
3. Year and set	3. Year and semester to which this report applies. 1346-1437 H, First Semester					
4. Number of s	4. Number of students starting the course? Students completing the course?					
5. Course com	ponents (actu	al total cont	act hours and cro	edits per semes	ter):	
	Lecture	Tutorial	Laboratory	Practical	Other:	Total
Contact Hours	45					45
Credit	3					3

B. - Course Delivery

1. Coverage of Planned Program			
Topics Covered	Planned Contact Hours	Actual Contact Hours	Reason for Variations if there is a difference of more than 25% of the hours planned
Introduction of Vector: $(div grad \phi)$,	2	3	
$(curl \ grad \ \varphi), \ \left(\vec{\nabla} \times \vec{\nabla} \times \vec{A}\right), \ \vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{A}\right),$			
vector integration, gauss's, green's, vector			
analysis in the three coordinates (Cartesian,			
spherical, and cylindrical)			
Electrostatics: electric charge, coulomb	6	6	
low, the electric field, electrostatic potential			

10 a

, conductors & insulators , gauss's law, the			
electric dipole, and multipole expansion			
Solution of the Electrostatic Problem:	9	8	
Poisson's equation , Laplace's equation, Laplaces's equation in one independent variable, Laplace's equation in spherical coordinates, conducting sphere in uniform, cylindrical harmonics , electrostatic images, point charge & conducting sphere , line charges & line images , system of conductors, and Poisson's equation			
The Electrostatic Field in Dielectric	9	9	
Media Polarization: field in Dielectric Media Polarization: field outside of a dielectric medium, the electric field inside a dielectric, the electric displacement, electric susceptibility and dielectric constant, point charge in a dielectric field, boundary conditions on the field, vector boundary value problem involving dielectrics, dielectric sphere in a uniform electric field			
Microscopic Theory Of Dielectrics: molecular field in dielectric induced dipoles, a simple model, polar molecules, the Langevin-Debye formula, permanent, polarization, ferroelectricity	6	6	
Electrostatic Energy: potential energy of a group of point, charges energy density of an electrostatic field , energy of a system of charged, conductors and capacitors	4.5	4.5	
Electric Current: current density & equation of continuity, ohm's law, steady currents in continuous media, microscopic theory of conduction	4.5	4.5	

10 a

2. Consequences of Non Coverage of Topics

For any topics where the topic was not taught or practically delivered, comment on how significant you believe the lack of coverage is for the course learning outcomes or for later courses in the program. Suggest possible compensating action.

Topics (if any) not Fully	Effected Learning	Possible Compensating Action
Covered	Outcomes	
Calculation of the capacitance equivalent in series and parallel	Only for the specified experiment	Theory was given in detail
case for capacitors		
Calculation of the dielectric constant of materials	Only for the specified experiment	Theory was given in detail

3. Course learning outcome assessment.

	List course learning outcomes	List methods of	Summary analysis of assessment
		assessment	results
1	Demonstrate the vector and scalar	Small Project, Homework.	
	fields, Cartesian, spherical polar,	Group Discussion	
	cylindrical coordinates, integral	Presentation, Homework	
	vector calculus, div, grad, and curl		
	operations with geometric		
	interpretations, stokes and gauss		
	theorems, Dirac delta function		
2	Describe the force between the		
	charges by Coulomb's Law,		
	Electric Field and potentials of		
	fixed charge points, linear charge,		
	surface and volume charge density,		
	dipole and multipole expansion.		
	Gauss' Law in integral and		
	differential form.		
3	Recognize the Electrostatic		
	Problems by Laplace's Equation		
	and Uniqueness by Separation of		
	variables in Cartesian, Spherical		
	and cylindrical coordinates, Image		
	Charge Methods for grounded		
	planes and spheres in external		
4	Define the Distance in the sector is the		
4	Define the Dielectric materials,		
	Matter The displacement field D		
	free charge, and modified Gauss		
	Law Boundary conditions and		
	symmetric problems with		
	displacement field molecular fields		
	and ferroelectricity.		
5	Determine the electrostatic energy		
	and capacitance of Capacitors		

1 M a

κ.	Ø	
_		

6	Explain the Currents and the		
	Continuity Equation		
7	Use the mathematical modelling,	Exams.	
	experimental work in	Homework.	
	understanding physics phenomena.		
8	Apply the gained mathematical and		
	experimental knowledge in any		
	physical related topic.		
9	Work in a group and learn time		
	management.		
10	Learn how to search for	Helping other students to	
	information through library and	understand tasks in the class.	
	internet.	Giving clear and logical	
11	Present a short report in a written	arguments	
	form and orally using appropriate	Respecting deadlines.	
	scientific methods.	Showing active class	
		participation	
12	Communicate with teacher, ask	Write reports, Exercises	
	questions, solve problems, and use	related to specific topics	
	computers.		
13	Illustrate and deal with confidence		
	with differential equations and		
	integrations.		
14	Raise questions in class, work in		
	groups, and communicate with each		
	other and with the instructor		
	electronically, and periodically visit		
	the sites he recommends.		
15	Communicate with teacher, ask		
	questions, solve problems, and use		
	computers.		

