A. Course Identification and General Information

- 1. Course title and code: General Chemistry, 402101-4
- 2. Credit hours: Four (3 theoretical + 1 practical) hrs.

B. Objectives

This course is an introductory chemistry course designed to prepare students for college level chemistry courses. The course introduces some basic principles of chemical problems solving.

C. Course Description:

1. Topics to be Covered		
Торіс		Contact
	Weeks	hours
States of matter and measurement, molecules and molecular compounds.	1	3
Units of measurements; SI- units, intensive and extensive properties, uncertainty in	1	3
measurements (precision and accuracy).		
Significant figures: Rounding significant figures, Using significant figures in addition,	1	3
subtraction, multiplication and divisions.		
The periodic table, nomenclature, electronic structure of atoms, simple periodic	2	3
properties of the elements.		
Chemical bonding, molecular geometry, and properties of various states of matter.	2	6
Ions and ionic compounds, chemical reaction types.	1	3
Stoichiometry, atomic and molecular weights.	1	3
The mole, simple quantitative calculations with chemical reactions.	1	3
Basics of chemical equilibrium.	1	3
Acids and bases.	1	3
Thermochemistry.	1	3
Hydrocarbons, nomenclature and simple reactions.	1	3

Laboratory Experiments Outline

Topics to be Covered		
List of Experiments	No of	Contact
The practical part includes the following experiments:	Weeks	hours

Introduction	1	3
Density and viscosity of liquids.	1	3
Compound type (polar – nonpolar – ionic).	1	3
Chemical reactions.	1	3
Acids and bases and pH measurements and calculations.	1	3
Titration of vinegar.	1	3
Oxidation-reduction reactions.	1	3
Molar mass of acid.	1	3
Qualitative analysis (acidic and basic radicals).	1	3
Collegative properties (determination of molecular weight).	1	3
Determination of the heat capacity of the calorimeter.	1	3
Determination of the critical solution temperature of phenol - water system	1	3
Review	1	3
Final Exam.	1	3

2. Course components (total contact hours per semester):			
Lecture:	Tutorial:	Practical/Fieldwork/Internship:	Other:
42		42	

3. Additional private study/learning hours expected for students per week. (This should be an

average: for the semester not a specific requirement in each week)

- 26 hours (2 hrs per week office hrs).

4. Development of Learning Outcomes in Domains of Learning

a. Knowledge

Description of the knowledge to be acquired.

After finishing this course students will be able to:

- investigate the different states of matter and measurement.
- calculate the mole, simple quantitative calculations with chemical reactions to understand the nature and significance molecules and compounds.
- distinguish between molecules and molecular compounds.
- interpret experimental results.
- handle the periodic table.

- torelate structure and properties
- understand the nomenclature, electronic structure of atoms, simple periodic properties of the elements.
- distinguish the different types of chemical bonding.
- understand orientation and molecular geometry, and properties of various states of matter.
- investigate the acids and bases.
- calculate the pH values in acids and bases.
- understand viscous and elastic elements of a polymer
- investigate the factors affecting the thermal characteristics of a reaction.
- calculate the chemical equilibrium constants and factors affecting them.

Cognitive Skills

Description of cognitive skills to be developed

By the compilation of this course, students will be able to :-

- Analyse the data related to different topics in chemistry.
- Solve problems related to different chemical subjects.
- Select and apply the appropriate technique of work at the laboratory.
- Interpret experimental results.
- c. Interpersonal Skills and Responsibility

Description of the interpersonal skills and capacity to carry responsibility to be developed

- Develop the necessary skills of writing and English conversation as a good for the connection of sciences.
- Act responsibly in personal and professional relationships.
- Act in responsible ethical manner.
- Ability of self-learning using learning recourses and websites.
- Improve and develop analytical capabilities for solving the problems and ideas.
- The ability to work effectively individually and in team.

d. Communication, Information Technology and Numerical Skills

Description of the skills to be developed in this domain.

On compilation of this course, students will be able to :-

- Communicate link between the science of kinetic chemistry and other sciences related.
- Develop the skills to deal with the problems of numerical calculations and laws.
- Research on the Internet for various topics related to the course.
- Solve exercises and questions related to increase their numerical and statistical skills.
- Work in a group to discuss issues of domestic duties and their meanings and objectives.
- Make good and clear discussion on the basic concepts of chemistry.

Assessment	Assessment task (eg. essay, test,	Week due	Proportion of Final Assessment	
	group project, examination etc.)			
	Class activities, Attendances and	Throughout the	10%	
	Duties	Term		
2	Mid-Term Exam (s)	5-14	20%	
3	Lab Activity and Final Exam on Lab	Throughout the	30%	
		Term		
4	Final Exam	End of the Term	40%	
5	Total		100%	

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice.

(include amount of time faculty are available each week)

- Presence of faculty members to provide counselling and advice.
- Office Hours: weekly during working hours, and to create appropriate means.
- Academic Advising for students to those who need it, and taking into account the appropriate test for that Member.

E Learning Resources

1. Required Text(s)

• Lecture notes prepared by the lecturer.

2. Essential References

- General Chemistry, E. B. Gallogly, 4th edition, D. A. Mcquarrie, P. A. Rock, University Science books, Mill Vally, 2011.
- General, Organic and Biochemistry, 4th Edition, K. Denniston, J. Topping and R. Caret, R.; General, Organic and, McGraw Hill, 2004.
- 3. Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)
- Chemistry, R. Chang, 10th Edition, McGraw-Hill Higher Education, 2011.
- 4. Electronic Materials, Web Sites etc
- Power point lectures.
- 5. Other learning material such as computer-based programs/CD, professional standards
- Microsoft PowerPoint, Microsoft Word