

Course Specifications

Course Title:	Kinetic Chemistry
Course Code:	4022144-3
Program:	Chemistry and Industrial Chemistry
Department:	Chemistry
College:	Applied Sciences
Institution:	Umm Al-Qura University

Table of Contents

A. Course Identification3	i
1. Credit hours	3
2. Course type	3
3. Level/year at which this course is offered	3
4. Pre-requisites for this course	3
5. Co-requisites for this course	3
6. Mode of Instruction (mark all that apply)	3
7. Actual Learning Hours (based on academic semester)	3
B. Course Objectives and Learning Outcomes4	
1. Course Description	4
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content4	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support6	I
F. Learning Resources and Facilities6)
1. Learning Resources	6
2. Facilities Required	7
G. Course Quality Evaluation7	'
H Specification Approval Data	

A. Course Identification

1. Credit hours: 3 (2 theoretical + 1 practical)		
2. Course type:		
a. University College Department V Others		
b. Required V Elective		
3. Level/year at which this course is offered: 5 th level/3 rd year		
4. Pre-requisites for this course (if any): Thermodynamics + Volumetric and Gravimetric Analytical Chemistry.		
5. Co-requisites for this course (if any):		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	٧	100 %
2	Blended		
3	E-learning		
4	Correspondence		
5	Other		

7. Actual Learning Hours (based on academic semester)

No	Activity	Learning Hours
Conta	ct Hours	<u> </u>
1	Lecture	30
2	Laboratory/Studio	45
3	Tutorial	
4	Others (specify)	
	Total	75
Other	Learning Hours*	
1	Study	52
2	Assignments	8
3	Library	4
4	Projects/Research Essays/Theses	6
5	Others (specify)	20
	Total	90

^{*} The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

B. Course Objectives and Learning Outcomes

1. Course Description

The course deals with the basic principles of chemical kinetics including reaction rate, rate laws, methods of following a reaction, analyzing the experimental data of a given reaction, description of the fundamentals of catalysis and influence of the catalyst on the reaction rate.

2. Course Main Objective

By the end of this course the students will be able to describe and explain:

- 1. Principles of kinetic chemistry.
- 2. Determination of the rate law from the experimental data.
- 3. Sequence of the elementary steps "mechanism" of a reaction.
- 4. Effect of catalyst on the reaction rate.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge:	
1.1	Recognize the conventional techniques of following a reaction.	K3
1.2	Mention the different reaction orders and their rate laws.	K 1
1.3	Define the reaction rate constant of various reaction orders.	K3
1.4	List the factors affecting the reaction rate.	K1
1.5	Describe the different types of complex reactions and their rate laws.	K3
1.6	Write the catalysis and its effect on the reaction rate.	K3
1.7	Define the kinetics and mechanism of enzymatic reactions.	K1
1.8	Memorize the kinetics and mechanism of photochemical reactions.	K3
1.9	Recognize the reactions in solutions and the kinetics of these reactions.	K1
2	Skills:	
2.1	Compare between the different experimental techniques of following a reaction.	S 1
2.2	Explain the rate-law expressions for different reaction orders.	S 1
2.3	Solve the kinetic problems for all orders.	S2
2.4	Interpret the mechanism of various reactions.	S2
2.5	Solve the kinetic problems relating temperature dependence of the rate constant.	S2
3	Competence:	
3.1	Work in a team to perform a specific experimental tasks.	C2
3.2	Work independently to handle chemicals.	C 1
3.3	Communicate results of work to classmate and participation in class or laboratory discussions	C4
3.4	Work effectively both in a team, and independently on solving chemistry problems.	C3
3.5	Communicate with his lecturer and colleagues	C4

C. Course Content

No	List of Topics	Contact Hours
1	General concepts in chemical kinetics.	2
2	Factors affecting the rate of reaction.	2
3	Conventional techniques of following a reaction.	2

4	Integration of simple rate laws.	2
5	Types of reaction orders.	2
6	Determining the rate law from experimental data.	2
7	Dependence of rate on temperature.	2
8	Theories of chemical reactions.	2
9	Kinetics of complex reactions.	2
10	Effect of catalyst on the reaction rate.	2
11	Kinetics of catalysis by enzymes.	2
12	Kinetics of photochemical reactions.	2
13	Kinetics of reactions in solutions.	4
14	General revision and Mid-Term Exam.	2
	Total	30

