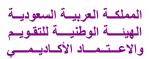


ATTACHMENT 2 (e)

Course Specifications

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment


Chemistry of Inorganic Industries

4024774-2

Course Specifications (CS)

Course Specifications

Institution: Umm Al-qura University	Date of Report: 2017
College/Department : Faculty of Applied Scien	nces / Chemistry Department

A. (A. Course Identification and General Information				
1.	1. Course title and code: Chemistry of Inorganic Industries / 4024774-2				
2.	. Credit hours: 2 (theoretical)				
3.	Program(s) in which the course is	offered: Indus	trial Chemistry		
4.	Name of faculty member responsi	ble for the cour	rse: Prof. Abdalla M	lohamed Khedr	
5.	Level/year at which this course is	offered: 7th lev	el/4 th year		
6.	Pre-requisites for this course (if ar	y): - Chemistr	y of Transition Elem	ents	
7.	Co-requisites for this course (if an	y)			
8.	Location if not on main campus: F	El-Abedyah			
9.	Mode of Instruction (mark all that	apply)			
	a. Traditional classroom		What percentage? 1	100%	
	b. Blended (traditional and onlin	ne)	What percentage?		
	c. e-learning		What percentage?		
	d. Correspondence		What percentage?		
	f. Other		What percentage?		
Co	Comments:				

1. What is the main purpose for this course?

The goal of this course is to familiarize students with:

- a. The importance of industrial inorganic chemistry and its future role.
- b. Types of glass, its structure, raw materials and different methods for manufacturing of glass.
- **c.** Ceramic, porcelain, iron and fertilizers industries.
- 2. Briefly describe any plans for developing and improving the course that are being implemented. (e.g. increased use of IT or web based reference material, changes in content as a result of new research in the field)
- Encourage students to carry out reports in the field of cement industry and modern building materials.
- The use of smart teaching halls for lectures.
- Using different learning sources of the course, so that the students make use of more than one reference.

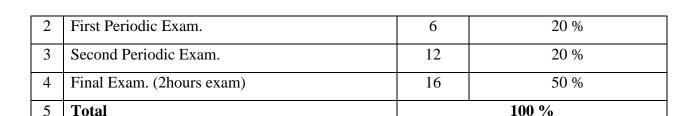
C. Course Description (Note: General description in the form to be used for the Bulletin or handbook should be attached):

1. Topics to be Covered		
List of Topics	No. of	Contact
	Weeks	Hours
• Glass industry: the types of raw materials – structure of glass - chemical	1	2
reactions - different methods for manufacturing of glass.		
• Types of glass: low silica and high silica glass - glass sensitive to light -	1	2
safety glass and glassy ceramics.		

• Ceramic industry: basic raw materials - chemical transformations in the	1	2
ceramic industry.		
• Porcelain industry: the product of constructivism clay - special ceramic	2	4
products such as ferro-electric and ferro-magnetic ceramics.		
• Iron industries: basic raw materials - interactions in blast furnace - the	2	4
different types of iron and their properties.		
• Iron corrosion and its resistance - curves of iron and different	1	2
compounds.		
• Acids and bases of industrial importance: sulfuric, nitric acids and their	2	4
compounds as well as their economic importance.		
• Ammonia - nitrogen - fixation of atmospheric nitrogen - liquid nitrogen	1	2
and its uses.		
Chemistry of fertilizers: nitrogenic fertilizers.	1	2
Phosphates fertilizers.	1	2
Complex fertilizers.	1	2

2. Course components (total contact hours and credits per semester):						
	Lecture	Tutorial	Laboratory	Practical	Other:	Total
Contact Hours	28	-		-		28
Credit	2	-		-		2

- 3. Additional private study/learning hours expected for students per week.
- Two hours a week to prepare reports, discuss and resolve questions related to cement industry, modern building materials and other subjects of the course.
- 4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment


Methods and Teaching Strategy

	NQF Learning Domains	Course Teaching	Course Assessment	
	And Course Learning Outcomes	Strategies	Methods	
1.0	Knowledge			
1.1	• Recall types of raw materials and	• Use the library to	•Long and short	
	different ways to manufacture of	work duties and	essays.	
	glass.	small researches	• Written mid-term and	
1.2	• Know types of glass.	on subjects of	final exams.	
1.3	• Describe the acids and bases of	the course.		
	industrial importance.	•Use of the		
1.4	List some of iron industries	Internet to carry		
1.5	Write on chemistry of fertilizers.	out some reports.		
		• Lectures.		
		 Scientific 		
		discussion.		
2.0	Cognitive Skills			
2.1	• Summarize the basic raw materials	• Lectures	•Periodic tests and	
	used in iron industries.	 Scientific 	assignments.	
2.2	• Analyze curves of iron and different	discussion	• Measuring the	
	compounds.	Library visits	response to the	
2.3	• Compare between nitrogenic and	• Web-based study	assignments.	
	phosphates fertilizers.			
2.4	• Estimate the special ceramic products.			
3.0	Interpersonal Skills & Responsibility			
3.1	Operate in team work and accept his	• Dividing students	• Evaluate the results	
	college's opinions.	into groups to	of collective works	
3.2	• Develop the student's ability in self-	carry out	and duties as well as	

