

ATTACHMENT 5.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

T6. Course Specifications (CS)

Photochemistry

(402635-3)

Course Specifications

Institution: Umm Al-Qura University Date: 2017				
College/Department: Faculty of Applied Science	Chemistry Department			
A. Course Identification and General Informat	ion			
1. Course title and code: Photochemistry / 402	635-3			
2. Credit hours: 3 hrs (theoretical)				
3. Program(s) in which the course is offered: M	. Sc. in chemistry			
4. Name of faculty member responsible for the	course: Prof. Dr. Saleh	A. Ahmed		
5. Level/year at which this course is offered: 3 rd	d / 2 nd			
6. Pre-requisites for this course (if any): not app	olicable			
7. Co-requisites for this course (if any): not app	licable			
8. Location if not on main campus: El-Abedyah	, El-Azizya, and El-Zaho	er		
9. Mode of Instruction (mark all that apply)				
a. traditional classroom	What percentage?			
b. blended (traditional and online)	What percentage?	80%		
c. e-learning What percentage? 20%				
d. correspondence	What percentage?			
f. other	What percentage?			
Comments:				

B Objectives

1. What is the main purpose for this course?

By the end of this course student will be familiar with the basics of photochemistry and mechanisms of photochemical reactions as well as the applications of photochemistry in industry.

- 2. Briefly describe any plans for developing and improving the course that are being implemented. (e.g. increased use of IT or web based reference material, changes in content as a result of new research in the field):
- The use of smart teaching halls for lectures.
- Increased use of IT or web based reference material.
- Encourage students to carry out research reports in the field of photochemistry using the library, data base services, and/or websites.
- Changes in content as a result of new research in the field.
 - C. Course Description (Note: General description in the form used in Bulletin or handbook)

Course Description:		

1. Topics to be Covered		
List of Topics	No. of Weeks	Contact hours
Introduction to the basic principle photochemistry.	1	3
Different light sources and their uses, filters and the ranges of light. Fluorescence and phosphorescence.	2	3
The fate of excited states: physical processes (Jablonski diagram), chemical processes. General types of photochemical reactions.	2	3
Photo-reduction reactions, photochemical reactions of ethenes, polyethenes and ethynes, photodimerization of benzenoid compounds.		6
Photooxidation, photochemical aromatic substitution, photochemical fragmentation.	2	3
Common photochemical reactions and their kinetics.	2	6
Storage of solar energy and its conversions.	1	3
Photochemistry of vision.	1	3

2. Course components (total contact hours and credits per semester):						
	Lecture	Tutorial	Laboratory or Studio	Practical	Other:	Total
Contact Hours	39					39
Credit	3					3

3. Additional private study/learning hours expected for students per week.	2	

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

On the table below are the five NQF Learning Domains, numbered in the left column.

First, insert the suitable and measurable course learning outcomes required in the appropriate learning domains (see suggestions below the table). **Second**, insert supporting teaching strategies that fit and align with the assessment methods and intended learning outcomes. **Third**, insert appropriate assessment methods that accurately measure and evaluate the learning outcome. Each course learning outcomes, assessment method, and teaching strategy ought to reasonably fit and flow together as an integrated learning and teaching process. (Courses are not required to include learning outcomes from each domain.)

Code #	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods
1.0	Knowledge		
1.1	Know the basic principles of photochemical reactions	LecturesScientific discussion	• Exams • web-based
1.2	Determine the type of mechanism and intermediates in different photochemical reactions	Web-based studyLibrary visits	student performance systems
1.3	Write a mechanism for a photochemical transformation		portfolioslong and short
1.4	Write the products of photochemical reaction correctly		• posters

