
UMM AL-QURA UNIVERSITY

College of Computer and Information Systems

Computer Engineering Department

14031201-4

Digital Logic Design

Lab Manual

Student Name: _________________________________

Student ID: ____________________________________

Section: _______________ Group: _________________

Session (Fall / Spring / Summer) ___________________

- 1 -

This page is intentionally left blank

- 2 -

TABLE OF CONTENTS

Table of Contents ... 2

Laboratory Safety Guidelines .. 3

General Information .. 5

Weekly Schedule (Based on the University Calendar) …... 8

Week (2) – Tutorial 1: Number systems – Conversions ... 9

Week (3) – Tutorial 2: Number systems – Operations and Codes .. 10

Week (4) – Experiment 1: Introduction to Logic Gates .. 11

Week (5) – Tutorial 3: Implementation and simplification of Boolean functions using Boolean

 Algebra ... 17

Week (6) – Experiment 2: Implementation and Simplification of Boolean Functions 18

Week (7) – Experiment 3: NAND and NOR Implementation ... 25

Week (8) – Tutorial 4: Implementation and simplification of Boolean functions using K-maps.. 35

Week (10) – Experiment 4: Combinational Logic Modules – Adders and Subtractors 36

Week (11) – Experiment 5: Combinational Logic Modules – Decoders 48

Week (12) – Experiment 6: Combinational Logic Modules – Comparators and Multiplexers 54

Week (13) – Experiment 7: Exam on Combinational Logic Modules – Design of an Arithmetic

 Circuit ... 62

Week (14) – Tutorial 5: Sequential logic, flip flops, FSM analysis and design 64

Week (15) – Experiment 8: Latches, Flip Flops and Counters ... 65

Prepared By: Engr. Zafar Zaheer-ul-Haque 2012

Revised By: Dr. Khaled Khayyat and Dr. Ahmed Morgan 2016

Reviewed By: _____________________________ _____________

Approved By: _____________________________ _____________

- 3 -

Umm Al-Qura University
Computer Engineering Department

LABORATORY SAFETY GUIDELINES

A. General Laboratory Safety Rules

1. Personal Safety

x Be familiar with the electrical and fire hazards associated with your workplace.
x Be as careful for the safety of others as for yourself. Think before you act.
x Be tidy and systematic.
x Avoid bulky, loose or trailing clothes. Avoid long loose hair.
x No one is allowed to enter in the lab area bare foot due to increased risk of electric shock.
x Remove metal bracelets, rings or watchstraps when working in the laboratories.
x Avoid working with wet hands and clothing.

2. Food, Beverages and Smoking

x Due to the increased risk of electric shock, no drinking of beverages, consumption or storage of any kind
of food is allowed in the laboratory.

x Smoking is prohibited in all laboratories in all timings.

3. Soldering

x No one is allowed to do soldering in any of the computer engineering laboratories except the graduation
project design laboratory.

x Anyone doing soldering in the graduation project design laboratory must wear appropriate apparel, socks,
gloves, covered shoes and safety goggles to prevent the possibility of severe burns resulting from the
splashing or dripping of hot liquefied solder into the face and eyes or on to the exposed skin on the chest,
hands, legs, and feet.

x Students who are not so properly attired for these tasks will NOT be allowed to perform any type of
soldering in the graduation project design laboratory.

4. Laboratory Operating Hours

x Students are never allowed to work alone in any lab area other than scheduled laboratory operating hours
unless either a Lab T/A or Course Instructor is present inside that lab area.

x The laboratory operating hours for students are posted on the entrance doorway and on the notice board of
computer engineering department.

5. Power Supply Related Safety

x Voltages above 50-VAC or 120-VDC are always dangerous.
x Extra precautions should be considered as voltage levels are increased.
x Never make any changes to circuits or mechanical layout without first isolating the circuit by switching off

and removing connections to power supplies.

6. Laboratory Equipment

x Lab equipment may not be removed from the Computer Engineering lab areas without the permission of
the Laboratory Supervisors.

x Laboratory bench equipment (except for some lab bench computers) must be turned off before closing
down the lab area for the day.

x Never open (remove cover) of any equipment in the laboratories.
x Never "jump," disable, bypass or otherwise disengage any safety device or feature of any equipment in the

laboratories.
x Laboratories shall be locked when unoccupied.

7. Waste Management Safety

x Know the correct handling, storage and disposal procedures for batteries, cell, capacitors, inductors and
other high energy-storage devices.

- 4 -

8. Equipment Safety
x Before equipment is energized ensure, circuit connections and layout have been checked by a Teaching

Assistant (TA) and all colleagues in your group has given their consent.
x Experiments left unattended should be isolated from the power supplies. If for a special reason, it must be

left on, a barrier and a warning notice are required.
x Equipment found to be faulty in any way should be reported to the lab supervisor and taken out of service

until inspected and declared safe.

9. Equipment Accessories

x Use extension cords only when necessary and only on a temporary basis.
x Request new outlets if your work requires equipment in an area without an outlet.
x Discard damaged cords, cords that become hot, or cords with exposed wiring.

B. Electrical and Fire Emergency Responses

1. Police, Fire or Medical Emergency
x Use the telephone located in the laboratory area and press 0-996 to notify police, fire, and ambulance for

emergency help.
x Everyone present in the laboratory area shall be familiar with the locations and operation of safety and

emergency equipment, including but not limited to, fire extinguishers, first aid kits, emergency power off
system, fire alarm pull stations, and emergency telephones.

2. Electric Shock

x When someone suffers serious electrical shock, he may be knocked unconscious.
x If the victim is still in contact with electrical current, immediately turn off the electrical power source.
x If you cannot disconnect the power source, depress the Emergency Power Off switch.
x Do not touch a victim that is still in contact with a live power source; you could be electrocuted! Have

someone call for emergency medical assistance immediately. Administer first-aid, as appropriate.

3. Electrical Fire

x If an electrical fire occurs, try to disconnect the electrical power source, if possible.
x If the fire is small and you are not in immediate danger; and if you have been properly trained in fighting

fires, use the correct type of fire extinguisher to extinguish the fire.
x When in doubt, push in the Emergency Power Off button.
x NEVER use water to extinguish an electrical fire.

4. Emergency Power Off

x Every lab is equipped with an Emergency Power off System.
x When this switch is depressed, electrical power to the lab will shut off, except for lights.
x Only authorized personnel are permitted to reset power once the Emergency Power Off system has been

engaged.

5. Building Evacuation in Emergency

x Everyone present in the laboratory should be familiar to emergency exits & way out plans.
x Use the nearest exit doorway from lab area closest to the stairwell to exit the building.
x Follow the Emergency Exit Signs posted in the hallways. Do not use elevators.
x Lab Teaching Assistants (T/As) or Instructor shall make sure all persons are out of the laboratory area and

follow the directions posted at each doorway to the laboratory area.

The above general laboratory safety rules are designed to safeguard you and your co-workers, fellow
students and colleagues and are a minimum requirement for individuals working in the computer
engineering laboratories at Umm Al-Qura University, Makkah Al-Mukarramah. Specialized training
and rules may apply depending on type and scope of activities involved.

- 5 -

General Information

1. Introduction to the Lab:
x Each lab is a 3-hour session
x The lab objective is to introduce students to the practical world of digital system design and the

various digital components. This includes how design digital circuits, how to simulates them using
software packages, and how to construct them using standard Integrated Circuits (ICs) and other
hardware that are readily available commercially. Students will also be familiarized with the
procedure of designing, simplifying, simulating, implementing and testing many combinational
and sequential circuits that explained and presented in lectures.

x Some parts of the labs do not give you step-by-step instructions on how to do them. They require
you to think carefully about how you are going to do them.

x You will do the labs with the Logisim software as well as prototype boards and components that
are offered to you. Logisim is a free graphical tool for designing and simulating logic circuits.
You could download it from: http://www.cburch.com/logisim/. The website also includes some
documents that help you getting started with the software.

x Every effort will be made to cover the lab materials in class before the scheduled lab period.
However, if the lectures do lag behind the labs, please consult the textbook, the notes, the TA or
the course instructor for any information you need.

2. Lab Rules:
x Be regular and disciplined: Students are expected to attend all lab sessions regularly.
x Come to the lab sessions on time. Action may be taken to late comers.
x The due date for any lab report is one week after the lab is done. Submit your lab reports on time.

Any late report, for no valid reason, will not be accepted.
x Lab is yours, so help to keep it clean. Bringing foods, water or newspaper are forbidden.
x Come prepared. Read the background information and discuss the experiment with your

colleagues before coming.
x Bring the Lab manual on every time you come to the laboratory.
x Do not make walking around, chatting, or noise during lab period.
x Do not change your lab group or bench without taking a permission from the Lab instructor.
x Do not do anything in a hurry. Ask the instructor if you don’t understand any point or step.
x Each lab is to be demoed to the lab TA to confirm its operation. Furthermore, the TA will ask

questions regarding the lab, to ensure the proper understanding of the lab materials.
x After finishing the experiment, disconnect the connection wires that you used during the

experiment, and put them in the wire kit, take out all IC chips from the training kit and put them
back in the IC Cabinet. Be sure to return all materials you used, to clean your table, and to inform
the Lab instructor when you depart.

x The student's mark will be affected if these rules are not obeyed.

3. Grading :
x The Lab weights 25% of the whole course grade, the following grading scheme will be used:

Technical Reports 5%
Participation and Activities 5%
Experiment 7: Exam on Combinational Logic Modules 5%
Final Lab Exam 10%

x Discipline and preparedness will be taken into account when assessing the student.
x Two marks will be discarded for each unexcused absence.

http://www.cburch.com/logisim/

- 6 -

x A student who has more than two unexcused absence will receive a final grade of zero.
x Students could discuss their lab experiment and results with each others. However, every student

should write his/her report by himself/herself. No marks will be given if any cheating in the way
of copying is noticed.

4. Requirements for Lab Reports:
x Lab reports should be submitted in a week from the date the lab is performed and should include

all of the following sections:
- Cover Page: The cover page of your lab report should include the experiment name and

number, your name and number, your bench order and the submission date.
- Discussion and Conclusions: In this section, you present the results you got during the lab,

your observations about these results, your comments, and your conclusions.
- Questions answers: if your lab manual includes questions to be answered, you should

answer all the questions completely and accurately. Some questions require you to simulate
certain circuits. Snapshots from the simulation should be included in your report.

x When writing the lab report, ensure that all sentences are grammatically correct & without
mistakes in spelling. You can use a computer to make your report, the following powerful
softwares may help you:

- SmartDraw or Microsoft Visio: to create and draw diagrams.
- Logisim: to enter and simulate logic circuits. (available at:

http://www.cburch.com/logisim/). Similar tools are Logicly (available at http://logic.ly/).
Circuit maker (available at http://circuitmaker.com/), Multisim (available at
http://www.ni.com/multisim/), and Xilinx ISE (available at http://www.xilinx.com).

x Please ask the instructor if any point here is not clear to you.

http://www.cburch.com/logisim/
http://logic.ly/
http://circuitmaker.com/
http://www.ni.com/multisim/
http://www.xilinx.com/

- 7 -

This page is intentionally left blank

- 8 -

Weekly Schedule

(Based on the University Calendar)

Week Lab/Tutorial

1 No lab nor tutorial

2 Tutorial 1: Number systems – Conversions

3 Tutorial 2: Number systems – Operations and Codes

4 Experiment 1: Introduction to logic gates

5 Tutorial 3: Implementation and simplification of Boolean functions using

Boolean Algebra

6 Experiment 2: Implementation and Simplification of Boolean functions

7 Experiment 3: NAND and NOR implementation

8 Tutorial 4: Implementation and simplification of Boolean functions using K-

maps

9 Reading Break

10 Experiment 4: Combinational logic modules – Adders and subtractors

11 Experiment 5: Combinational logic modules – Decoders

12 Experiment 6: Combinational logic modules – Comparators and multiplexers

13 Experiment 7: Exam on Combinational logic modules – Design of an arithmetic

circuit

14 Tutorial 5: Sequential logic, flip flops, FSM analysis and design

15 Experiment 8: Latches, Flip flops and counters

16 Final Lab Exam

- 9 -

Week (2)

Tutorial 1: Number systems – Conversions
Reminder: Please, remember to print and bring the tutorial with you

- 10 -

Week (3)

Tutorial 2: Number systems – Operations and Codes
Reminder: Please, remember to print and bring the tutorial with you

- 11 -

Week (4)

Experiment 1: Introduction to Logic Gates

1.1 Objectives:
x To get familiar with the usage of the lab software and equipments.
x To describe and verify the operation of AND, OR, NOT, NAND, NOR, XOR, and XNOR gates.
x To introduce a basic knowledge of Integrated Circuits (ICs) operation.
x To practice how to simulate a simple digital circuit using a software package and to build it using ICs and

other digital components.