Summarize any actions you recommend for improving teaching strategies as a result of evaluations in table 3 above.

- 1. The methodology of teaching that includes a curriculum design.
- 2. Feedback and evaluation.
- 3. Creating productive online electromagnetic for learning and teaching, transition and participation into education.
- 4. Seminar presentation and on-line learning process with (images and movies)
- 5. Teaching for employability

4. Effectiveness of Planned Teaching Strategies for Intended Learning Outcomes set out in the Course Specification. (Refer to planned teaching strategies in Course Specification and description of Domains of Learning Outcomes in the National Qualifications Framework)

List Teaching Methods set out in Course Specification	Were theseEffective?NoYes		Difficulties Experienced (if any) in Using the Strategy and Suggested Action to Deal with Those Difficulties.
Periodical quizzes, assignments and homework		\checkmark	

First and second mid- term exam and final exam	\checkmark	
Emphasis of the students in the presence of the	\checkmark	
lecture continuously		
Making the students are working small projects and	\checkmark	
report for electromagnetically and its applications		
around us.		
Ask the student to clear the miss understanding of the course	\checkmark	
Preparing main outlines for teaching in the starting of the lecture	\checkmark	
Define tasks for each chapter	\checkmark	
Open discussions during the lectures	\checkmark	
Brain storming, group work, homework assignments and small project	\checkmark	
Encourage the student to look for the information in different sources	\checkmark	

Note: In order to analyze the assessment of student achievement for each course learning outcome, student performance results can be measured and assessed using a KPI, a rubric, or some grading system that aligns student work, exam scores, or other demonstration of successful learning.

C. Results

Letter Grade	Number of Students	Student Percentage	Explanation of Distribution of Grades
Α	3	11	The distribution of grades and number of students is nearly normal
В	2	7	
С	6	22	
D	14	52	
F	1	4	
Denied Entry	0	0	
In Progress	27	93	
Incomplete	2	7	
Pass	26	96	
Fail	1	4	
Withdrawn	0	0	

2. Analyze special factors (if any) affecting the results In general the strengths of the students and the normal number of students are the reasons behind the marks obtained.

3. Variations from planned student assessment processes (if any) (see Course Specifications).		
a. Variations (if any) from planned assessment	schedule (see Course Specification)	
Variation	Reason	

1 M a

b. Variations (if any) from planned assess Specification)	nent processes in Domains of Learning (see Course
Variation	Reason

4. Student Grade Achievement Verification (eg. cross-check of grade validity by independent evaluator).

Method(s) of Verification	Conclusion
Rechecking the final experimental exam by independent evaluators.	Checking was approved without any change

D. Resources and Facilities

1. Difficulties in access to resources or facilities (if any)	2. Consequences of any difficulties experienced for student learning in the course.
None	None

E. Administrative Issues

1 Organizational or administrative difficulties encountered (if any)	2. Consequences of any difficulties experienced for student learning in the course.

F Course Evaluation

1 Student evaluation of the course (Attach survey results report)	
a. List the most important recommendations for improvement and strengths	

1 🛍 🎿

|--|

b. Response of instructor or course team to this evaluation

2. Other Evaluation (e.g. by head of department, peer observations, accreditation review, other stakeholders)

a. List the most important recommendations for improvement and strengths

b. Response of instructor or course team to this evaluation

G. Planning for Improvement

1. Progress on actions proposed for improving the course in previous course reports (if any).				
Actions recommended from the most recent course report(s)	Actions Taken	Results	Analysis	
a.				
b.				
с.				
d.				

Form 5b_ Course Report _SSRP_1 JULY 2013

2. List what actions have been taken to improve the course (based on previous CR, surveys, independent opinion, or course evaluation). An experiment laboratory can be setup.

3. Action Plan for Improvement for Next Semester/Year				
Actions Recommended	Intended Action Points and Process	Start Date	Completion Date	Person Responsible
а.				
b.				
с.				
d.				
е.				

Name of Course Instructor: Prof. Roshdi Seoudi Signature: Program Coordinator: Signature:

Date Report Completed: 6/1/2016

Date Received: