Kingdom of Saudi Arabia The National Commission for Academic Accreditation & Assessment

COURSE SPECIFICATION (Analytical Chemistry 2, 402312-3) 1435/ 1436 H

Course Specification

Institution: Umm Al-Qura University

College/Department: Applied Science / Chemistry Department

A. Course Identification and General Information

1. Course title and code: Analytical Chemistry 2/402312-3

2. Credit hours: 3 hrs

- 3. Program(s) in which the course is offered: **Pure Chemistry**
- 4. Name of faculty member responsible for the course: Dr. Mohamed A Kassem
- 5. Level/year at which this course is offered: level 5 / third year
- 6. Pre-requisites for this course : **Analytical chemistry** (1)
- 7. Co-requisites for this course: **Nothing**
- 8. Location if not on main campus:

B. Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

By finishing of this course, the students will be able to discuss and understand:

- The meaning of electromagnetic spectra
- How electromagnetic radiations interact with matter
- How to measure the concentrations of unknown using different spectral instruments
- The mechanism of electro analytical determination of different matters

2. Briefly describe any plans for developing and improving the course that are being

implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- Continuous updating learning sources for the course, so that students benefit from more than one reference.
- Encourage students to prepare reports include the solving some related problems in analytical chemistry.
- The use of teaching intelligent classes for lectures.

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1. Topics to be Covered		
List of Topics	No of	Contact
	Weeks	hours
General properties of electromagnetic radiation and its reaction with		
matter, the electromagnetic spectrum, absorption and emission of	1	2
electromagnetic radiation.		
Atomic spectra, molecular spectra, scattered radiation, refracted radiation,		
dispersed and diffracted radiation, monochromatic vs. polychromatic	1	2
radiation.		
Instrumentation, radiation sources, monochromators, sample cell		
(cuvette), detectors, single-beam and double-beam spectrophotometers,		
photometers, wave length calibration.	1	2
Ultraviolet and visible molecular absorption spectroscopy, Beer's law, true	1	2
and apparent deviations from Beer's law, stray light, application of Beer's		
law to mixtures, calibration plots and standard addition method.		
Qualitative and quantitative analysis by uv-vis, IR, Ms spectroscopy,		
spectrophotometric agents. application of spectrophotometric methods in	2	4
chemical equilibria studies, spectrophotometric titrations.		
Molecular fluorescence spectroscopy, theory of molecular fluorescence	1	2
Flame emission and atomic absorption spectroscopy, nebulisation, burners		
and nebulizers, flames and flame temperature, interferences, flame	1	2
spectrometric techniques, flame emission spectrometry,		
Introduction to electroanalytical methods, pH and ion selective	2	4
potentiometry	2	-
Voltammetry, polarography and amperometric titrations	2	4
Conductance methods, electrolytic conductivity, measurement of		
electrolytic conductance, direct concentration determination,	2	4
conductometric titrations		

2 Course components (total contact hours per semester):						
Lecture: 28	Tutorial:	Laboratory	Practical/Field	Other:		
		42	work/Internship			

- **3.** Additional private study/learning hours expected for students per week. (This should be an average: for the semester not a specific requirement in each week)
- Students spend two hours during the whole semester to discuss, and resolve questions and duties of the course.

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

(i) Description of the knowledge to be acquired

- The theoretical aspects of spectral analysis
- Understanding the origin of all spectral instrument
- Knowing different types of errors during measurements
- Overcome all difficult during performing and using the equipment
- The ability for students to deals with advanced tools

(ii) Teaching strategies to be used to develop that knowledge

- Scientific discussions during the lectures.
- The use of library to perform work duties and prepare small research reports about titration methods
- Resolve problems and questions concerned with the topics presented during lectures as homework.

• Use of the internet to prepare some reports about spectrophotometer and atomic absorption instruments

(iii) Methods of assessment of knowledge acquired

- Written periodic and final exams.
- Scientific discussions and effective participations during the lectures.
- Preparing scientific reports and weekly homework.

b. Cognitive Skills

(i) Description of cognitive skills to be developed

- The student able to deals with the new advanced analytical instruments
- The student acquires the ability to interpret the charts and from it unknown concentration is gained
- The student understands all steps during electro analytical analysis

(ii) Teaching strategies to be used to develop these cognitive skills

- Provide the students with examples and practical tasks that performed under the supervision of lecturers.
- Assigning student's duties that include open tasks designed for the application of prediction and analysis skills, problem solving.
- Giving some applied examples and problem and ask the students to find a strategic plan to resolve them.