1.2 Background Information:
Logic gates are the simplest component of any logic circuit. In order to understand the computer logic, you
should understand and master the logic operators (i.e., gates). A gate is a digital electronic circuit having only
one output, but one or more inputs. The output that appears at the output of the gate depends on the input
combinations.
There are many types of logic gates; such as AND, OR, and NOT, which are usually called the three basic
gates. Other popular gates are NAND and NOR gates; which are simply combinations of an AND or an OR
gate followed by a NOT gate. Other gates include the XOR “Exclusive-OR” and the XNOR "Exclusive NOR"
gates. In this experiment, we will investigate the above mentioned basic logic gates and study their operations
according to their truth table, as prescribed during lectures.

1.3 Equipment Required:
1.3.1 Software simulation: The Logisim software package is installed on every PC in the lab.
1.3.2 Hardware implementation: The following equipment are needed to perform all the procedures:

- IC Training Kit
- Jumper wire kit
- 1x 7400 TTL QUAD NAND GATE
- 1x 7402 TTL QUAD NOR GATE
- 1x 7404 TTL HEX INVERTER GATE
- 1x 7408 TTL QUAD AND GATE
- 1x 7432 TTL QUAD OR GATE
- 1x 7486 TTL QUAD EXCLUSIVE OR GATE
- 1x 74266 TTL QUAD EXCLUSIVE NOR GATE
- 2x Toggle Switches
- 1x Carbon-film Resistor (470Ω)
- 1x LED

1.4 Prelab:

It is recommended that you go through the Logisim beginners tutorial before coming to the lab. The tutorial is
available at http://www.cburch.com/logisim/docs/2.7/en/html/guide/tutorial/index.html.

1.5 Software Simulation:
1.5.1 Login into one of the PCs in the lab using your user name and password.
1.5.2 Double click on the logisim-win-2.7.1 icon on the desktop of the computer.

1.5.3 The Logisim main window will open, as shown below

http://www.cburch.com/logisim/docs/2.7/en/html/guide/tutorial/index.html

- 12 -

1.5.4 Logisim main window has five main parts:
- Explorer pane that includes the components, which you will use in building your design.
- Attribute table that allows you to adjust the attribute of the components, according to your design

needs. If the attribute table is not apparent on your computer right now, it will show up in the
following steps.

- Canvas, where you will draw your circuit
- Menu bar that allow you to handle you project and its associated files
- Toolbar that helps you to draw and simulate your circuit

The picture is taken from

http://www.cburch.com/logisim/docs/2.7/en/html/guide/tutorial/tutor-orient.html.

1.5.5 From the File menu, click on Save or simply click Ctrl+S.

1.5.6 The Save window will show up. Browse to the folder, where you want to save you files, write lab1 on
the File name, then click save.

http://www.cburch.com/logisim/docs/2.7/en/html/guide/tutorial/tutor-orient.html

- 13 -

1.5.7 Now, you are ready to verify the operation of all basic logic gates. Let's start with the NAND gate.
1.5.8 From the explorer pane, expand the Gates folder by clicking on the + sign beside it.

1.5.9 Select the NAND gate and place it onto the canvas. Notice that the attribute table of the NAND gate
would show up.

1.5.10 Practice changing one of the attributes of the NAND gate. Change the number of inputs from 5 to 2.

- 14 -

1.5.11 From the toolbar, select the Input tool () and add two inputs on the canvas to the left of the NAND
gate. Similarly, add an output to the right of the NAND gate using the output tool (). In the attribute
table, give labels to your inputs and output (X, Y, and Z are used in the following figure).

1.5.12 If required, you could move your components through the canvas using the edit tool (). Any
component could be deleted by selecting it using the edit tool, then click the delete key.

1.5.13 From the toolbar, select the edit tool to wire your circuit. Click on the input X and keep pressing while
moving to the upper input of the NAND gate. Notice that when the mouse cursor is over a point that
receives a wire, a small green circle will be drawn around it. Logisim allows only horizontal and vertical
wires (i.e., inclined wires could not be drawn).

1.5.14 Now, let's verify the operation of the NAND gate by constructing its truth table. Currently, the two
inputs, X and Y, are 0s (or colored in dark green), whereas the output Z is 1 (or colored in light green).
This constitutes the first row of the 2-input NAND gate truth table.

1.5.15 To try other input combinations, select the poke tool (), from the toolbar, and click on the input you
want to toggle. Try all input combinations and fill in the following truth table. Ensure that the operation
agrees with what you have learned from the lecture and the textbook.

NAND gate truth table

X Y Z
0 0
0 1
1 0
1 1

1.5.16 Repeat the previous steps to verify the operation of all other basic logic gates: NOR, NOT, AND, OR,

XOR, and XNOR. Fill in the following truth tables for each gate. You could start a new file by selecting
NEW from the File menu (or by clicking Ctrl+N)

- 15 -

NOR gate AND gate OR gate
X Y Z X Y Z X Y Z
0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 1 0
1 1 1 1 1 1

XOR gate XNOR gate NOT gate
X Y Z X Y Z X Z
0 0 0 0 0
0 1 0 1 1
1 0 1 0
1 1 1 1

1.5.17 After you are done with all gates, remember to back up your work onto a USB drive or to email it to

yourself for future usage.

1.6 Hardware Implementation
1.6.1 Collect the components necessary to accomplish this experiment, as listed in Section 1.3. Each gate is

fabricated as an Integrated Circuit (IC) chip with a unique number. For example, the 7400 IC chip has
four 2-input NAND gates inside it.

1.6.2 Plug the NAND gate IC chip (7400) into one slot of the IC Training Kit. Place the IC in the slot so that
half of the legs are on one side of the middle line and half are on the other side. If you have trouble
connecting your IC, please, ask your TA for help.

1.6.3 The connection of each IC is done according to its datasheet. You have to check the datasheet of any IC
before connecting it to your circuit. Datasheets are available on the laboratory and they could be
obtained from the Internet.

1.6.4 Let's practice getting the datasheet of the 7400 IC. Go to http://www.alldatasheet.com/, write 7400 in
the part number and click search.

1.6.5 From the search result, open the datasheet of the 7400 IC. The pin-out should be as shown below. Notice
that the legs of the IC are always counted in the anti-clock wise direction from the round notch, which
appears to the center left of the IC in the following figure.

1.6.6 According to the datasheet, connect your power supply voltage and ground lines to their corresponding

pins in the chips. (i.e., PIN 7 = 0V and PIN 14 = +5). Please, ensure that your wires are inserted all the
way to the bottom of the IC Training Kit. Loose and disconnected wires prevent the circuit from working
properly.

1.6.7 According to the pin-out diagram of the 7400 IC, wire only one gate to verify its truth table. For example,
wire pins 1 and 2 of the IC to two switches and pin 3 to an LED through a 470Ω resistor.

1.6.8 Once all connections have been done, turn the power ON. If necessary, you might have your TA to
check your circuit before turning the power ON.

1.6.9 By changing the two input switches and monitoring the LED, fill in the following truth table of the
NAND gate.

http://www.alldatasheet.com/

- 16 -

NAND gate truth table

X Y Z
0 0
0 1
1 0
1 1

1.6.10 Repeat the above steps for each IC package. (i.e., NOR, NOT, AND, OR, XOR, and XNOR). Fill in

their truth tables and ensure that the operation agrees with what you have learned from the lecture and
the textbook.

NOR gate AND gate OR gate
X Y Z X Y Z X Y Z
0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 1 0
1 1 1 1 1 1

XOR gate XNOR gate NOT gate
X Y Z X Y Z X Z
0 0 0 0 0
0 1 0 1 1
1 0 1 0
1 1 1 1

1.6.11 After finishing the experiment, turn the power OFF, disconnect the wires, take out all IC chips from the

trainer, put back everything you have used and clean your table.

1.7 Questions: Practice Simulation and hardware implementation
From what you have learned in the previous steps, consider the logic circuit shown in the following figure. Use
Logisim to simulate it. Verify the circuit operation and fill in its truth table. Include snapshots from your
simulation into your report.

A B C F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

- 17 -

Week (5)

Tutorial 3: Implementation and simplification of Boolean functions using
Boolean Algebra

Reminder: Please, remember to print and bring the tutorial with you

- 18 -

Week (6)

Experiment 2: Implementation and Simplification of Boolean Functions

2.1 Objectives:
x To demonstrate the relationship between a Boolean function, its corresponding truth table, and logic

diagram.
x To use the potential of Boolean algebra and K-maps to simplify complex logic circuits.

2.2 Background Information:
2.2.1 Representation of Boolean Functions

A Boolean function is an expression formed with binary variables, binary operators, and an equal sign.
A binary variable can take either the value of 0 or 1. A binary operator specifies the logic operation
between these variables.

Example:
Consider the following Boolean function consisting of two variables (x, y).

 F = x y'

This function is equal to 1 if x = 1 and y' = 1 (i.e., y=0); otherwise, F is equal to 0. The above simple
Boolean function is represented as an algebraic expression. Also, the function can be represented as a
truth table. In this case, we need to list all the 2n combinations of 1s and 0s of the n binary variables of
the function, along with a column for the corresponding value of F. the truth table for the above function
is as follows

X Y F
0 0 0
0 1 0
1 0 1
1 1 0

From the table, we can see that the function is equal to 1 only if x = 1 and y = 0.

