

Course Specifications

Course Title:	Colloids Chemistry and Phase Rule
Course Code:	4022146-1
Program:	Chemistry-Industrial chemistry
Department:	Chemistry
College:	Applied Science
Institution:	Umm Al-qura University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes3	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content4	
D. Teaching and Assessment4	
Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support5	
F. Learning Resources and Facilities5	
1.Learning Resources	5
2. Facilities Required	6
G. Course Quality Evaluation6	
H. Specification Approval Data	

A. Course Identification

1. Credit hours: 1		
2. Course type		
a. University College Department $\sqrt{}$ Others		
b. Required $\sqrt{}$ Elective		
3. Level/year at which this course is offered: 5th level/third Year		
4. Pre-requisites for this course (if any): General Chemistry (2)		
5. Co-requisites for this course (if any):None		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	$\sqrt{}$	78%
2	Blended		
3	E-learning	V	21%
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	11
2	Laboratory/Studio	-
3	Tutorial	-
4	Others (E-learning + Exams + office hours)	6
	Total	17

B. Course Objectives and Learning Outcomes

1. Course Description

The course deals with the basic principles of colloid solutions and their properties, types of colloids and their methods of preparation as well as phase rule and different examples.

2. Course Main Objective

By the end of the study of this course have students familiar with

- the basic concepts of colloid chemistry
- types of colloids and there preparation methods
- properties of colloids and their applications
- basics of phase rule and its important
- examples of phase rule to mono, di and tri component systems

3. Course Learning Outcomes

CLOs		Aligned PLOs
	1 Knowledge and understanding	

	CLOs	Aligned PLOs
1.1	Demonstrate broad knowledge of theories and concepts in colloidal chemistry.	K1
1.2	Identify terminology and substance properties related to colloidal chemistry and phase rule	K2
1.3	Mention the most important developments and applications of colloidal solutions.	К3
2	Skills:	
2.1	Compare between colloids and suspension and true solution.	S1
2.2	Give concise about the characteristics of colloidal solutions.	S2
2.3	Recognize of the characteristics of colloidal solutions.	S2
2.4	Apply the equilibrium curves for different systems.	S1
3	Values:	
3.1	Write and present a chemical report related to Colloids and phase rule	V2

C. Course Content

No	List of Topics	Contact Hours
.1	Definition of colloids with examples.	1
.2	Classification of colloids.	1 E
.3	Theory of colloid stabilization.	1
.4	Methods of colloids preparations.	1
.5	Colloid technology.	1
.6	Colloid properties.	1
.7	Importance of colloids and its importance.	1 E
.8	Definition of phase rule.	1
.9	Physical changes dynamics.	1
.10	Cielus Calpyron Equation.	1
.11	Studying phase rule low.	1
.12	Phase rule of one component system.	1
.13	Phase rule of two component system.	1
.14	Phase rule of three component system.	1 E
Total		14

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Michiga			
Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Demonstrate broad knowledge of theories and concepts in colloidal chemistry.		Assignments and activities
1.2	Identify terminology and substance properties related to colloidal chemistry and phase rule	Lecture	Mid-term and final Exams

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.3	Mention the most important developments and applications of colloidal solutions.	Self-Directed private Study	Assignments
2.0			
2.1	Compare between colloids and suspension and true solution.	Self-Directed private Study	Activities, Mid- term and final Exams
2.2	Give concise about the characteristics of colloidal solutions.	Lecture	Mid-term and final Exams
2.3	Recognize of some of preparation methods of colloidal solutions.	Lecture	Mid-term and final Exams
2.4	Apply the equilibrium curves for different systems.	Lecture E-learning	Mid-term and final Exams Active participation of students within their group on blackboard
3.0	Values		
3.1	Write and present the important applications of Colloids and phase rule in everyday life.	Library visits	Assignments

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Assignments and activities	All weeks	10%
2	E-learning	All weeks	10%
3	Mid-term Exam	6	30%
4	Final Exam. (2 hours exam)	12	50%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

- A faculty member was assigned to provide counseling and advice (about 20-25 student/ one faculty member).
- Office hours of the instructor: during the working hours weekly.

F. Learning Resources and Facilities

1.Learning Resources

2122002111118 21000012000	
Required Textbooks	• Handbook of Applied Surface and Colloid Chemistry, Vol. 1-2, Holmberg, Krister, John Wiley & Sons, New York, 2002. • PHYSICAL CHEMISTRY IN BRIEF, Josef P. Novak, Stanislav Labık, IvonaMalijevska, Institute of Chemical Technology, Prague, 2005.

Essential References Materials	Electronic lecture handouts are available for the students either on blackboard or via their e-mail
Electronic Materials	 http://www.chemweb.com http://www.sciencedirect.com http://www.rsc.org Websites on the internet relevant to the topics of the course
Other Learning Materials	None

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classroom with capacity of (30) students.
Technology Resources (AV, data show, Smart Board, software, etc.)	Teaching halls are equipped with data show projector ad electronic board screen.
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Some Specialized software's for chemistry e.g. Institutional License for Chem Office , ACD labs, etc.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching	Students	Indirect (Online survey at the end of the semester (Program survey, Experience survey &course evaluation) and graduates survey.
Effectiveness of teaching	Faculty members	<u>Direct</u> (classroom observation using the Teaching Observation Concepts and Teaching Observation Proforma
Achievement of course learning outcomes.	Faculty members	<u>Direct</u> (60% of the students achieved \geq 70% of the degree assigned to the course learning outcome).
Assessment of faculty members	Department head	<u>Direct</u> (Performance Assessment of faculty <u>Indirect</u> (feedback from faculty and students).
Quality of learning resources	Students	<u>Direct</u> (feedback from faculty). <u>Indirect</u> (online survey at the end of the semester (Program survey, Experience survey & course evaluation) and graduates survey.
Effectiveness of teaching Strategies for Learning Outcomes.	Faculty members	<u>Direct</u> (Comments of course instructors regarding evaluation of teaching strategies for learning outcomes mentioned in course report).

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

H. Specification Approval Data

Council / Committee	Quality committee and department Council
Reference No.	1 st meeting
Date	2202

Head of Chemistry Department

Dr Moataz Morad