(iii) Methods of assessment of students cognitive skills

- Periodic exams and oral discussions.
- Measuring the response of students for the assignments.

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

- Evaluate and develop the student's ability to work in a team.
- The development of the ability of students to think and work in individual manner.

(ii) Teaching strategies to be used to develop these skills and abilities

• Divide the students into team works to evaluate their ability to work in groups.

• Periodic duties that carried out in individual manner to evaluate the ability of students to take responsibility and self-reliance.

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

• Evaluation of the individual tasks such as homework's and duties and to determine the student's ability to self-reliance.

d. Communication, Information Technology and Numerical Skills

(i) Description of the skills to be developed in this domain.

- The ability to perform the mathematical calculations and data analysis and introduce it in a statistical way
- The skill to deal with computer and internet in order to download the research papers and articles that related to the course.

(ii) Teaching strategies to be used to develop these skills

- The use of computers in the training room of the department.
- Organization of group visits to the central Library.
- The use of the international information network (internet).

(iii) Methods of assessment of students numerical and communication skills

- Ask questions that measure the student's ability to interpret simple statistical information.
- Evaluate the homework's and duties associated with the proper use of communication skills and numerical process.

e. Psychomotor Skills (if applicable)

(i) Description of the psychomotor skills to be developed and the level of performance required: • It is not requirement for this course.

(ii) Teaching strategies to be used to develop these skills

• It is not requirement for this course.

(iii) Methods of assessment of students psychomotor skills: • It is not requirement here

5. Schedule of Assessment Tasks for Students During the Semester:						
Assessment	Assessment task (eg. essay, test,	Week due	Proportion of			

	group project, examination etc.)		Final Assessment
1	Class activities, Attendances and	Throughout the Term	10%
	Duties		
2	Mid-Term Exam (s)	5-14	20%
3	Lab Activity and Final Exam on	Throughout the Term	30%
	Lab		
4	Final Exam	End of the Term	40%
5	Total		100%

D. Student Support

- 1. Arrangements for availability of teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)
- The presence of Staff members during the work hours to provide students with guidance and advice.
- Provide the students with the academic mentoring from the suitable members.
- Office hours: during the days of the week work days.

E. Learning Resources

1. Required Text(s)

• Instrumental Methods of Analysis, H. H. Willard, L. L. Merritt, J. A. Dean and F. A. Settle, Wadsworth Publishing Company, 1988.

2. Essential References

- Fundamentals of Analytical Chemistry, Douglas A. Skoog, Donald M. West, F. James Holler, and Stanley R. Crouch, 8th ed., Cengage Learning, 2003.
- 3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)
- Analytical Chemistry: An Introduction (Saunders Golden Sunburst Series), Douglas A. Skoog, Donald M. West, F. James Holler, and Stanley R. Crouch, 7th ed., Cengage Learning, 1999.
- Analytical Chemistry, D.C. Gary, 5th ed., John Wiley &Sons, New York. 1994.
- Basic Concepts of Analytical Chemistry New Age, S.M. Khopkar, International Publisher,

2009.

4-. Electronic Materials, Web Sites etc

http://chemwiki.ucdavis.edu/Analytical_Chemistry/

5- Other learning material such as computer-based programs/CD, professional standards/regulations: • CDs contain programs specified to Analytical Chemistry 2.

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

- **1. Accommodation** (Lecture rooms, laboratories, etc.): Equipped lecture halls.
- **2. Computing resources:** 30 computers, one slide show (Data Show) and TV.
- **3. Other resources** (specify --eg. If specific laboratory equipment is required, list requirements or attach list) : None.

G. Course Evaluation and Improvement Processes

1. Strategies for Obtaining Student Feedback on Effectiveness of Teaching

• The educational process is evaluated using questionnaire forms or panel discussions with students in order to identify and address weakness and strength points.

2. Other Strategies for Evaluation of Teaching by the Instructor or by the Department

• Prepare a course report based on the results of the students to give us an indication about the planned outputs

3. Processes for Improvement of Teaching

- Training programs and workshops for staff members to improve the educational process level.
- **4. Processes for Verifying Standards of Student Achievement** (eg. check marking by an independent member teaching staff of a sample of student work, periodic exchange and remarking of tests or a sample of assignments with staff at another institution)
- We will try to carry it but it does not applied until now
- 5. Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.
- A comparison of the course level should be made with similar courses at foreign universities.