	reliance and responsibility.	collective	knowing the
3.3	• Choose the best methods for	scientific reports.	contribution of each
	manufacturing of glass.	• Periodic	individual through
		individual duties	dialogue and
		to develop the	discussion.
		skill of taking	• Assessment of
		responsibility	individual tasks and
		and self-reliance	duties to determine
			the student's ability to
			self-reliance.
4.0	Communication, Information Technology	gy, Numerical	
4.1	Use computers and the international	•Using the	•Evaluation of the
	information network (the Internet) to	internet for	duties associated with
	perform calculations and to identify	collecting data.	the proper use of
	recent research relevant to decision	•The use of	numerical and
	sources.	computers in the	communication
4.2	Perform mathematical calculations and	training room of	skills.
	data analysis.	the department.	• Web-based student
		• Visiting research	performance systems
		centers.	• Individual and group
			presentations.
5.0	Psychomotor		
5.1	Not applicable.		
5.2			

5. Schedule of Assessment Tasks for Students During the Semester				
	Assessment task (e.g. essay, test, group project,	Week	Proportion of Total	
	examination, speech, oral presentation, etc.)	Due	Assessment	
1	Homework or activities.		10 %	

D. Student Academic Counseling and Support

- 1. Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)
- Availability of Staff members to provide counseling and advice.
- Academic Advising for students.
- Office hours: During the working hours weekly.

E. Learning Resources

- 1. List Required Textbooks
- Fundamentals of Materials Science and Engineering, William D. Callister, David G. Rethwisch,
 4th Edition SI Version, Wiley, 2012.
- 2. List Essential References Materials (Journals, Reports, etc.)
- Solid State Chemistry and its Applications, Anthony R. West, 2nd Edition, Student Edition, Wiley, 2014.
- 3. List Recommended Textbooks and Reference Material (Journals, Reports, etc)
- Introduction to Glass Science and Technology: RSC (RSC Paperbacks), James E. Shelby, Royal Society of Chemistry; 2nd edition, 2005.
- 4. List Electronic Materials (eg. Web Sites, Social Media, Blackboard, etc.)
 - http://www.chemweb.com
 - http://www.sciencedirect.com
 - http://www.rsc.org
- 5. Other learning material such as computer-based programs/CD, professional standards or

regulations and software. : - Not required.

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (i.e. number of seats in classrooms and laboratories, extent of computer access etc.)

- 1. Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)
- Equipped lecture halls.
- 2. Computing resources (AV, data show, Smart Board, software, etc.)
- Room equipped with computer, data show and TV.
- 3. Other resources (specify, e.g. if specific laboratory equipment is required, list requirements or attach list)
- No other requirements.

G. Course Evaluation and Improvement Processes

- 1. Strategies for Obtaining Student Feedback on Effectiveness of Teaching
- Questionnaire evaluation of the course.
- 2. Other Strategies for Evaluation of Teaching by the Program/Department Instructor
- Preparation of a course report and study of the results of the students to give us indication about the planned outputs and the extent to which student's benefits.
- 3. Processes for Improvement of Teaching
- Application of e-learning.
- Review of the proposed strategies.
- Providing new tools for learning.
- Exchange of experiences internal and external.
- 4. Processes for Verifying Standards of Student Achievement (e.g. check marking by an independent member teaching staff of a sample of student work, periodic exchange and remarking of tests or a sample of assignments with staff at another institution)
- Check marking of a sample of exam papers, or student work.

- Exchange corrected sample of assignments or exam basis with another staff member for the same course in other faculty.
- 5. Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.
- Workshops for teachers of the course.
- Periodic Review of the contents of the syllabus and modify the negatives.
- Consult other staff of the course.
- Hosting a visiting staff to evaluate of the course.

Faculty or Teaching Staff: Prof. Abdalla Mohamed Khedr

Signature: Date Report Completed: 12/1/2019

Received by: Dr. Ismail Althagafi Department Head

Signature: Date: 20/1/2019