The third representation of Boolean functions is by logic diagrams. In a logic diagram, binary variables
are represented as inputs, binary operators are represented as symbolic draw for logic gates, and the
function itself is represented as the output. The logic diagram representing the above function is as
follows:

2.2.2 Simplification of Boolean Functions
An important issue when dealing with Boolean functions is the simplification of these functions. In this
process, we try to simplify or reduce the function to obtain the same output with a simple and short form
of the function. This simplification, in turn, reduces the required number of gates. The simplification of
Boolean functions is done by applying the postulates and the theorems of Boolean algebra or by using
Karnaugh maps (K-maps). In this lab, you will practice doing the simplification using these two
methods. You will see how to implement and simplify the following Boolean function:

F = X' Y' Z + X' Y Z + X Y'

- 19 -

2.3 Equipment Required:
2.3.1 Software simulation: The Logisim software package is installed on every PC in the lab.
2.3.2 Hardware implementation: The following equipment are needed to perform all the procedures:

- IC Training Kit
- Jumper wire kit
- 1x 7404 TTL HEX INVERTER GATE
- 1x 7411 TTL TRIPLE 3-input AND GATE
- 1x 7432 TTL QUAD 2-input OR GATE
- 3x Toggle Switches
- 1x Carbon-film Resistor (470Ω)
- 1x LED

2.4 Prelab:

It is recommended that you review how to simplify Boolean functions using Boolean algebra and K-maps.

2.5 Software Simulation:
2.5.1 Login into one of the PCs in the lab using your user name and password.
2.5.2 Double click on the logisim-win-2.7.1 icon on the desktop of the computer.
2.5.3 In the area below, use basic gates to draw the logic diagram of the Boolean function: F = X' Y' Z + X'

Y Z + X Y'. If necessary, have your TA to check your circuit

2.5.4 As you did in Lab (1), enter your circuit into Logisim
2.5.5 Use the poke tool () to simulate your circuit and fill in the following truth table.

2.5.6 Save you circuit under the name Lab2original. You will need it again during this lab.
2.5.7 Now, simplify the function using Boolean algebra. Show all the simplification steps and write the most

simplified form in the following area. Have your TA to check your work.

X Y Z F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

- 20 -

2.5.8 Simplify the function using the K-map and ensure that you get the same simplified expression as the
one resulted from the Boolean algebra simplification. Use the following area to draw your K-map and
write the most simplified expression

2.5.9 In the area below, use basic gates to draw the logic diagram of the simplified expression.

2.5.10 Start a new Logisim project and enter the circuit you drew for the simplified expression into it.
2.5.11 Use the poke tool () to simulate your simplified circuit and fill in the following truth table. The table

should be identical to the one of the original circuit, in step 2.5.5

2.5.12 Count the number of gates in your original circuit and the number of gates in the simplified one.
Consider the three-input AND gate to be equivalent to 2 two-input AND gates. How many gates could
you save by simplification? …………………

2.5.13 Now, let's use Logisim to carry out the simplification you did manually on steps 2.5.7 and 2.5.8
2.5.14 From the File menu, select Open Recent and click on your original file, Lab2original.
2.5.15 From the Project menu, click on Analyze Circuit

X Y Z F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

- 21 -

2.5.16 The Combinational Analysis window will show up

2.5.17 Go to the Expression tab, you will see your original expression as in point 2.5.3.

2.5.18 Go to the Minimized tab, you will see the K-map simplification of the Boolean function and the
simplified expression. It should be identical to the one you obtained in steps 2.5.7 and 2.5.8.

- 22 -

2.5.19 Click on the Set As Expression button on the Combinational Analysis window. The simplified
expression will be used instead of the original one. You could check that by going to the Expression tab
again

2.5.20 Click on the Build Circuit button, at the bottom of the Combinational Analysis window. The Build
Circuit window will show up.

2.5.21 Click OK, the Confirm Replace window will show up

- 23 -

2.5.22 Click Yes on the Confirm Replace Window.
2.5.23 Go to Logisim main window. You will find that the original circuit is replaced by the simplified one.

Ensure that it is the same as the simplified circuit you generated before.

2.5.24 After you are done, remember to back up your work onto a USB drive or to email it to yourself for
future usage.

2.6 Hardware Implementation:

2.6.1 Collect the components necessary to implement the original circuit, as listed in Section 2.3. Notice that
you have drawn the logic diagram of the circuit in step 2.5.3.

2.6.2 As you did in Lab (1), plug each IC chip into the IC Training Kit.
2.6.3 Check the datasheet of each IC and according to the pin-out diagram of the IC chips, wire the logic

circuit. Insert your wires carefully and avoid any loose connection.
2.6.4 Be sure to connect the supply voltage and ground lines (5V and 0V) to all chips.
2.6.5 Once all connections have been done, turn on the power switch of the IC Training Kit.
2.6.6 Use the three switches for X, Y, and Z to enter all possible input combinations in order to fill in the truth

table below:

X Y Z X' Y' Z X' Y Z X Y' F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

2.6.7 After you have completely done with the original circuit, use necessary IC chips to construct the

simplified circuit. Notice that the figure of step 2.5.23 shows the logic diagram of the simplified circuit
2.6.8 Once all connections have been done, turn on the power switch of the IC Training Kit.
2.6.9 Use the three switches for X, Y, and Z to enter all possible input combinations in order to fill in the truth

table below. Ensure that the truth table of the simplified circuit is identical to that of the original one.

X Y Z F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

2.6.10 After finishing the experiment, turn the power OFF, disconnect the wires, take out all IC chips from

the trainer, put back everything you have used and clean your table.

- 24 -

2.7 Questions: Practice Simplification of Boolean Functions

For each of the following Boolean functions it is required to do all of the following and include your work onto
the report.

x Draw the logic diagram corresponding to each function
x Simplify the function manually using Boolean algebra and K-map
x Enter the original logic diagram onto Logisim. Then, using the Combinational Analysis window,

ensure that the simplification you did is correct. Snapshots from Logisim should be included in your
report

F = A' B' C' + A' B' C + A B' C

F = A' (B C + B C') + A (B C +B C')

- 25 -

Week (7)

Experiment 3: NOR and NAND Implementation of Logic Functions

3.1 Objectives:
To demonstrate the implementation of digital systems using NOR and NAND gates.

3.2 Background Information:

NOR and NAND gates are said to be universal gates because any digital system could be implemented using
only one type of these gates. As these gates are easier to fabricate with electronic components, digital circuits
are frequently constructed with only NOR or only NAND gates. Because of the importance of NOR and NAND
gates in the design of digital circuits, rules and procedures have been developed for the conversion from
Boolean functions in terms of AND, OR, and NOT into equivalent NOR or NAND-based logic diagrams. From
DeMorgan theorem, we can see two expressions and symbols of NOR and NAND gates as follows:

Two expressions and symbols for NOR gate

Two expressions and symbols for NAND gate

3.3 Equipment Required:

3.3.1 Software simulation: The Logisim software package is installed on every PC in the lab.
3.3.2 Hardware implementation: The following equipment are needed to perform all the procedures:

- IC Training Kit
- Jumper wire kit
- (1) 7400 TTL QUAD NAND GATE
- (1) 7402 TTL QUAD NOR GATE
- 2x Toggle Switches
- 1x Carbon-film Resistor (470Ω)
- 1x LED

3.4 Prelab:

It is recommended that you review how to implement logic functions using the universal NOR and NAND
gates

3.5 Implementation of Basic Gates using NOR gate:
3.5.1 Software Simulation

- 26 -

3.5.1.1 Let's start by implementing the basic AND using universal NOR gates. The NOR
implementation of the basic AND gate is shown in the figure below

3.5.1.2 As you did in Lab (1), start a new Logisim project and enter the NOR-based circuit, to the right

of the above figure, into it.

3.5.1.3 Use the poke tool() to simulate the circuit and fill in the following truth table. The truth table
should be identical to that of the basic AND gate.

X Y Z
0 0
0 1
1 0
1 1

3.5.1.4 Now, let's see another method to generate the truth table of any circuit other than the poke tool.
3.5.1.5 From the Project menu, click on Analyze Circuit

- 27 -

3.5.1.6 The Combinational Analysis window will show up

3.5.1.7 Click on the Table tab. The truth table will show up and it should be identical to the one you
generated using the poke tool. The table ensures that the NOR implementation of the AND gate
is correct.

3.5.1.8 Remember to save your work for future usage.

3.5.2 Hardware Implementation
3.5.2.1 As you did in Lab (1), use the 7402 IC chip to implement the NOR-based circuit of the basic

AND gate. Remember to check the datasheet of the IC chip before connecting your wires.
3.5.2.2 Turn your power ON an Fill in the following truth table.

X Y Z
0 0
0 1
1 0
1 1

3.5.2.3 The truth table should be identical to the one you got from the simulation and the one of the

basic AND gate. This ensures that basic AND could be implemented using only NOR gates.

3.5.3 Now, come up with your implementation of the basic NOT and OR gates using the universal NOR gate.
Draw the circuits in the area below, enter them into Logisim, and build them using the required IC chips.
Generate the truth table and ensure that your circuits are correct. Have your TA to check your work.

- 28 -

3.6 Implementation of Logic Functions using NOR gates:

3.6.1 Software Simulation
3.6.1.1 In order to implement any logic function using NOR gates, the function should be in the Product

of Sum (POS) representation. POS could be obtained by applying DeMorgan Theorem on the
Sum of Product (SOP) representation.

3.6.1.2 Consider the following POS function:

F = (X + Y + Z')(X + Y' + Z)(X' + Y + Z)(X' + Y' + Z')

3.6.1.3 Create a new Logisim project and construct the above function using OR-AND gates.

3.6.1.4 Use the poke tool or the Combinational Analysis window to generate the truth table of the

circuit.

- 29 -

3.6.1.5 Now, Construct the same function using only NOR gates. Draw your circuit in the area below
and have your TA to check it.

3.6.1.6 Enter the NOR-based circuit you constructed into Logisim and generate its truth table. The
generated table should be identical to that of the OR-AND implementation. This ensures that
any logic function could be implemented using NOR gates only.

3.7 Implementation of Basic Gates using NAND gate:

3.7.1 Software Simulation
3.7.1.1 Let's start by implementing the basic OR using universal NAND gates. The NAND

implementation of the basic OR gate is shown in the figure below

3.7.1.2 You could enter the NAND-based circuit into Logisim and simulate it, as you did with the

NOR-based circuit, in Section 3.5. However, let's see an another method to enter logic
expressions and implement them using universal NAND gates.

3.7.1.3 Start a new Logisim project, simply by clicking Ctrl + N.
3.7.1.4 From the Project menu, click Analyze Circuit. The Combinational Analysis window will show

up.

3.7.1.5 Ensure that you are in the Inputs tab. Then, enter X in the bottom Edit Box and click on the Add
button.

- 30 -

3.7.1.6 Variable X will be added to the upper Edit Box as an input. Similarly, add Y as another input.

3.7.1.7 Go to the Outputs tab, and add Z as an output of your circuit

3.7.1.8 Go to the Expression tab. Write the basic OR gate expression (i.e., X+Y) into the Edit Box and
click on the Enter button.

- 31 -

3.7.1.9 Click on the Build Circuit button, at the bottom of the Combinational Analysis window. The
Build Circuit window will show up. Check the box beside "Use NAND Gates Only". Then, click
OK.

3.7.1.10 Click Yes on the Confirm replace Window.

3.7.1.11 Go to Logisim main window. The NAND-implementation of the basic OR gate will be
automatically generated for you.

3.7.1.12 Ensure that the circuit is identical to the NAND implementation of the OR gate, as in point
3.7.1.1. Generate the truth table, using the poke tool or the Combinational Analysis window,
and ensure that it is identical to that of the OR gate.

