Kingdom of Saudi Arabia

The National Commission for

Academic Accreditation & Assessment

Course Specifications

Spectrophotometric and Electrochemical Techniques

402311-3

Institution: Umm Al-qura University Dat	e of Report: 2017				
College/Department : Faculty of Applied Science/ department of chemistry					
A. Course Identification and General Information					
1. Course title and code: Spectrophotometric a	and Electrochemical Techn	niques / 402311-3			
2. Credit hours: 3 (2 + 1)	• 4				
3. Program(s) in which the course is offered. Cl4. Name of faculty member responsible for the	<u> </u>	OM			
5. Level/year at which this course is offered: 5 th	<u> </u>	er			
6. Pre-requisites for this course (if any): Volume	<u>u</u>				
7. Co-requisites for this course (if any)					
8. Location if not on main campus: both on El-	Abedyah, and El-Zaher				
9. Mode of Instruction (mark all that apply)					
a. Traditional classroom	What percentage?	50%			
b. Blended (traditional and online)	What percentage?	20%			
c. e-learning	What percentage?				
d. Correspondence	What percentage?				
f. Other	What percentage?	30%			
Comments:					

B Objectives

1. What is the main purpose for this course?

By the end of this course the student

- 1- Have all information about the instrumental analysis
- 2- Able to determine the trace amounts of different compounds and metals.
- 3- Familiar with spectrophotometric and electroanalytical methods
- 2. Briefly describe any plans for developing and improving the course that are being implemented. (e.g. increased use of IT or web based reference material, changes in content as a result of new research in the field)

The students will be mentioned to prepare an essay or a report from literature using the library, data base services, and/or websites to follow up and update the new topics of the subject of the course

C. Course Description (Note: General description in the form to be used for the Bulletin or handbook should be attached)

Topi	ics to be Covered		
	List of Topics	No. of Weeks	Contact Hours
a.	Principles and applications of spectrophotometric and colormetric analysis	1	2
b.	Electromagnetic spectrum and its interaction with matter	1	2
c.	Absorption and emission of light by atoms and molecules-types of analysis and devices	1	2
d.	Spectrophotometric measurements theory and Beer's law deviation	1	2
e.	Spectrophotometric instrumentation – spectra measurements using UV-vis and IR	1	2
f.	Beer's law applications		
g.	Turbidity analysis and flame photometry (devices-principles-applications)	1	2
h.	Atomic absorption by electrothermal oven- X ray analysis – Applications	1	2
i.	Atomic emission spectroscopy and the interference study	1	2
j.	Inductively coupled plasma (ICP)– principles and applications	1	2
k.	Electrochemical methods in quantitative analysis – Introduction to the principles	1	2
1.	Potentiometric methods and Potentiometric titrations		
m.	Electrogravimetric analysis-columetry	1	2
n.	Voltammetry and polarography techniques, Conductmetric methods and their titrations	1	2

Practical Part:

- Determine copper in copper sulphate solution using spectrophotometric methods
- Determine iron in its salt solution using spectrophotometric methods
- Study reduction oxidation reactions by spectrophotometric methods
- Analysis of KMnO₄ and K₂Cr₂O₇ in mixture using UV-Vis. spectrophotometer
- Determination of copper using potentiometric titration

- Potentiometric methods for EDTA titrations
- Determination of ascorbic acid in fruit juice using Polarographic method
- Determination of amino acids in their solutions
- Polarographic study for zinc ion reduction in its solution
- Determination of some drugs using ion selective electrode method
- Revision
- Exam

2.	Course c	omponents	total cont	act hours	and credits	per semester):

	Lecture	Tutorial	Laboratory	Practical	Other:	Total
Contact Hours	24	-	36	-	-	60
Credit	2	-	1	-	-	3

3. Additional private study/learning hours expected for students per week.

2 h

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods
1.0	Knowledge		
1.1	Describe the principles and applications of spectrophotometric and colormetric analysis	• Lectures • Scientific	• Exams • web-based
1.2	Identify electromagnetic spectrum and its interaction with matter	discussion • Library visits	student performance
1.3	Define absorption and emission of light by atoms and molecules-types of analysis and devices	• Web-based study	systems • portfolios
1.4	Recognize spectrophotometric measurements theory and Beer's law deviation		• long and short essays
1.5	Familiar with spectrophotometric instrumentation – spectra measurements using UV-vis and IR		• posters lab manuals
1.6	Name atomic absorption by electrothermal oven- X ray analysis – Applications		
1.7	Write about atomic emission spectroscopy and the interference study		
1.8	Determine the electrochemical methods in quantitative analysis		
1.9	Recognize the potentiometric methods and Potentiometric titrations		
1.10	Memorize voltammetry and polarography techniques		
1.11	Outline conductmetric methods and their titrations		
2.0	Cognitive Skills		•

2.1	Analyze electromagnetic spectrum and its interaction with matter	Lectures Scientific	• Exams • web-based
2.2	Summarize the principles and applications of spectrophotometric and colormetric analysis	discussion • Library visits	student performance
2.3	Explain the turbidity analysis and flame photometry	• Web-based	systems
2.4	Apply Beer's law in many analytical applications	study	 portfolios
2.5	Predict the inductively coupled plasma (ICP)– principles and applications		postersdemonstrati
2.6	Compare between voltammetry and polarography techniques		ons
2.7	Account for conductmetric methods and their titrations		
3.0	Interpersonal Skills & Responsibility		
3.1	Use absorption and emission of light by atoms and molecules to determine the concentration	LecturesScientific	• Exams • web-based
3.2	Show spectrophotometric measurements theory and Beer's law deviation	discussion • Web-based study	student performance systems
4.0	Communication, Information Technology, Numerical	•	·
4.1	Evaluate atomic absorption by electrothermal oven- X ray analysis – Applications	• Lectures • Scientific	• web-based student
4.2	Demonstrate potentiometric methods and Potentiometric titrations	discussion • Library visits • Web-based study	performance systems • individual and group presentation s
5.0	Psychomotor		
5.1	NOT APPLICABLE		
5.2			

			ment
1	Exam	5-14	20%
2	Assignments		10%
3	Practical Exam	15	30%
4	Final Exam	16	40%

D. Student Academic Counseling and Support

- 1. Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)
 - We havefaculty membersto providecounseling and advice.
 - Office hours: During the working hoursweekly.
 - Academic Advisingforstudents.

E. Learning Resources

- 1. List Required Textbooks
 - K. Danzer, Analytical Chemistry, Theoretical and Metrological Fundamentals, Springer(2014)
- 2. List Essential References Materials (Journals, Reports, etc.)
 - Lecture Hand outs available on the coordinator website
- 3. List Recommended Textbooks and Reference Material (Journals, Reports, etc)
 - Gary D. Christian, Purnendu K. Dasgupta and Kevin A. Schug, *Analytical Chemistry*, 7th edition, WILEY (2014)
 - Douglas A. Skoog, Donald M. West, James F. Holler and Stanley R. Crouch, *Analytical Chemistry*, 7th edition, Springer (2014)
- 4. List Electronic Materials (eg. Web Sites, Social Media, Blackboard, etc.)
 - http://www.chemweb.com
 - http://www.sciencedirect.com
 - http://www.rsc.org
- 5. Other learning material such as computer-based programs/CD, professional standards or regulations and software.

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (i.e. number of seats in classrooms and laboratories, extent of computer access etc.)

- 1. Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)
 - Classroomscapacity(30) students.
 - Providinghallof teaching aids including computers and projector.
- 2. Computing resources (AV, data show, Smart Board, software, etc.)
 - Roomequippedwithcomputer andprojectorandTV.
- 3. Other resources (specify, e.g. if specific laboratory equipment is required, list requirements or attach list)
 - Noother requirements.

6

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching	
Complete thequestionnaire evaluation of the course in particular.	

- 2 Other Strategies for Evaluation of Teaching by the Program/Department Instructor
 - Observations and the assistance of colleagues.
 - Independent evaluation forextent toachieve students the standards.
 - Iindependent adviceofthe dutiesandtasks.
- 3 Processes for Improvement of Teaching
 - Workshopsforteaching methods.
 - Continuous trainingof member staff.
 - **Review of strategies proposed.**
 - Providing new tools for learning.
 - The application of e-learning.
 - **Eexchangeof experiencesinternal andexternal.**
- 4. Processes for Verifying Standards of Student Achievement (e.g. check marking by an independent member teaching staff of a sample of student work, periodic exchange and remarking of tests or a sample of assignments with staff at another institution)
 - Check markingof a sampleofexam papers, orstudent work.
 - Exchange corrected sample of assignments or exam basis with another staff member for the same course in other faculty.
- 5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.
 - Periodic Reviewof thecontents of the syllabusand modify the negatives.
 - Consultotherstaff of the course.
 - Hostinga visiting staffto evaluate of thecourse.
 - Workshopsfor teachers of the course.

Signature:	Г	Oate:
Received by: Dr HatemAltass	Department Head	
Signature:		Date Report Completed: 2017
Faculty or Teaching Staff:	Dr.AmrLotfy Saber	

