

Course Specifications

Course Title:	Solution Chemistry and Kinetic Theory of Gases
Course Code:	4024576-2
Program:	Chemistry
Department:	Chemistry
College:	Applied Science
Institution:	Umm Al-Qura University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation7	
H. Specification Approval Data7	

A. Course Identification

1. Credit hours: 2 (theoretical)		
2. Course type		
a. University College Department V Others		
b. Required V Elective		
3. Level/year at which this course is offered: 7 th level/4 th year		
4. Pre-requisites for this course (if any):		
5. Co-requisites for this course (if any):		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	V	100 %
2	Blended		
3	E-learning		
4	Correspondence		
5	Other		

7. Actual Learning Hours (based on academic semester)

No	Activity	Learning Hours	
Contac	Contact Hours		
1	Lecture	30	
2	Laboratory/Studio		
3	Tutorial		
4	Others (specify)		
	Total	30	
Other 2	Other Learning Hours*		
1	Study	30	
2	Assignments	8	
3	Library	3	
4	Projects/Research Essays/Theses	4	
5	Others (specify)	20	
	Total	65	

* The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

B. Course Objectives and Learning Outcomes

1. Course Description

The course deals with the basic principles of solution chemistry, conductivity and ionic strength of solutions as well as the basic concepts of chemistry of electrolytes and diffusion of gases.

2. Course Main Objective

By the end of this course the students will be able to describe and explain: 1. Fundamental principles of solution chemistry.

- Different types of solutions.
 Conductivity and ionic strength of solutions.
- 4. Vant Hoff factor and Debye theory and movement.5. Basic concepts of chemistry of electrolytic solutions and diffusion of gases.

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	Knowledge:	
1.1	Define the principle concepts of solutions.	K3
1.2	Mention the colligative properties of solutions.	K1
1.3	Memorize the transport numbers, ionic strength and distribution of	K3
	molecular velocities.	
1.4	Mention the appropriate methods of determination of ionization	K1
	constant of week electrolyte.	
1.5	List the different ways to determine Vant Hoff factor.	K3
1.6	Recognize the deviation of gases.	K3
1.7	Describe the kinetic theory of gases and its applications.	K1
2	Skills :	
2.1	Explain the colligative properties of solutions	S2
2.2	Give some practical issues and assigning students to create a strategic	S 1
	plan for the solution.	
2.3	Explain the activity, activity coefficient and ionic strength.	S 1
2.4	Apply the predicating skills, analysis and problem solving.	S 2
2.5	Derivate the kinetic theory of gases.	S2
3	Competence:	
3.1	Evaluate results to discover the responsiveness of students to collective	C2
	cooperation.	
3.2	Work effectively both in a team, and independently on solving the	C1
	problems and to conduct some joint reports.	
3.3	Communicate results of work to classmate and participation in class or	C4
	laboratory discussions.	
3.4	Communicate with his lecturer and colleagues.	C4

C. Course Content

No	List of Topics	
1	Basic concepts of solutions.	2
2	Colligative properties of solutions.	4
3	Electrolytic solutions, Faradays law, electrochemical equivalent.	2
4	Electrical conductance applications and Kolwrawsh Law.	2
5	Conductometirc titrations. 2	
6	Transport numbers, ionic migration and Oswald Law.	
7	First periodic exam	2
8	Activity, activity coefficient and ionic strength	2
9	Strong electrolytes theories.	2
10	Kinetic theory of gases and its applications	2
11	Collisions between gas molecules.	2
	OF SCI	

12	Molecular velocities, viscosity of gases, Van der Walls Equation	QURA UUIVE	RSITY	4
13	Second periodic exam.	Eleres All	No and	2
	Total	DEP R	2	30

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

OFS

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge	• •	
1.1	Define the principle concepts of solutions.	Lecture	Quiz
1.2	Mention the colligative properties of solutions.	Web-based study	Quiz
1.3	Memorize the transport numbers, ionicLecturestrength and distribution of molecularQuizvelocities.Quiz		Quiz
1.4	Mention the appropriate methods of determination of ionization constant of week electrolyte.DiscussionExam		Exam
1.5	List the different ways to determine Vant Hoff factor.	Web-based study	Quiz
1.6	Recognize the deviation of gases.	Discussion	Quiz
1.7	Describe the kinetic theory of gases and its applications.	Lecture	Exam
2.0	Skills		
2.1	Explain the colligative properties of solutions	Discussion	Quiz
2.2	Give some practical issues and assigning students to create a strategic plan for the solution.	Lecture	Exam
2.3	Explain the activity, activity coefficient and ionic strength.	Library visits	Short essays
2.4	Apply the predicating skills, analysis and problem solving. Exam		Exam
2.5	Derivate the kinetic theory of gases.	Lecture	Quiz
3.0	Competence		
3.1	Evaluate results to discover the responsiveness of students to collective cooperation.	Discussion	Short essays
3.2	Work effectively both in a team, and independently on solving the problems and to conduct some joint reports.	Lecture	Quiz
3.3	Communicate results of work to classmate and participation in class or laboratory discussions.	Library visits	Exam
3.5	Communicate with his lecturer and colleagues.	Discussion	Quiz

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homework or activities.		10 %
2	First Periodic Exam.	7	20 %
3	Second Periodic Exam.	15	20 %
4	Final Exam.(2 hours exam)	16	50 %

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

- Weekly office hours for discussion with the students.
- Academic advising for students.
- Availability of Staff members to provide counseling and advice.

F. Learning Resources and Facilities

1.Learning Resources

8		
Required Textbooks	 Physical Chemistry, Amazon logo Silbey, R. R. Alberty, Bawendi, 4th ed., John Wiley & Sons, 2004. Physical Chemistry, Peter Atkins & Julio de Paula, 10th ed., W Freeman and Company, 2014. Chemistry, Raymond Chang, 10th Edition, Publisher: Thoma D. Timp, 2014. Solution Chemistry, P. Somasundaran and Dianzuo Wang, Min and Reagents Elseiver 2006 	
Essential References Materials Kinetic Theory of Gases, Walter Kauzmann, Dover Public 2014.		
	• http://www.sciencedirect.com	
Electronic Materials	• http://www.rsc.org	
	• Websites on the internet relevant to the topics of the course	
	• Websites on the internet relevant to the topics of the course	
Other Learning Materials	Not required	

2. Facilities Required

Item	Resources	
Accommodation	Well-equipped lecture halls	
(Classrooms, laboratories, demonstration	wen-equipped lecture nans.	

Item	Resources	
rooms/labs, etc.)		
Technology Resources (AV, data show, Smart Board, software, etc.)	Computer and data show.	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	No other requirements.	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Quality of learning resources	Students	Complete the questionnaire evaluation of the course periodically.
Effectiveness of teaching and assessment.	Program Leaders	Observation of students performing a task.
Extent of achievement of course learning outcomes.	Peer Reviewer	Checking selected exam papers, and student assignments.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee			
Reference No.			
Date	3/3/1441		
Received by: Dr. Isma	il Althagafi	Department Head	

Signature:

Date: 20/12/2019