- 32 -

3.7.1.13 Remember to save your work for future usage

3.7.2 Hardware Implementation
3.7.2.1 As you did in Lab (1), use the 7400 IC chip to implement the NAND-based circuit of the basic

OR gate. Remember to check the datasheet of the IC chip before connecting your wires.
3.7.2.2 Turn your power ON an Fill in the following truth table

X Y Z
0 0
0 1
1 0
1 1

3.7.2.3 The truth table should be identical to the one you got from the simulation and the one of the

basic OR gate. This ensures that basic OR could be implemented using only NAND gates.

3.7.3 Now, come up with your implementation of the basic NOT and AND gates using the universal NAND
gate. Draw the circuits in the area below, enter them into Logisim, and build them using the required IC
chips. Generate the truth table and ensure that your circuits are correct. Have your TA to check your
work.

3.8 Implementation of Logic Functions using NAND gates:

3.8.1 Software Simulation
3.8.1.1 In order to implement any logic function using NAND gates, the function should be in the Sum

of Product (SOP) representation.
3.8.1.2 Consider the following POS function:

F = X' Y' Z' + X ' Y Z + X Y' Z +X Y Z'

- 33 -

3.8.1.3 Create a new Logisim project. As you did through Subsection 3.7.1, enter the above expression

using the Combinational Analysis window. Remember to define your inputs and outputs before
writing the expression. In order to complement any Boolean variable, the character '~' should
be written before the variable. Moreover, a space should be left between any two adjacent
variables.

3.8.1.4 Click on the Build Circuit button, the Build Circuit window will appear. Click OK. The
Confirm Replace window will appear, click Yes. The logic function will be generated using
AND-OR gates.

3.8.1.5 Use the poke tool or the Combinational Analysis window to generate the truth table of the

circuit.
3.8.1.6 Now, construct the same function using only NAND gates. Draw your circuit in the area below

and have your TA to check it.

- 34 -

3.8.1.7 Now, use the Combinational Analysis window again to rebuild the circuit. However, in this
time, check the "Use NAND Gates Only" box

3.8.1.8 A NAND-based implementation of the logic function is generated in Logisim main window.
The implementation should be identical to the one you generate in point 3.8.1.6. Moreover,
check the truth table of the NAND-based circuit. It should be also identical to that of the AND-
OR representation. This ensures that any logic function could be implemented using NAND
gates only.

3.9 Questions

3.9.1 Implement a NOR gate using NAND gates; then implement a NAND gate using NOR gates.
3.9.2 Convert the POS expression in Subsection 3.6.1 into its corresponding SOP expression. Implement the

SOP expression using NAND gates only and simulate it using Logisim. Snapshot from Logisim should
be included into your report.

3.9.3 Convert the SOP expression in Subsection 3.8.1 into its corresponding POS expression. Implement the
POS expression using NOR gates only and simulate it using Logisim. Snapshot from Logisim should
be included into your report.

- 35 -

Week (8)

Tutorial 4: Implementation and simplification of Boolean functions using
K-maps

Reminder: Please, remember to print and bring the tutorial with you

- 36 -

Week (10)

Experiment 4: Combinational Logic Modules – Adders and Subtractors

4.1 Objectives:
x To describe the difference between combinational and sequential logic circuits.
x To describe the operation and the construction of binary adders and subtractors
x To design a hierarchical combinational circuit and simulate it using Logisim.

4.2 Background Information:
4.2.1 Combinational vs Sequential Circuits

Digital logic circuits can be classified into two main types: combinational and sequential. A
combinational circuit is a logic circuit that is made up of combinations of logic gates. The application
of inputs into combinational circuits generates the output instantaneously. Some examples of typical
combinational circuits are binary adders, subtractors, comparators, decoders, encoders, multiplexers,
and demultiplexers. All these digital components will be covered and discussed practically starting from
this lab.

 Inputs Combinational Circuit Outputs

A sequential circuit, on the other hand, is made up of a combinational circuit and memory elements,
called flip-flops. The outputs of the sequential circuits depend not only on the inputs but also on the
output of the memory elements. Some examples of sequential circuits are counters and shift registers.

 Inputs Outputs

4.2.2 Hierarchical Design
Hierarchical design is a design technique in which pre-designed modules are used to build larger ones.
In this lab, you will hierarchically build the full adder using half adders. The full adder will then be used
to build a larger adder-subtractor circuit. Historically, in the field of digital design, Small Scale
Integrated circuits (SSI) are used to build Medium Scale Integrated circuits (MSI), which in turn are
used to build Large Scale Integrated circuits (LSI). LSI modules are finally used to build Very Large
Scale Integrated circuits (VLSI) and Ultra Large Scale Integrated circuits (ULSI).

4.2.3 Binary Adders and Subtractors

Binary adders and subtractors are combinational circuits that can perform the operations of addition and
subtraction of binary numbers, respectively. In this lab, we will study and construct various adder and
subtractor circuits.

Combinational Circuit

Memory Elements

(Flip flops)

- 37 -

a) Half Adder (HA) Circuit
The combinational circuit that adds only two bits is called half adder.

Since there are two inputs (x and y), only four possible combinations of inputs can be applied. These
four possibilities, and their resulting Sum (S) and Carry (C) are shown in following truth table.

X Y C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

From the truth table, we could get the Boolean expression of C and S as

 C = x.y
 S = x � y = x'.y + x.y'

Accordingly, the logic circuit of the half adder is drawn below.

b) Full Adder (FA) Circuit
Full Adder (FA) is a combinational circuit that adds three bits. It generates two outputs: Sum (S) and
carry (C). Full adders allow for the addition of multi-bit numbers. A Designer just needs to provide a
way for carries to propagate between bit positions.

The truth table of the full adder is as follow.

X Y z (Cin) Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

From the truth table, we could get the Boolean expression of Cout and S as

 Cout = x' y Cin + x y' Cin + x y Cin' + x y Cin = x y + x Cin + y Cin
 S = x' y' Cin + x' y Cin' + x y' Cin' + x y Cin = x � y � Cin

Accordingly, the logic circuit of the full adder is drawn below.

Half Adder
(HA)

x

y

C

S

Full Adder
(FA)

x
y

z (Cin)

Cout

S

- 38 -

The previous figure also shows that the full adder could be built using half adders. By comparing the
full adder circuit to the half adder one, you could simply implement the full adder circuit using half
adders as follow

c) Adder-Subtractor Circuit
The subtraction of two binary numbers can be done by taking the 2’s complement of the subtrahend and
adding it to the minued. The 2’s complement can be obtained by taking the 1’s complement (i.e.,
inverting all the bits) and adding 1. For example, to perform A – B, we complement the four bits of B,
add them to their corresponding four bits of A, and add 1. The simplest way to add a binary 1 is to insert
it through the input carry.

An XOR gate could be used as an inverter if we place logic 1 at one of the inputs. This helps in getting
the 1’s complement of the subtrahend. Then, we add 1 to get the 2’s complement. The 2's complement
is finally added to the minued to get the final result of the subtraction.

The following figure shows the adder-subtractor circuit. The mode input M controls the operation. When
M=0, the circuit is an adder. Whereas, when M=1, the circuit becomes a subtractor. Although the figure
is for only four bits, this circuit can be cascaded for any number of inputs.

Note: During subtraction, if A ≥ B, the result is a positive number and the output carry is equal to 1. If
A < B, the subtraction gives a negative difference represented in the 2’s complement format and the
output carry is equal to 0. Therefore, during subtraction, the carry actually represents the inversion of
the borrow.

FA

B0 A0

S0

C0C1FA

B1 A1

S1

C2FA

B2 A2

S2

C3FA

B3 A3

S3C4

M

- 39 -

4.3 Equipment Required:
4.3.1 Software simulation: The Logisim software package is installed on every PC in the lab.
4.3.2 Hardware implementation: The following equipment are needed to perform all the procedures:

- IC Training Kit
- Jumper wire kit
- 1x 7408 QUAD 2-INPUT AND
- 1x 7432 QUAD 2-INPUT OR
- 1x 7486 QUAD 2-INPUT XOR
- 1x 74283 4-BIT FULL ADDER
- 9X Toggle switches
- 5x Carbon-film Resistors (470Ω)
- 5x LEDs

4.4 Prelab:

It is recommended that you read Section 4.2 of this lab to review how to implement adder and subtractor
circuits.

4.5 Software Simulation
4.5.1 Designing a Half Adder using Basic Gates

4.5.1.1 Login into one of the PCs in the lab using your user name and password.
4.5.1.2 Double click on the logisim-win-2.7.1 icon on the desktop of the computer. Logisim will be

launched and a new project would be created for you.
4.5.1.3 Save the project by clicking Ctrl+S. The Save window will appear. As you will do hierarchical

design in this lab, the project should take the name of the top level. Therefore, enter Adder
subtractor in the File name and click Save.

4.5.1.4 Now, let's start to design the most inner module, the Half Adder (HA). From the project menu,
click on Add Circuit.

- 40 -

4.5.1.5 The Input Circuit Name window will appear. Enter HA as the name of the circuit and click OK

4.5.1.6 A new module named HA is created for you and added to the explorer pane. The magnifying
glass over the HA indicates that it is the module that is currently viewed on the canvas.

4.5.1.7 As you did in previous labs, enter the circuit of the half adder, as shown in subsection 4.2.3.

4.5.1.8 Check the operation of the HA module, either by using the poke tool or the combinational
analysis window. The truth table should agree with the one in subsection 4.2.3.

- 41 -

4.5.1.9 Before using the half adder hierarchically in larger designs, let's adjust it appearance first. From
the project menu, click on Edit Circuit Appearance.

4.5.1.10 The module of the half adder will appear as a rectangle with two inputs and two outputs.

4.5.1.11 Enlarge the module and move input and output ports to proper locations

4.5.1.12 From the toolbar, click on the Add text button (). Then, click beside the two inputs and
name them x and y. Similarly, name the two outputs S and C, as shown below.

4.5.1.13 Finally, click on the HA module on the explorer pane. Then, in the attribute table, write HA
beside the Shared Label attribute. This would be the name of the module when used in larger
designs. Also, change the Shared Label Facing attribute to North.

- 42 -

4.5.1.14 You are completely done with the half adder. You are ready to use it to build the full adder
circuit. Before doing that, remember to save your work by clicking Ctrl+S.

4.5.2 Designing a Full Adder using Half Adders

4.5.2.1 From the Project menu, click on Add Circuit. In the Input Circuit Name window, name the new
circuit FA and click OK.

4.5.2.2 The new module is created for you in the explorer pane and an empty sheet is opened in the
canvas for it.

4.5.2.3 Now, let's build the FA using two HAs, as discussed in subsection 4.2.3
4.5.2.4 From the explorer pane, click on the HA module and insert two of them into the canvas.
4.5.2.5 From the toolbar, click on the OR gate button and insert one of it into the canvas. Change the

Number of Inputs attribute to 2.
4.5.2.6 Wire the circuit, according to the circuit diagram in subsection 4.2.3 and as shown below.

4.5.2.7 Check the operation of the FA module, either by using the poke tool or the combinational
analysis window. The truth table should agree with the one in subsection 4.2.3

- 43 -

4.5.2.8 As you did in from step 4.5.1.9 to step 4.5.1.13, edit and adjust the appearance of the FA
module.

4.5.2.9 Now, you successfully build the FA using HAs. Remember to save your work before
hierarchically use the FA to build the adder subtractor circuit.

4.5.3 Designing an Adder Subtractor using Half Adders and XORs

4.5.3.1 Now, we reach the top level module, the adder subtractor. Therefore, in the explorer pane,
double click on the main file.