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course I coursing Outcomes	Taaahina Stuataaisa	Assessment
	Course Learning Outcomes	Teaching Strategies	Methods
1.0	Knowledge		
1.1	Recognize the conventional techniques of	Lecture and web-	- Short essays
	following a reaction.	based study	- Oral presentation
1.2	Mention the different reaction orders and	Lecture	- Home work of
	their rate laws.		concept mapping
	D (1)	-	- Quiz
1.3	Define the reaction rate constant of	Lecture	Quiz
1 4	various reaction orders.	T .	
1.4	List the factors affecting the reaction rate.	Lecture	Exam
1.5	Describe the different types of complex	T	- Theoretical
	reactions and their rate laws.	Lecture	problems
1 6	White the actalwais and its affect on the		- Quiz
1.6	Write the catalysis and its effect on the reaction rate.	Discussion	Quiz
1.7	Define the kinetics and mechanism of		
1.7	enzymatic reactions.	Discussion	Exam
1.8	Memorize the kinetics and mechanism of		
1.0	photochemical reactions.	Library visits Short essays	
1.9	Recognize the reactions in solutions and	William	
	the kinetics of these reactions.	Web-based study Exam	
2.0	Skills		
2.1	Compare between the different		
	experimental techniques of following a	Discussion	Quiz
	reaction.		
2.2	Explain the rate-law expressions for		-Theoretical
	different reaction orders.	Lecture	problems
			- Exam
2.3	Solve the kinetic problems for all orders.	Lecture	-Numerical
		Web-based study	problem sets
		Jo basea stady	- Exam
2.4	Interpret the mechanism of various	Web-based study	-Theoretical
	reactions.		problems

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
2.5	Solve the kinetic problems relating temperature dependence of the rate constant.	Lecture	Group problem solvingExam
3.0	Competence		
3.1	Work in a team to perform a specific experimental tasks.	Group lab work	Reports
3.2	Work independently to handle chemicals	Lecture	- Participation- Quiz
3.3	Communicate results of work to classmate and participation in class or laboratory discussions	Lecture	Exam
3.4	Work effectively both in a team, and independently on solving chemistry problems.	Group work and Independent study	- Group problem solving - Exam
3.5	Communicate with his lecturer and colleagues	Discussion	- Participation

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homework or activities.		10 %
2	Midterm Exam.	8	20 %
3	Practical Exam.	14	30 %
4	Final Exam.(2 hours exam)	16	40 %

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

- Weekly office hours for discussion with the students.
- Academic advising for students.
- Availability of Staff members to provide counseling and advice.

F. Learning Resources and Facilities

1.Learning Resources

	• An Introduction to Chemical Kinetics, Margaret Robson Wright,
Required Textbooks	New York, John Wiley & Sons, 2004.
	• Kinetics of Chemical Reactions, Guy Marin, Gregory S. Yablonsky,

	John Wiley, 2011. • Chemical Kinetics, Luis Arnaut, Sebastiao Formosinho, Hugh	
	Burrows, 1st ed., Elsevier Science, 2006.	
Essential References Materials	 Physical Chemistry, Amazon logo Silbey, R. R. Alberty, M. Bawendi, 4th ed., John Wiley & Sons, 2004. Physical Chemistry, Peter Atkins & Julio de Paula, 10th ed., W. H. Freeman and Company, 2014. Principles of Chemical Kinetics, Second Edition, James E. House, 2nd ed., Academic Press, 2007. 	
Electronic Materials	 http://www.chemweb.com http://www.sciencedirect.com http://www.rsc.org Websites on the internet relevant to the topics of the course 	
Other Learning Materials	Not required	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Well-equipped lecture halls.
Technology Resources (AV, data show, Smart Board, software, etc.)	Computer and data show.
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	No other requirements.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Quality of learning resources	Students	Complete the questionnaire evaluation of the course periodically.
Effectiveness of teaching and assessment.	Program Leaders	Observation of students performing a task.
Extent of achievement of course learning outcomes.	Peer Reviewer	Checking selected exam papers, and student assignments.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

	-pp
Council / Committee	Dr. Ahmed Fawzy
Reference No.	· ·
Date	

Received by: Dr. Ismail Althagafi

Department Head

Signature:

Date: 20/12/2019