

## **Course Specifications**

| Course Title:       | Separation Methods and Thermal Analysis |  |
|---------------------|-----------------------------------------|--|
| <b>Course Code:</b> | 4023562-3                               |  |
| Program:            | Chemistry                               |  |
| <b>Department:</b>  | Chemistry                               |  |
| College:            | Faculty of Applied Science              |  |
| Institution:        | Umm Al-qura University                  |  |











## **Table of Contents**

| A. Course Identification3                                                             |   |
|---------------------------------------------------------------------------------------|---|
| 6. Mode of Instruction (mark all that apply)                                          | 3 |
| B. Course Objectives and Learning Outcomes3                                           |   |
| 1. Course Description                                                                 | 3 |
| 2. Course Main Objective                                                              | 3 |
| 3. Course Learning Outcomes                                                           | 4 |
| C. Course Content4                                                                    |   |
| D. Teaching and Assessment4                                                           |   |
| Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods | 4 |
| 2. Assessment Tasks for Students                                                      | 5 |
| E. Student Academic Counseling and Support5                                           |   |
| F. Learning Resources and Facilities6                                                 |   |
| 1.Learning Resources                                                                  | 6 |
| 2. Facilities Required                                                                | 6 |
| G. Course Quality Evaluation6                                                         |   |
| H. Specification Approval Data7                                                       |   |

#### A. Course Identification

| <b>1. Credit hours: 3hrs</b> (2 theoretical + 1 practical )                                   |  |  |
|-----------------------------------------------------------------------------------------------|--|--|
| 2. Course type                                                                                |  |  |
| a. University College Department Others                                                       |  |  |
| <b>b.</b> Required Elective                                                                   |  |  |
| 3. Level/year at which this course is offered: 6 <sup>th</sup> level / 3 <sup>rd</sup> year   |  |  |
| 4. Pre-requisites for this course (if any): Spectrophotometric and Electrochemical techniques |  |  |
| 5. Co-requisites for this course (if any): none                                               |  |  |

**6. Mode of Instruction** (mark all that apply)

| No | Mode of Instruction   | Contact Hours | Percentage |
|----|-----------------------|---------------|------------|
| 1  | Traditional classroom | $\sqrt{}$     | 74%        |
| 2  | Blended               |               |            |
| 3  | E-learning            |               | 26%        |
| 4  | Distance learning     |               |            |
| 5  | Other                 |               |            |

**7. Contact Hours** (based on academic semester)

| No | Activity                                   | <b>Contact Hours</b> |
|----|--------------------------------------------|----------------------|
| 1  | Lecture                                    | 22                   |
| 2  | Laboratory/Studio                          | 30                   |
| 3  | Tutorial                                   | -                    |
| 4  | Others (E-learning + Exams + office hours) | 15                   |
|    | Total                                      | 67                   |

## **B.** Course Objectives and Learning Outcomes

#### 1. Course Description

This course explores the fundamental basis of separation methods and thermal analysis. It is designed to give the student a solid conceptual background and hands-on practice to understand how analytical techniques can be used to separate the mixtures; including their limits and advantages. The emphasis is on mixture analysis and the course covers basic different chromatographic devices and concepts, and thermal analysis.

#### 2. Course Main Objective

By the end of this course, the student should fully aware of:

- 1. Have all information about mixtures in chemistry
- 2. Familiar with separation process and methods of thermal analysis.
- 3. Able to use many separation tools for separate both organic and in organic mixtures.

3. Course Learning Outcomes

| CLOs |                                                                                                                      | Aligned<br>PLOs |
|------|----------------------------------------------------------------------------------------------------------------------|-----------------|
| 1    | Knowledge and Understanding                                                                                          |                 |
| 1.1  | Recognize the separation methods in analytical chemistry, classifications, and solvent extraction technique          | K1, K2          |
| 1.2  | Identify the principles of chromatographic methods and its classification.                                           | K1              |
| 1.3  | Describe the different types of chromatography and electrophoresis methods.                                          | K3              |
| 2    | Skills:                                                                                                              |                 |
| 2.1  | Apply separation methods in analytical chemistry.                                                                    | S1 & S2         |
| 2.2  | Compare calometric analysis and thermal titrations.                                                                  | <b>S</b> 3      |
| 2.3  | Explain the principles of chromatographic methods and its classification.                                            | <b>S</b> 1      |
| 2.4  | Analyze liquid-liquid chromatography and Solid-liquid chromatography.                                                | <b>S</b> 3      |
| 2.5  | Summarize the principles and devices of GC and HPLC.                                                                 | <b>S</b> 1      |
| 3    | Values:                                                                                                              |                 |
| 3.1  | Ability to work in a team to perform specific experimental tasks and participate in class or laboratory discussions. | V3              |
| 3.2  | Ability to work independently to handle chemicals.                                                                   | V2              |

#### C. Course Content

| No    | List of Topics                                                                                                                            | Contact<br>Hours |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1     | Separation methods in analytical chemistry, classifications, and solvent extraction technique.                                            | 4                |
| 2     | Principles of chromatographic methods and its classification.                                                                             | 1+1E=2           |
| 3     | Column chromatography.                                                                                                                    | 1+1E=2           |
| 4     | Liquid-liquid chromatography and Solid-liquid chromatography.                                                                             | 1+1E=2           |
| 5     | Ion exchanger chromatography, ionic chromatography and HPLC.                                                                              | 2                |
| 6     | Plane chromatography.                                                                                                                     | 1+1E=2           |
| 7     | Thin layer chromatography (TLC), paper chromatography (PC) and electrophoresis method.                                                    | 1+1E=2           |
| 8     | Gas chromatography in qualitative, quantitative, medical and petroleum analysis.                                                          | 4+2E             |
| 9     | Principles and devices of previous analysis methods, Thermal analysis methods: thermo gravimetric analysis (TGA), (DTG), (DSC) and (DTA). | 2+2E=4           |
| 10    | Calometric analysis and thermal titrations.                                                                                               | 4                |
| Total |                                                                                                                                           |                  |