4.5.3.2 Use four FAs and four XORs to build the adder subtractor circuit, as discussed in subsection
4.2.3.

- 44 -

4.5.3.3 To understand the benefit and the power of using the hierarchical design technique. Imagine
building the adder subtractor circuit using the traditional method of building the truth table and
minimizing the logic expression of the outputs. The 9-input truth table would have 512 rows
and the logic expression of the output would be very hard to minimize. In order to visualize this
complexity, use the combinational analysis window to see the truth table and the logic
expressions of the output. The following figure gives an example of the logic expression for
C4.

4.5.3.4 Use the poke tool to simulate your circuit. Apply to following values though A's and B's and
record their corresponding values of S's and C4. Interpret your results (i.e., Explain why S and
C have these values). Have you TA to check your work.

 Addition (M=0) Subtraction (M=1)
A3A2A1A0 Ten=

(1010)2
Eleven=
(1011)2

Six=
(0110)2

Ten=
(1010)2

Eleven=
(1011)2

Six=
(0110)2

B3B2B1B0 Six=
(0110)2

Fourteen
=(1110)2

Six=
(0110)2

Six=
(0110)2

Fourteen
=(1110)2

Six=
(0110)2

C4S3S2S1S0

4.5.3.5 Now, let's use another convenient method when dealing with multiple related bits, like A's, B's

and S's. A common practice in the digital logic field is to combine these bits in a wire bundle,
called the bus. So, let's see how we could create these busses in Logisim.

4.5.3.6 From the Wiring folder in the explorer pane, click on Splitter and insert it into the canvas.

4.5.3.7 The splitter you just inserted will be used to create the bus of input A. Input A has four bits,
A3A2A1A0. Therefore, in the attribute table, change the Bit Width In attribute to 4. Similarly,
change the Fan Out attribute to 4 (i.e., the splitter would split the 4-bit bus into 4 separate wires)

- 45 -

4.5.3.8 From the toolbar, insert an input pin. In the attribute table, label it as A and change its Data
Bits attribute to 4.

4.5.3.9 The input pin should have extended in the canvas to have 4 bits.

4.5.3.10 Wire the new 4-bit port, A, to the left side of the splitter.
4.5.3.11 Remove the old input pin, A0, and wire bit 0 (i.e., the top right bit) of the splitter instead of it.

- 46 -

4.5.3.12 Repeat step 4.5.3.11 to remove input pins A1, A2, and A3 and connect bit 1, bit 2, and bit 3 of
the splitter instead of them.

4.5.3.13 Finally, insert two more splitters for bus B and Bus S. For each bus, repeat steps 4.5.3.6 to
4.5.3.12. Change the Facing attribute to the S bus to West instead of East. Your final circuit
should appear as follow.

- 47 -

4.5.3.14 Use the poke tool to practice simulating your final circuit and fill in the following table again.

 Addition (M=0) Subtraction (M=1)
A3A2A1A0 Ten=

(1010)2
Eleven=
(1011)2

Six=
(0110)2

Ten=
(1010)2

Eleven=
(1011)2

Six=
(0110)2

B3B2B1B0 Six=
(0110)2

Fourteen
=(1110)2

Six=
(0110)2

Six=
(0110)2

Fourteen
=(1110)2

Six=
(0110)2

C4S3S2S1S0

4.6 Hardware Implementation

4.6.1 Use basic logic gates to build the full adder, according to the circuit diagram in subsection 4.2.3.
4.6.2 Once all connections have been done, turn on the power switch of the training kit. Apply all possible

input combinations and fill in the following truth table. Ensure that the truth table agrees with the one
in subsection 4.2.3.

x y z (Cin) Cout S
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

4.6.3 Use the full adder IC chip, 74283, and the XOR IC chip, 7486, to build the circuit diagram of the adder-
subtractor circuit, as shown in subsection 4.2.3.

4.6.4 Once all connections have been done, turn on the power switch of the training kit. Apply the following
values through A's and B's and record their corresponding values of S's and C4. Have your TA to check
your work.

 Addition (M=0) Subtraction (M=1)
A3A2A1A0 Ten=

(1010)2
Eleven=
(1011)2

Six=
(0110)2

Ten=
(1010)2

Eleven=
(1011)2

Six=
(0110)2

B3B2B1B0 Six=
(0110)2

Fourteen
=(1110)2

Six=
(0110)2

Six=
(0110)2

Fourteen
=(1110)2

Six=
(0110)2

C4S3S2S1S0

4.7 Questions

x Design a 4-bit binary decrementer circuit using four half adders. Simulate the circuit using Logisim
to ensure that it works properly. Include your design and snapshots from Logisim to your report.

- 48 -

Week (11)

Experiment 5: Combinational Logic Modules – Decoders

5.1 Objectives:

x To study the basic operation and design of decoder circuits.
x To describe the concept of active low and active high logic signals.
x To learn how to use the n-to-2n type decoders to implement a given Boolean function.
x To learn how to use 7-segment LED display along with a seven-segment decoder to create decimal digits.

5.2 Background Information:
5.2.1 Decoders

Decoder is a combinational circuit that converts certain coded inputs to another coded outputs. Famous
examples of decoders are binary n-to-2n decoders and seven-segment decoders. A binary decoder has n
inputs and a maximum of 2n outputs. As we know, an n-bit binary number provides 2n minterms. This
type of decoder produces one of these 2n minterms at the outputs, based on the input combinations. The
following table shows the block diagram and the truth table of an example 2-to-4 decoder.

From the truth table, you can observe the basic operation of n-to-2n decoders. For each input
combination, there is only one active output Di, which is an acronym of the minterm (mi). The module
has an active high Enable. Accordingly, it will not work unless the Enable is connected to logic 1.

An example of a commercial n-to-2n line decoder is the 74139 chip. This chip has two 2-to-4 decoders
with active low enable for each.

5.2.2 Implementation of Boolean Functions using Decoders
Any Boolean function can be expressed as a sum of products (or sum of minterms). A binary decoder
provides all the minterms as outputs. Therefore, any Boolean function could be implemented by ORing
its minterms (Di), which are generated by a decoder. For example, consider the full-adder circuit that
we discussed and designed in lab (4). The Boolean expressions for the outputs S and Cout (in terms of
the inputs x, y, and Cin) are:

S = x' y' Cin + x' y Cin' + x y' Cin' + x y Cin = D1 + D2 + D4 + D7
Cout = x' y Cin + x y' Cin + x y Cin' + x y Cin = D3 + D5 + D6 + D7

The above expressions can be implemented by ORING the appropriate combination of output minterms
of a 3-to-8 decoder.

5.2.3 Seven-Segment Decoder and Seven-Segment Display

Another common type of decoder is the seven-segment decoder. This decoder is used along with seven-
segment LED display to create a decimal or hexadecimal digits. The seven-segment LED display is
commonly used as a numerical display in multimeters, calculators …etc. It contains seven independent
LEDs arranged as shown in the following figure.

- 49 -

There are two main types of seven-segment LED displays: the common cathode (CC) and the common
anode (CA). In the CC type, the cathodes of all segments (i.e., LEDs) are internally joined in a single
node. In contrary, in the CA type, the anodes are internally joined together in a single node. The other
sides of LEDs (a, b, c …etc.) are left for the designer to connect them externally. CC display is said to
be active high, as a connection of logic 1 causes the designated segment to be ON. On the other side, a
connection of logic 0 to a segment in the active low CA display causes that segment to turn ON. The
following figure shows the internal connection of both types.

All decimal or hexadecimal numbers can be displayed by controlling the state of the appropriate
segments ON or OFF. This can be done using a seven-segment decoder. A seven-segment decoder
accepts four binary inputs. According to these inputs, it provides seven outputs that determines which
segments of the seven-segment LED display should be ON in order to create the corresponding decimal
or hexadecimal digits.

A widely used commercial common anode 7-segment decoder is the 7447 chip. This chip changes a
BCD number to its corresponding CA seven-segment code. The generated seven-segment code could
be used for displaying numbers from 0 to 9, based on the corresponding input BCD number. The circuit
that displays any input BCD number on a common anode 7-segment display is shown in the following
figure. Similar connection could be used for common cathode display. However, the 7447 decoder
should be replaced by the 7448 one.

5.3 Equipment Required:
5.3.1 Software simulation: The Logisim software package is installed on every PC in the lab.

- 50 -

5.3.2 Hardware implementation: The following equipment are needed to perform all the procedures:
- IC Training Kit
- Jumper wire kit
- 1x 7447 BCD-TO-SEVEN SEGMENT DECODERS/DRIVERS
- 1x Common Anode (CA) Seven-Segment LED Display
- 4x Toggle Switches
- 7x Carbon-film Resistors (470Ω)

5.4 Prelab:

It is recommended that you read Section 5.2 of this lab in order to review binary decoder, 7-segment decoder,
and 7-segment display.

5.5 Software Simulation
5.5.1 Implementation of Boolean Functions using Decoders

5.5.1.1 Consider the following Boolean function. It is required to implement it using 3x8 decoder.

F (A, B, C) = A' B' C + A B' C' + A B C

5.5.1.2 Draw the circuit that implements the Boolean function in the area below. If necessary, have

your TA to check your implementation.

5.5.1.3 Start a new Logisim project.
5.5.1.4 From the Plexers folder, select a decoder and insert in onto the canvas
5.5.1.5 In the attribute table, change the Select Bits attribute to 3 and the Include Enable to No

- 51 -

5.5.1.6 Insert three input pins and name them A, B, and C, respectively.
5.5.1.7 From the Wiring folder, select a Splitter and insert it onto the canvas.
5.5.1.8 As you did in lab (4), use the splitter to collect the three inputs A, B, and C in a bus. Ensure

that inputs A, B, and C are connected to bits 2, 1, and 0 of the bus, respectively. Connect this
bus to the input of the decoder.

5.5.1.9 The decoder has 8 outputs. According to the circuit you draw in point 5.5.1.2, implement the
Boolean function using proper decoder outputs. Use the poke tool to check the circuit for proper
operation. Have your TA to check your work.

5.5.2 Seven-Segment Decoder and Seven-Segment Display

5.5.2.1 Start a new Logisim project. Save the project with the name "7 segment display"
5.5.2.2 The 7-segment decoder is not a part of the built in Logisim modules. Therefore, we have to add

it to Logisim first. The 7 segment decoder is already implemented for you. You could find it
in the desktop under the name "7 segment decoder"

5.5.2.3 From the Project menu, select Load library/Logisim Library

5.5.2.4 Browse to the file "7 segment decoder" on the desktop, select it, and click Open. You will see
a new folder added to your explorer pane named "7 segment decoder"

- 52 -

5.5.2.5 From the "7 segment decoder" folder, select main and insert it into the canvas
5.5.2.6 From the Input/Output folder, select "7-segment display" and insert it into the canvas.
5.5.2.7 Insert 4 input pins to the canvas, to the left of the decoder, and name them A, B, C, and D,

respectively.
5.5.2.8 Connect A, B, C, and D to I3, I2, I1, and I0 of the decoder, respectively. To know the name of

any decoder input, stop the mouse over that input. A hint box will appear with the name of that
input. For example, the following figure shows the hint of decoder input I0.