1.5	Recognize the application of photochemistry		
1.6	Outline the general types of photochemical reactions		
1.7	Definethe different electronical excitation states		
1.8	Recognize the application of photochemistry		
2.0	Cognitive Skills		•
2.1	Compare between different types of photochemical reactions	• Lectures • Scientific discussion	• Exams • web-based
2.2	Compare between different sources of light	 Web-based study 	student
2.3	Apply the basic principles of photochemistry	Library visits	performance
2.4	Predict the products of different photochemical		systems • portfolios
	reactions		• long and short
2.5	Formulate the outputs of different photochemical		essays
	reactions		• posters
2.5	Report the applications of photochemistry in		• demonstrations
	industry		
3.0	Interpersonal Skills & Responsibility		
3.1	Use the photochemical reactions to prepare different	• Lectures	• Exams
	classes of organic molecules	Scientific discussion	• web-based
3.2	Choose the suitable mechanism for a given	 Web-based study 	student
	photochemical reaction		performance
4.0	Communication, Information Technology, Numerical		systems
	, , , , , , , , , , , , , , , , , , , ,		
4.1	Evaluate the importance of photochemistry	• Lectures	• web-based
4.2	Evaluate the different photochemical reactions to	 Scientific discussion 	student
	synthesis of various organic compounds	 Library visits 	performance
4.3	Demonstrate the mechanism of different	Web-based study	systems
	photochemical reactions		• individual and
			group presentations
4.5			presentations
5.0	Psychomotor	L	L
5.1	Not applicable		
5.1	Not applicable		
5.2			

5. Schedule of Assessment Tasks for Students During the Semester			
	Assessment task (e.g. essay, test, group project, examination,	_	Proportion of Total
	speech, oral presentation, etc.)	Due	Assessment
1	Mid-term exam	9	30%

2	Assignments and activities		10%
3	Final Exam	15-16	60%

D. Student Academic Counseling and Support

- 1. Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)
 - We have faculty members to provide counseling and advice.
 - Office hours: During the working hours weekly.
 - Academic Advising for students.

E Learning Resources

- 1. List Required Textbooks.
 - 1. Introduction to Organic Photochemistry by J. D. Coyle, 1998.
 - 2. Photochemistry: Volume 38 by Angelo Albini, 2010.
 - 3. Modern Molecular Photochemistry of Organic Molecules by Nicholas J. Turro (2009).
- 2. List Essential References Materials (Journals, Reports, etc.)

Lecture Handouts available on the coordinator website

- 3. List Recommended Textbooks and Reference Material (Journals, Reports, etc)
 - 1. Photochemistry of Organic Compounds: From Concepts to Practice (Postgraduate Chemistry Series) by PetrKlán (2009).
 - CRC Handbook of Organic Photochemistry and Photobiology, W. M. Horspool and F. Lenci., CRC Press, London, NY, 2003.
- 4. List Electronic Materials, Web Sites, Facebook, Twitter, etc.
 - http://www.organic-chemistry.org/reactions.htm
 - http://www.chemweb.com
 - http://www.sciencedirect.com
 - http://www.rsc.org

- 5. Other learning material such as computer-based programs/CD, professional standards or regulations and software.
 - ChemDraw Ultra 11.0

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (i.e. number of seats in classrooms and laboratories, extent of computer access etc.)

- 1. Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)
 - Classrooms capacity (10) students.
 - Providing hall of teaching aids including computers and projector.
- 2. Computing resources (AV, data show, Smart Board, software, etc.)
 - Room equipped with computer, projector and TV.
- 3. Other resources (specify, e.g. if specific laboratory equipment is required, list requirements or attach list)
 - No other requirements.

G Course Evaluation and Improvement Processes

- 1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching
 - Questionnaires can be used to collect student feedback.
 - Student representation on staff-student committees and institutional bodies.
 - Structured group discussions and/or focus groups.
- 2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department
 - Observations and the assistance of colleagues.
 - Independent evaluation for extent to achieve students the standards.
 - Iindependent advice of the duties and tasks.
- 3 Processes for Improvement of Teaching
 - Workshops for teaching methods.
 - Continuous training of member staff.

المملكة العربية السعودية الهيئة الوطنيسة للتقويم والاعتماد الأكاديمسي

- Review of strategies proposed.
- Providing new tools for learning.
- The application of e-learning.
- Exchange of experiences internal and external.
- 4. Processes for Verifying Standards of Student Achievement (e.g. check marking by an independent member teaching staff of a sample of student work, periodic exchange and remarking of tests or a sample of assignments with staff at another institution):
 - Check marking of a sample of exam papers, or student work.
 - Exchange corrected sample of assignments or exam basis with another staff member for the same course in other faculty.
- 5. Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.
 - Periodic Review of the contents of the syllabus and modify the negatives.
 - Consult other staff of the course.
 - Hosting a visiting staff to evaluate of the course.
 - Workshops for teachers of the course.

Name of Instructor: Prof. Dr. Saleh A. Ahmed	
Signature:	Date Report Completed: 2017
Name of Field Experience Teaching Staff:	LOURA UNIVERDITY.
Program Coordinator:	
Signature:	Date Received: 2017