## **D.** Teaching and Assessment

# 1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

| Code | Course Learning Outcomes                                                                                    | Teaching Strategies | <b>Assessment Methods</b>   |
|------|-------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------|
| 1.0  | Knowledge and Understanding                                                                                 |                     |                             |
| 1.1  | Recognize the separation methods in analytical chemistry, classifications, and solvent extraction technique | Lecture             | Mid-term and final<br>Exams |

| Code | Course Learning Outcomes                                                                                             | Teaching Strategies            | <b>Assessment Methods</b>                                                                              |
|------|----------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------|
| 1.2  | Identify the principles of chromatographic methods and its classification.                                           | Lecture +E-Learning            | Mid-term and final Exams Active participation of students within their group on blackboard             |
| 1.3  | Describe the different types of chromatography and electrophoresis methods.                                          | Self-Directed private<br>Study | Assignments and activities on blackboard                                                               |
| 2.0  | Skills                                                                                                               |                                |                                                                                                        |
| 2.1  | Apply separation methods in analytical chemistry.                                                                    | Lecture<br>E-Learning          | Mid-term and final<br>Exams<br>Active participation of<br>students within their<br>group on blackboard |
| 2.2  | Compare calometric analysis and thermal titrations.                                                                  | Self-Directed private<br>Study | Assignments and activities on blackboard                                                               |
| 2.3  | Explain the principles of chromatographic methods and its classification.                                            | Lecture<br>E-Learning          | Mid-term and final<br>Exams<br>Active participation of<br>students within their<br>group on blackboard |
| 2.4  | Analyze liquid-liquid chromatography and Solid-liquid chromatography.                                                | Lecture                        | Mid-term and final<br>Exams                                                                            |
| 2.5  | Summarize the principles and devices of GC and HPLC.                                                                 | Self-Directed private<br>Study | Assignments and activities on blackboard                                                               |
| 3.0  | Values                                                                                                               |                                |                                                                                                        |
| 3.1  | Ability to work in a team to perform specific experimental tasks and participate in class or laboratory discussions. | Lab work                       | Practical Lab report and<br>Exam                                                                       |
| 3.2  | Ability to work independently to handle chemicals.                                                                   | Lab work                       | Practical Lab report and<br>Exam                                                                       |

## 2. Assessment Tasks for Students

| # | Assessment task*                       | Week Due  | Percentage of Total<br>Assessment Score |
|---|----------------------------------------|-----------|-----------------------------------------|
| 1 | E-learning                             | All weeks | 5%                                      |
| 2 | Assignments and activities             | All weeks | 5%                                      |
| 3 | Mid-term Exam                          | 6         | 20%                                     |
| 4 | Practical Lab Work (Reports and Exams) | 11        | 30%                                     |
| 5 | 5 Final Exam.(2 hours exam) 12         |           | 40%                                     |
|   | Total                                  | 100%      |                                         |

<sup>\*</sup>Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

#### **E. Student Academic Counseling and Support**

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

- We have faculty members to provide counseling and advice.
- Office hours: During the working hours weekly.
- Academic Advising for students

### F. Learning Resources and Facilities

**1.Learning Resources** 

| Required Textbooks                | <ul> <li>Gary D. Christian, Purnendu K. Dasgupta and Kevin A. Schug, Analytical Chemistry, 7th edition, WILEY (2014).</li> <li>Douglas A. Skoog, Donald M. West, James F. Holler and Stanley</li> </ul> |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                   | <ul> <li>R. Crouch, Analytical Chemistry, 7th edition, Springer (2014).</li> <li>Dhruba Charan Dash. Analytical Chemistry )2017( PHI Learning Private Limited.</li> </ul>                               |  |
| Essential References<br>Materials | Lecture handouts available on the coordinator website.                                                                                                                                                  |  |
| Electronic Materials              | <ul> <li>http://www.chemweb.com</li> <li>http://www.sciencedirect.com</li> <li>http://www.rsc.org</li> </ul>                                                                                            |  |
| Other Learning<br>Materials       |                                                                                                                                                                                                         |  |

2. Facilities Required

| Item                                                                                                             | Resources                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)                                         | <ul> <li>Classrooms capacity (30) students.</li> <li>Providing hall of teaching aids including computers and projector.</li> </ul> |
| Technology Resources  (AV, data show, Smart Board, software, etc.)                                               | Room equipped with computer and projector and TV.                                                                                  |
| Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list) | No other requirements.                                                                                                             |

**G.** Course Quality Evaluation

| Evaluation<br>Areas/Issues                         | Evaluators     | Evaluation Methods |
|----------------------------------------------------|----------------|--------------------|
| Effectiveness of teaching and assessment.          | Peer Reviewer  | Direct             |
| Extent of achievement of course learning outcomes. | Program Leader | Direct             |
| Quality of learning resources.                     | Student        | Indirect           |

**Evaluation areas** (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

**Assessment Methods** (Direct, Indirect)

H. Specification Approval Data

| Council / Committee | Quality committee and department counsel |  |
|---------------------|------------------------------------------|--|
| Reference No.       | 1 <sup>st</sup> meeting                  |  |
| Date                | 2022                                     |  |

Head of Chemistry Department

Dr Moataz Morad