5.5.2.9 The 7 segment display has 8 inputs corresponding to the 7 segments, a to g, and the dot in the
bottom right. If you start from the top right and go counter-clockwise, the order of these inputs
is: b, a, f, g, e, d, c, and the dot. You could verify that yourself by connecting every input to
logic 1 and see which segment will be ON.

5.5.2.10 Connect every output of the decoder to its corresponding input of the display. Leave the input
of the dot unconnected.

5.5.2.11 Use the poke tool to verify the operation of the circuit. Enter different BCD numbers and
monitor the corresponding decimal digits on the 7 segment display. Fill in the following table
(i.e., color the segments that are ON)

A B C D A B C D
0 0 0 0

0 1 0 1

0 0 0 1

0 1 1 0

0 0 1 0

0 1 1 1

- 53 -

0 0 1 1

1 0 0 0

0 1 0 0

1 0 0 1

5.6 Hardware Implementation

5.6.1 Construct the circuit that shows BCD numbers on a 7-segment display, as shown in subsection 5.2.3.
5.6.2 Verify the operation of the circuit. Enter different BCD numbers and monitor the corresponding decimal

digits on the 7-segment display. Fill in the following table (i.e., color the segments that are ON). Have
your TA to check your work.

A B C D A B C D
0 0 0 0

0 1 0 1

0 0 0 1

0 1 1 0

0 0 1 0

0 1 1 1

0 0 1 1

1 0 0 0

0 1 0 0

1 0 0 1

5.7 Questions
5.7.1 Implement the following Boolean function using 3x8 decoder. Draw the circuit diagram and simulate

your design using Logisim to ensure its proper operation. Snapshots from Logisim should be included
in your report.

F(A, B, C) = A' B' C' + A B' C + A B'

- 54 -

Week (12)

Experiment 6: Combinational Logic Modules – Comparators and
Multiplexers

6.1 Objectives:
x To understand the function, design, and operation of the digital comparator.
x To learn practically how to compare two binary numbers using the 7485 4-bit magnitude comparator chip.
x To understand the function and operation of multiplexers
x To learn how to use multiplexers to build any Boolean expression

6.2 Background Information:
6.2.1 Single-bit Comparator

Digital Comparator "also called Magnitude Comparator" is a combinational circuit that compares two
inputs binary numbers (A and B) and generates outputs to indicate whether the two inputs are equal or
which input is greater than the other. Accordingly, the circuit has three outputs to indicate whether A=B,
A>B, or A<B. At any given input quantities, only one output should be equal to logic '1'. The following
figure shows a block diagram of the magnitude comparator.

The truth table for the single bit comparator is as shown below:

A B E (A=B) L (A<B) G (A>B)
0 0 1 0 0
0 1 0 1 0
1 0 0 0 1
1 1 1 0 0

From the truth table, we observe that:

 E = A ʘ B
 L = A'.B
 G = A.B'

We can construct the logic circuit of the single-bit magnitude comparator as shown below:

6.2.2 n-bit Comparators
In order to understand how to compare numbers of more than one bit, consider two 4-bit unsigned
numbers A and B.
 A = A3 A2 A1 A0 B = B3 B2 B1 B0

Digital
Comparator

A

B

E
L
G

- 55 -

The two numbers are equal if all pairs of corresponding bits are equal. i.e., A3 = B3, A2 = B2, A1 = B1
and A0 = B0. To check for this equality, we XNOR each pair of corresponding bits, as we did in a single-
bit comparator.

E3 = A3 ʘ B3
E2 = A2 ʘ B2
E1 = A1 ʘ B1
E0 = A0 ʘ B0

So, for A = B, E3, E2, E1 and E0 altogether should be true. Thus,
 E (A = B) = E3 E2 E1 E0

To determine if A > B or A < B, we check the relative magnitudes of pairs of digits starting from the
most significant position. If the pair of digits of the same weight is equal, we compare the next lower
significant pair of digits, until a pair of unequal digits is found. If the corresponding digit of A is 1 and
that of B is 0, we conclude that A > B; but If the corresponding digit of A is 0 and that of B is 1, we
conclude that A < B. This comparison can be expressed as Boolean functions:

G (A > B) = A3 B3' + E3 A2 B2' + E3 E2 A1 B1' + E3 E2 E1 A0 B0'
L (A < B) = A3' B3 + E3 A2' B2 + E3 E2 A1' B1 + E3 E2 E1 A0' B0

The logic circuit of four-bit magnitude comparator can be constructed using the various logic gates,
based on to the Boolean expressions we have obtained. Furthermore, the comparison algorithm has a
regular pattern, we can follow the same procedure to obtain a magnitude comparator circuit for binary
numbers with more than four bits.

Commercially, the 7485 chip is a 4-bit magnitude comparator. This chip provides three decoded outputs
that indicates which of the two 4-bit inputs is larger than the other or if both numbers are equal. It also
includes three cascade inputs to allow two or more chips to compare larger numbers of eight or more
bits.

6.2.3 Multiplexers
Multiplexers (MUX), sometimes called data selector, is a combinational logic circuit that selects one of
2n inputs and routes it to the output. It has 2n inputs, only one output, and n select lines (or simply called
selectors) that identify which input will be provided to the output. A multiplexer might also has a strobe
(sometimes called an enable) input that enables or disables the operation of the whole module. The
following figure shows the block diagram and the truth table of a 4x1 MUX.

Smaller multiplexers could be used to build larger ones. Select lines should be connected properly to
ensure the correct routing of a certain input to the output. The following figure shows how 4x1 and 2x1
MUXs could be used to build an 8x1 MUX. Note that the strobe of the multiplexers are not drawn,
which means that the MUXs are enabled forever.

- 56 -

6.2.4 Implementation of Boolean Functions using Multiplexers
While MUXs are primarily thought of as data selectors, they can also be used to implement Boolean
functions. Boolean functions of x variables could be implemented using a MUX with 2x inputs. Consider
a 4-variable Boolean function described by the truth table in the following figure. The function could
be implemented by a 16x1 MUX. Variables A, B, C, and D should be connected to the select lines S3,
S2, S1, and S0, respectively. Thereafter, logic 1 or logic 0 should be connected to the MUX inputs,
according to the truth table. The following figure shows the implementation of the Boolean function
using a 16x1 MUX.

Furthermore, we could implement the above Boolean function using an 8x1 MUX. Three of the
variables should be connected to the select lines. According to the truth table, MUX inputs would be
connected by logic 0, logic 1, the fourth variable, or the complement of the fourth variable. Assume that
we connect A, B, and C to the select lines. Then, the truth table should be partitioned into sections that
have the same value of A, B, and C, as shown in the following figure. The value of the Boolean function
(F) for that section indicates whether its corresponding MUX input should be connected to logic 0 "F is
always 0", logic 1 "F is always 1", D "F is similar to D", or D' " F is the complement of D". The following
figure shows the implementation of the Boolean function using 8x1 MUX.

- 57 -

6.3 Equipment Required:

6.3.1 Software simulation: The Logisim software package is installed on every PC in the lab.
6.3.2 Hardware implementation: The following equipment are needed to perform all the procedures:

- IC Training Kit
- Jumper wire kit
- 1x 7404 Hex INVERTERS
- 1x 7408 QUAD 2-INPUT AND
- 1x 74266 QUAD 2-INPUT EXCLUSIVE-NOR GATES
- 1x 7485 4-BIT MAGNITUDE COMPARATORS
- 1x 74153 DUAL 4-To-1 LINE DATA SELECTORS/MULTIPLEXERS
- 1x 74151 8-To-1 LINE DATA SELECTOR/MULTIPLEXER
- 8x Toggle switches
- 3x Carbon-film Resistors (470Ω)
- 3x LEDs

6.4 Prelab:

It is recommended that you read Section 6.2 of this lab in order to review digital comparators and multiplexers.

6.5 Software Simulation
6.5.1 Single-bit Comparator

6.5.1.1 Launch Logisim and enter the single-bit comparator circuit, as shown in subsection 6.2.1.
Instead of using inverters, you could simply invert inputs of AND gates using the Negate
attribute from the attribute table, as shown below for the upper AND gate.

- 58 -

6.5.1.2 Check the operation of the comparator either by using the poke tool or the combinational
analysis window. The truth table should agree with the one in subsection 6.2.1.

6.5.2 n-bit Comparator

6.5.2.1 Start a new Logisim project by clicking Ctrl+N
6.5.2.2 From the arithmetic folder in the explorer pane, select Comparator and insert it onto the canvas.

Change its attributes in the attribute table such that Data Bits = 4 and Numeric Type = Unsigned.
This makes it to be a 4-bit unsigned magnitude comparator.

6.5.2.3 Connect two input ports and label them A and B. In the attribute table, change their Data Bits
to 4. Furthermore, insert three 1-bit output ports and label them G, E, and L.

6.5.2.4 Connect input port A, to the upper input of the comparator and input B to the lower one.
6.5.2.5 The Comparator module has three outputs labelled >, =, and <. Connect these comparator

outputs to ports G, E, and L, respectively.
6.5.2.6 Use the poke tool to enter different numbers to A and B in order to check the operation of the

comparator. Have your TA to check your work.

- 59 -

6.5.3 Multiplexers
6.5.3.1 Start a new Logisim project by clicking Ctrl+N
6.5.3.2 From the Plexers folder in the explorer pane, select multiplexer and insert it three times onto

the canvas.

6.5.3.3 In the attribute tables of the two multiplexers on the left, change the Select Bits to 2 (i.e., 4x1
MUX) and the Include Enable to "No" (i.e., no strobe and the MUX is always working). For
the MUX into the left, only change its Include Enable attribute to "No".

6.5.3.4 Now, construct an 8x1 MUX using these three MUXs, according to the figure in subsection
6.2.3. Use a splitter from the Wiring folder, as you did in lab (4), to combine the two select
lines S0 and S1 into a 2-bit bus that would be connected to the selectors of the two left MUXs.

- 60 -

6.5.3.5 Use the poke tool to enter different inputs through I0 to I7 and S0 to S2 in order to check the
operation of the circuit. For example, clear all the select lines to 0, change I0 between 0 and 1
and monitor the output. The output should follow the changes in the input. Repeat for other
inputs and have your TA to check your work.

6.5.4 Implementation of Boolean Functions using Multiplexers

6.5.4.1 Consider the following Boolean function. It is required to implement it using 8x1 MUX and
4x1 MUX

F(x, y, z) = x' y' z' + x' y z' + x y' z + x y z

6.5.4.2 For the 8x1 MUX implementation, construct the truth table and draw the implemented circuit

in the area below. If necessary, have your TA to check your implementation.

6.5.4.3 Enter the circuit you designed into Logisim and ensure its correct operation. Use Power and
Ground from the Wiring folder to enter logic 1 and logic 0, respectively.

6.5.4.4 For the 4x1 MUX implementation, construct the truth table and draw the implemented circuit
in the area below. Partition the truth table into sections based on identical values of x and y. If
necessary have your TA to check your work.

- 61 -

6.5.4.5 Enter the circuit you designed into Logisim and ensure its correct operation.

6.6 Hardware Implementation
6.6.1 Single-bit Comparator

6.6.1.1 Use basic logic gates to build the single-bit comparator, according to the circuit diagram in
subsection 6.2.1

6.6.1.2 Once all connections have been done, turn on the power switch of the training kit. Use different
sets of inputs for A and B to check each of the outputs L, E, and G. Have your TA to check
your work.

6.6.2 n-bit Comparator
6.6.2.1 Construct a 4-bit magnitude comparator circuit using switches, LEDs , and IC chip 7485. Verify

the function of the circuit by applying different sets of inputs and monitoring the outputs. Have
your TA to check your work.

6.6.3 Implementation of Boolean Function using Multiplexers

6.6.3.1 Construct the circuits you designed in points 6.5.4.2 and 6.5.4.4 and ensure that they correctly
implement the Boolean function. Have your TA to check your work.

6.7 Questions

6.7.1 Assume that you already have a 4-bit subtractor. Use it to design a 4-bit magnitude comparator. Draw
the block diagram of your circuit and explain how it works.

6.7.2 Construct a 16x1 MUX using 8x1 and 4x1 MUXs. Draw the block diagram of the circuit and clearly
highlight how the select lines are connected.

6.7.3 Implement the following Boolean function using 8x1 and 4x1 MUXs. For each implementation,
construct the truth table and draw the circuit diagram

F(A, B, C) = A' B C' + A' B C + A B' C + A B C'

- 62 -

Week (13)

Experiment 7: Exam on Combinational Logic Modules – Design of an
Arithmetic Circuit

7.1 Objectives:
x To apply the combinational logic design techniques, covered throughout the course and the labs, in building

a simple combinational module.
x To design, simulate, construct, and test an arithmetic circuit that has four operations: Add, Subtract.

Decrement, and Increment

7.2 Introduction:
In this lab, you are required to use the combinational logic knowledge that you acquire in previous labs to build
a simple new combinational module. The module that you are to build is a 4-operation arithmetic circuit. The
arithmetic circuit has two 4-bit inputs (A and B) and one 4-bit output (R). The output (R) should be further
displayed on a 7-segment LED display. Accordingly, it passes through a common-anode BCD to 7-segment
decoder/driver to a common-anode 7-segment display. For the sake of simplicity, assume that the output of the
arithmetic circuit will never exceed 9; and hence, there is no need to convert the binary output of the circuit to
BCD. Moreover, ignore the generation of a carry or a borrow. According to input mode bits: m0 and m1, the
arithmetic circuit is to do one of four arithmetic operations: Add, Subtract, Decrement, and Increment. The
following table describe the operation of the circuit.

Arithmetic Circuit Operations

(A=A3 A2 A1 A0 and B=B3 B2 B1 B0 are 4-bit inputs; whereas, R=R3 R2 R1 R0 is the output)

Mode Bits Operation Output

m1 m0

0 0 Add A and B R = A + B

0 1 Subtract B from A R = A – B = A + B' + 1

1 0 Decrement A R = A – 1 (Hint, Add the 2's complement of 1 to A)

1 1 Increment A R = A + 1

Throughout the lab, you are required to design the arithmetic circuit using the IC chips, listed in Section 7.3.
Thereafter, the circuit you designed should be simulated using Logisim, constructed using IC chips, and tested
for proper operation. The following block diagram shows the interface of the circuit.

Two mode bits – m1 and m0

Input 2 - B (4bits)
4-operation

Arithmetic Circuit

Input 1 - A (4bits)

Output - R (4bits)

7 Segment
Decoder/Driver

7 Segment Display

- 63 -

7.3 Equipment Required:
7.3.1 Software simulation: The Logisim software package is installed on every PC in the lab.
7.3.2 Hardware implementation: The following modules are only allowed to design and implement your

circuit:
- IC Training Kit
- Jumper wire kit
- 1x 7404 HEX INVERTERs
- 1x 74153 DUAL 4-To-1 LINE DATA SELECTORS/MULTIPLEXERS
- 1x 74283 4-BIT FULL ADDER
- 1x 7447 BCD-TO-SEVEN SEGMENT DECODER/DRIVER
- 1x Common-Anode Seven-Segment LED Display
- 2x 4-bit DIP switches (For A and B)
- 2x Toggle Switches (For m1 and m0)

7.4 Procedure

7.4.1 Design the arithmetic circuit using the modules listed in Section 7.3. Draw a block diagram for the
circuit in the following area. Have your TA to check you design.

7.4.2 Enter the designed circuit onto Logisim and simulate it to ensure that it works as prescribed. Have your
TA to check your work.

7.4.3 Construct the designed circuit using IC chips and test it to ensure that it works as prescribed. Have your
TA to check your work.

7.5 Questions

7.5.1 Assume that the output of the arithmetic circuit, you designed in this lab, could exceed the value of 9.
Design a module that converts the binary output (R) to BCD. Insert this module before the BCD
decoder/driver. Carry out any other required modifications and draw the new block diagram.

7.5.2 What modifications should be done to the arithmetic circuit you designed in this lab to be able to handle
8-bit inputs (both A and B)

- 64 -

Week (14)

Tutorial (5): Sequential logic, flip flops, FSM analysis and design
Reminder: Please, remember to print and bring the tutorial with you

- 65 -

Week (15)
Experiment 8: Latches, Flip Flops and Counters

8.1 Objectives

x To learn the design and operation of different types of latches and flip flops
x To convert one type of latches/flip flops to another
x To understand the operation of asynchronous ripple binary counters
x To learn how to design an n-bit counter using J-K flips flops

8.2 Background Information
Sequential circuits are logic circuits with feedback. Latches and Flip-flops are the most elementary sequential
circuits. Latches and flip flops always have two outputs: Q and its complementary value Q'. The output of
sequential circuits depends not only on the present value of the inputs but also on the state of the circuit. The
state of the circuit is indicated by the content of its memory elements (i.e., its flip flops). Sequential logic
circuits often require a timing generator (a clock) for their operation. The clock synchronizes the operation of
the circuit and indicates when the output of the sequential circuit should be changed. In the literature, there are
four types of latches as well as flip flops. These are the S-R, D, J-K, and T latches/flip flops. In this lab, you
will experience some of these lathes/flip flops. Furthermore, you will use the J-K flip flop to build a larger
sequential circuit: a 4-bit ripple counter.

8.2.1 S-R latch

An S-R latch consists of two cross-coupled NOR gates, as shown below. The truth table and the block
diagram of the latch are also shown. An S-R latch can also be design using cross-coupled NAND gates.
The S-R latch could be envisioned as a basic 1-bit memory cell. The user of an S-R latch could store
binary 1 (which is known as SET), store binary 0 (which is known as RESET), or keep the stored value
as it is (which is known as HOLD). The following truth table shows the values of S and R to hold, set,
or reset the latch. The outputs of the latch are the stored bit (Q) and its complement (Q'). Accordingly,
having S and R high simultaneously is not allowed. In the truth table, Q means the value (also known
as the state) of the latch before changing S and R; whereas, Q+ means he value (or the state) of the latch
after changing S and R.

8.2.2 Gated S-R latch
A gated S-R latch (also called a latch with enable or control) has an additional gate input. The gate (or
the enable) input works as an enable for the operation of the latch. It allows the designer to change the
state of the latch at specific time. This, in turn, allows for the synchronization between modules in large
digital systems. The following figure shows a NAND-based gated S-R latch with its truth table. In this
gated latch, S and R inputs are effective only when the enable (CK or EN) is high. When the enable
goes low, irrespective of S and R, the state of the latch is hold and cannot change until the enable goes
high again.

S R Q+ Q'+ Action
0 0 Q Q' Hold the stored value
0 1 0 1 Reset "store binary 0"
1 0 1 0 Set "store binary 1"
1 1 0 0 Not allowed

CK (or EN) S R Q+ Q'+ Action
0 X X Q Q' Hold the stored value
1 0 0 Q Q' Hold the stored value
1 0 1 0 1 Reset "store binary 0"
1 1 0 1 0 Set "store binary 1"
1 1 1 1 1 Not allowed

- 66 -

8.2.3 Conversion of an S-R latch to D latch
A D latch combines the S and R inputs of an S-R latch into one input by adding an inverter. When the
enable is high, the output (Q) follows the D input, and when the enable goes low, the state is latched.
The following figure shows the schematic of the D latch with its block diagram and truth table.

8.2.4 Conversion of an S-R latch to J-K latch
The J-K latch overcome the problem of the "not-allowed" state in the S-R latch. Beside the enable, it
has two inputs J and K, which are corresponding to S and R, respectively. When both J and K are active
simultaneously, the J-K latch will toggle (i.e., complement) its previous state of Q. The following figure
shows the schematic of the J-K latch with its truth table.

8.2.5 Conversion of a J-K latch to T latch
The J-K latch could be converted into a T latch by connecting J and K inputs together. The T latch either
holds its current value or toggles it. It is very useful in building different types of counters. The following
figure shows the schematic of the T latch with its truth table.

8.2.6 Master Slave Flip Flops
Latches are said to be level-sensitive. As long as the enable input is active, the output could continuously
change. Therefore, if a designer wants the output to change at a certain moment, the enable should be
activated for a very short period of time, corresponding to this moment. The generation of this narrow
pulse is not easy. On the other hand, flip flops are edge-sensitive. Their output changes only at the edge
of the clock. Otherwise, the flip flop holds its current value till an edge transition occurs at the clock
again. The flip flop could be designed to be rising edge sensitive or falling edge sensitive. Using flip
flops, the designer could decide the moments at which the states would change by only adjusting the
clock frequency (i.e., when the edges occur). There is no need to have a sophisticated pulse generator,
as in the case of latches. The following figure shows an example circuit of the D flip flop with its block
diagram and truth table. In the block diagram, notice the small triangle of the clock input. This indicates
that the module is an edge-sensitive flip flop rather than a level-sensitive latch. The small circle beside
the triangle indicates that the flip flop is negative-edge sensitive. i.e., the output would change only on
the falling edge of the clock, as shown in the truth table.

C (or EN) D Q+ Q'+ Action
0 X Q Q' Hold the stored value
1 0 0 1 Reset "store binary 0"
1 1 1 0 Set "store binary 1"

C (or EN) J K Q+ Q'+ Action
0 X X Q Q' Hold the stored value
1 0 0 Q Q' Hold the stored value
1 0 1 0 1 Reset "store binary 0"
1 1 0 1 0 Set "store binary 1"
1 1 1 Q' Q Toggle the stored value

C (or EN) T Q+ Q'+ Action
0 X Q Q' Hold the stored value
1 0 Q Q' Hold the stored value
1 1 Q' Q Toggle the stored value

- 67 -

Similar to the D flip flop, there are S-R, J-K, and T flip flops. The difference between these flip flops
and their corresponding latches is that they are edge-sensitive rather than level-sensitive. The following
figure shows an example block diagram of the J-K flip flop. The small triangles indicate that these are
flip flops rather than latches. Moreover, the small bubble beside the triangle indicates that this flip flop
is falling (negative) edge sensitive, rather than a rising (positive) edge sensitive.

8.2.7 Asynchronous Ripple Counters

Counters are sequential circuits that increment "or decrement" their outputs every clock pulse. Flip flops
are the building block of counters. In an asynchronous ripple counter, T or J-K flip flops are usually
used. The inputs of flip flops (J, K, or T) are connected to logic 1 in order to toggle with every clock
pulse. The first (i.e., the lowest significant) flip flop is triggered from the external clock. Thereafter,
each flip flop is triggered by the Q or the Q' outputs of its previous flip flop. Based on this connection,
as well as whether the flip flop is rising-edge or falling-edge sensitive, the counter could count up or
down. The following figure shows an example of 3-bit up counter using J-K flip flops. For the counter
to count down, either the connection is done from Q instead of Q', or falling-edge sensitive flip flops
could be used.

8.3 Equipment Required
8.3.1 Software simulation: The Logisim software package is installed on every PC in the lab.
8.3.2 Hardware implementation: The following equipment are needed to perform all the procedures:

- IC Training Kit
- Jumper wire kit
- 2x 7473 DUAL J-K FLIP FLOPS WITH CLEAR

Clock D Q+ Q'+ Action
No edge X Q Q' Hold the stored value

↓ 0 0 1 Reset "store binary 0"
↓ 1 0 1 Set "store binary 1"

Clock (C) J K Q+ Q'+ Action
No edge X X Q Q' Hold the stored value

↓ or ↑ 0 0 Q Q' Hold the stored value
↓ or ↑ 0 1 0 1 Reset "store binary 0"
↓ or ↑ 1 0 1 0 Set "store binary 1"
↓ or ↑ 1 1 Q' Q Toggle the stored value

- 68 -

- 1x 7400 QUAD NAND GATES
- 3x Toggle Switches
- 3x Carbon-film Resistors (470Ω)
- 3x LEDs

8.4 Prelab

It is recommended that you read Section 8.2 of this lab in order to review latches, flip flops and counters.

8.5 Software Simulation
8.5.1 S-R Latch

8.5.1.1 Start a new Logisim project
8.5.1.2 Construct the S-R latch according to the circuit in subsection 8.2.1.
8.5.1.3 Use the poke tool to simulate the latch. Change the values of S and R according to the following

table and fill in the values of Q and Q'. In the action column, write whether the latch is set, reset,
hold, or not allowed. Ensure that the operation is as prescribed in subsection 8.2.1.

8.5.2 Gated S-R Latch

8.5.2.1 Start a new Logisim project
8.5.2.2 Construct the gated S-R latch according to the circuit in subsection 8.2.2.
8.5.2.3 Use the poke tool to simulate the latch. Change the values of CK, S, and R according to the

following table and fill in the values of Q and Q'. In the action column, write whether the latch
is set, reset, hold, or not allowed. Ensure that the operation is as prescribed in subsection 8.2.2.

8.5.2.4 Save your work as it will be used later in this lab

8.5.3 Conversion of an S-R latch to D Latch
8.5.3.1 Convert the S-R latch you build in subsection 8.5.2 to a D latch according to the circuit in

subsection 8.2.3
8.5.3.2 Use the poke tool to simulate the D latch. Change the values of C and D according to the

following table and fill in the values of Q and Q'. In the action column, write whether the latch
is set, reset, or hold. Ensure that the operation is as prescribed in subsection 8.2.3.

S R Q+ Q'+ Action
1 0
0 0
0 1
0 0
1 0
1 1

CK (or EN) S R Q+ Q'+ Action
1 1 0
1 0 0
1 0 1
1 0 0
1 1 1
1 1 0
0 0 0
0 0 1
0 1 0
0 1 1

- 69 -

8.5.3.3 Save you D
latch as you will use it

in the following
subsection to build the

D flip flop.

8.5.4 Master Slave D Flip flop

8.5.4.1 Start a new logisim project.
8.5.4.2 From the project menu, select Load Library and click on Logisim Library. Browse to your D

latch and load it into the project.
8.5.4.3 Construct the master slave D flip flop according to the circuit in subsection 8.2.6.
8.5.4.4 Use the poke tool to simulate the flip flop. Change the values of the clock and D, according to

the following table and fill in the values of Q and Q'. In the action column, write whether the
flip flop is set, reset or hold. Ensure that the operation is as prescribed in subsection 8.2.6.

8.5.5 Master Slave J-K Flip flop

8.5.5.1 Start a new Logisim project
8.5.5.2 From the Memory folder in the explorer pane, insert a J-K Flip-Flop. Insert one output pin for

Q and three input pins for J, K, and clock
8.5.5.3 From the Wiring folder in the explorer pane, insert Power and Ground. Connect the enable

input of the flip flop (named en) to the Power. Connect the Preset (named 1) and the Clear
(named 0) inputs of the flip flop to the ground.

8.5.5.4 Use the poke tool to simulate the J-K flip flop. Ensure that the operation is as prescribed in
subsection 8.2.6.

8.5.6 Asynchronous ripple counter
8.5.6.1 Start a new Logisim project
8.5.6.2 From the Memory folder in the explorer pane, insert 3 J-K Flip-Flops and use them to construct

the 3-bit asynchronous counter circuit, as shown in subsection 8.2.7.

C (or EN) D Q+ Q'+ Action
1 1
1 0
1 1
0 1
0 0
0 1

Clock D Q+ Q'+ Action
1 1
1 0
1 1

0 "-ve edge" 1
0 0
0 1
0 0
1 0

0 "-ve edge" 0
0 1

- 70 -

8.5.6.3 Use the poke tool to simulate the counter. Ensure that the count is incremented with every rising
edge of the clock and fill in the following table. Notice that the order of the outputs in the above
figure are the reverse to those in the table. For example, Q2 column is the output of the rightmost
flip flop in the above figure.

Clock Q2 Q1 Q0 Decimal value

 0 0 0 0
↑ (0 Æ 1)
↑ (0 Æ 1)
↑ (0 Æ 1)
↑ (0 Æ 1)
↑ (0 Æ 1)
↑ (0 Æ 1)
↑ (0 Æ 1)
↑ (0 Æ 1)
↑ (0 Æ 1)

8.5.6.4 Instead of using an input pin for the clock, let's investigate a simpler method.
8.5.6.5 Remove the input pin for the clock. Instead, insert Clock from the Wiring folder of the explorer

pane.
8.5.6.6 From the Simulate menu, select Tick Frequency and click on 1Hz.

8.5.6.7 From the Simulate menu, click on Ticks Enabled. Notice that the counter is counting up every
second.

- 71 -

8.6 Hardware Implementation

8.6.1 Gated S-R Latch
8.6.1.1 Construct the gated S-R latch, according to the circuit in subsection 8.2.2.
8.6.1.2 Change the values of CK, S, and R according to the following table and fill in the values of Q

and Q'. In the action column, write whether the latch is set, reset, hold, or not allowed. Ensure
that the operation is as prescribed in subsection 8.2.2.

8.6.2 Asynchronous Ripple Counter

8.6.2.1 Construct the 3-bit asynchronous counter circuit, as shown in subsection 8.2.7. J, K, and CLR
of all the flip flops should be connected to Vcc. Use a switch (or a push button) for the clock.
Use LEDs for the three output Q2 to Q0.

8.6.2.2 Use the clock switch to trigger your counter. With every pulse, ensure that the counter output
is incremented by 1. Have your TA to check your result.

8.7 Questions

8.7.1 Construct a J-K flip flop using a D flip flop. Draw your circuit and simulate it using logisim to ensure
its proper operation. Snapshots from Logisim should be included in your report.

8.7.2 Design a 4-bit ripple down counter using T flip flops. Your counter should count down from 15 to 0
then underflow back to 15. Draw your circuit and simulate it using logisim to ensure its proper operation.
Snapshots from Logisim should be included in your report.

8.7.3 Design a mod-5 up counter. The counter should count up from 0 to 4. Thereafter, the counter should go
back to 0. Draw your circuit and simulate it using logisim to ensure its proper operation. Snapshots from
Logisim should be included in your report.

CK S R Q+ Q'+ Action
1 1 0
1 0 0
1 0 1
1 0 0
1 1 1
1 1 0
0 0 0
0 0 1
0 1 0
0 1 1

Worksheet 1: Page 1 of 2

Experiment 1 Worksheet: Introduction to Logic Gates

Student Name: ___ Student ID: ____________

Circuit Truth Table Equation

Z = X.Y

Circuit Truth Table Equation

Z = X+Y

Circuit Truth Table Equation

Z = X.Y

Circuit Truth Table Equation

Z = X+Y

Circuit Truth Table Equation

Z = X Y

Circuit Truth Table Equation

 __

 Z = X

Worksheet 1: Page 2 of 2

Data Sheets

Worksheet 2: Page 1 of 2

Experiment 2 Worksheet: Implementation of Boolean Functions

Student Name: ___ Student ID: ____________

Part I:

(a) Circuit Diagram

(b) Truth Table

(c) Equation
Z = X’.Y

Part II:
(a) Equation

F = X’Y’Z + X’YZ + XY’
(b) Truth Table

(c) Circuit Diagram

Worksheet 2: Page 2 of 2

Part III:

(a) Equation
F = A’B’C’ + A’B’C + AB’C

(b) Truth Table

(c) Circuit Diagram

Worksheet 3: Page 1 of 2

Experiment 3 Worksheet: NOR and NAND Implementation

Student Name: ___ Student ID: ____________

NOR Gate is Equivalent to Bubbled AND Gate

NAND Gate is Equivalent to Bubbled OR Gate

Part I: Implementation of AND gate using NOR gate.

Part II: Implementation of OR gate using NAND gate.

Worksheet 3: Page 2 of 2

Part III: Implementation the following function using NAND gates.

F = X’Y’Z’ + X’YZ + XY’Z + XYZ’

Draw circuit diagram and make truth table to verify the results using training board.

X Y Z X’ Y’ Z’
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Worksheet 4: Page 1 of 2

Experiment 4 Worksheet: Half Adder and Full Adder

Student Name: ___ Student ID: ____________

Half Adder:

C = X.Y

S = X Y = (X’.Y) + (X.Y’)

X Y C S
0 0
0 1
1 0
1 1

Worksheet 4: Page 2 of 2

Full Adder:

C =

S =

Z (Cin) X Y C S
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Worksheet 3: Page 1 of 2

Experiment 5 Worksheet: Decoders

Student Name: ___ Student ID: ____________

G1 G2A G2B C B A Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

L X X X X X

X H X X X X

X X H X X X

H L L L L L

H L L L L H

H L L L H L

H L L L H H

H L L H L L

H L L H L H

H L L H H L

H L L H H H

Worksheet 3: Page 2 of 2

G1 B1 A1 1Y0 1Y1 1Y2 1Y3
H X X

L L L

L L H

L H L
L H H

G2 B2 A2 2Y0 2Y1 2Y2 2Y3
H X X

L L L

L L H

L H L
L H H

Worksheet 6: Page 1 of 2

Experiment 6 Worksheet: Comparators and Multiplexers

Student Name: ___ Student ID: ____________

1 bit comparator

4 bit comparator

A3 A2 A1 A0 B3 B2 B1 B0 A=B A<B A>B

X Y E (X =Y) L (X<Y) G(X>Y)

L L

L H

H L

H H

Worksheet 6: Page 2 of 2

8 to 1 line Multiplexer 74151

C B A D7 D6 D5 D4 D3 D2 D1 D0 Y
L L L
L L H
L H L
L H H
H L L
H L H
H H L
H H H

Worksheet 8: Page 1 of 1

Experiment 8 Worksheet: Latches and Flip Flops

Student Name: ___ Student ID: ____________

 SͲR Latch

SͲR Latch to D Latch

JͲK Flip Flop Toggle Mode

Inputs Outputs
CLR CLK J K J K
L X X X L H
H È L L Q Q’
H È H L H L
H È L H L H
H È H H Toggle
H H X X Q Q’

S R Q Q’ Action

L L Q Q’ Hold

L H Reset

H L Set

H H L L Not
allowed

Clk Data Q Q’ Action

L X Q Q’ Hold

H H L H Reset

H L H L Set

