

Course Specifications

Course Title:	Coordination Chemistry
Course Code:	4023564-3
Program:	Chemistry
Department:	Department of Chemistry
College:	Faculty of Applied Science
Institution:	Umm Al-Qura University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes4	
1. Course Description	4
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	6
2. Assessment Tasks for Students	7
E. Student Academic Counseling and Support8	
F. Learning Resources and Facilities8	
1.Learning Resources	8
2. Facilities Required	8
G. Course Quality Evaluation9	
H. Specification Approval Data9	

A. Course Identification

1. Credit hours:
2. Course type
a. University College Department V Others
b. Required V Elective
3. Level/year at which this course is offered: 6^{th} level / 3^{rd} year
4. Pre-requisites for this course (if any): Chemistry of Transition Elements
5. Co-requisites for this course (if any):None

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	V	100 %
2	Blended		
3	E-learning		
4	Correspondence		
5	Other		

7. Actual Learning Hours (based on academic semester)

No	Activity	Learning Hours			
Conta	Contact Hours				
1	Lecture	30			
2	Laboratory/Studio	42			
3	Tutorial				
4	Others (specify)				
	Total	72			
Other	Learning Hours*				
1	Study	51			
2	Assignments	10			
3	Library	3			
4	Projects/Research Essays/Theses	3			
5	Others(specify)	22			
	Total	89			

*The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

B. Course Objectives and Learning Outcomes

1. Course Description

This course deals with the main subjects in coordination chemistry including importance, nomenclature, isomerism, geometry, preparation, electronic and IR spectra, and biological activity of the metal complexes as well as theories explaining bonding in coordination compounds.

2. Course Main Objective

By ending this course, students should be familiar with:

a. The importance, nomenclature, isomerism, geometry, preparation of the metal complexes.

b. The different theories explaining the bonding in coordination compounds.

c. The magnetic, biological, electronic and IR spectral properties of metal complexes.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge:	
1.1	Describe the nature, types and importance of coordination compounds.	К3
1.2	Explain the preparation methods of coordination compounds.	K4
1.3	Write the nomenclature of coordination compounds using the laws of	K1
	naming, and recognize their chemical and physical properties.	
1.4	Discuss the mode of bonding in metal complexes using bonding theories.	K3
1.5	Mention the important applications of metal complexes.	K6
2	Skills :	
2.1	Confirm the molecular formula of metal complexes.	S1
2.2	Estimate the type of metal complex.	S2
2.3	Apply the analytical calculations to determine the complex geometry.	S7
2.4	Design scientific methods and think to solve problems concerning the	S2
	course.	
2.5	Work in teamwork to perform specific experimental tasks.	S8
2.6	Prepare transitional metal complexes and suggest the mechanics of	S4
	formation of metallic compounds.	
3	Competence:	
3.1	Evaluate the different methods of preparation of inorganic compounds.	C4
3.2	Dispose the hazardous solution in right way.	
3.3	Bind coordination geometry to chemical properties such as magnetic properties and spectra of compounds.	C3

CLOs		Aligned PLOs
3.4	Handle chemicals safely, independently.	C2
3.5	Communicate results of work to classmate and participate in class or laboratory discussions.	C1

C. Course Content

No	List of Topics	Contact Hours	
1	Introduction to the chemistry of coordination compounds - Werner theory		
1	of coordination compounds - Effective atomic number.		
	Ligands - nomenclature of metal complexes - symmetry in metal	2	
2	complexes.		
0	Valence bond theory - coordination numbers and geometrical structures -	4	
3	inner and outer complexes.		
	Stability of metal complexes; factors affecting the stability of metal	4	
4	complexes - ionic and ionization potential - geometrical arrangement of		
	ligands around the central metal ion - metal chelates.		
	Crystal field theory; ligand field in octahedral complexes - ligand field in	4	
F	tetrahedral complexes - ligand field in square planer complexes - Jahn-		
2	⁵ Teller effect (distortion from symmetrical arrangement) – crystal field		
	stabilization energies.		
(Preparation of coordination compounds (complexes); direct reactions –		
0	6 oxidation and reduction reactions – thermal decomposition reactions.		
7	7 Electronic spectrum of complexes - infrared spectra of the metal complexes.		
8	Metal complexes of significant biological activities.		
	Total	30	
NT	Practical Part:	Contact	
No	List of Topics	Hours	
1	Introduction about coordination chemistry and safety rules in labs.	3	
2	Preparation of [Cu(en) ₂](NO ₃) ₂		
3	Preparation of [Co(NH ₃) ₅ Cl]Cl ₂	3	
4	Preparation of $K_3[Cr(C_2O_4)_3]$	3	
5	Preparation of [Ni(en) ₃]Cl ₂ .2H ₂ O	3	
6	Preparation of [Fe(acac) ₃]	3	
7	Melting points of the metal complexes.	3	

8	Solubility of the metal complexes.	3	
9	9 Conductivity of the metal complexes.		
10	10 Application of UV-Vis spectroscopy in determining different types of electronic transitions in some complexes.		
11	Investigation of different function groups in some complexes using IR spectral measurement.	6	
12	Final practical exam.	3	
	Total	42	

D. Teaching and Assessment1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods	
1.0	Knowledge	8 8		
1.1		Scientific discussion	Mid-tern and final	
	importance of coordination compounds.	and web based study	written exams.	
1.2	Explain the preparation methods of coordination compounds.	Lecture and web based study.	Mid-tern and final written exams.	
1.3	Write the nomenclature of	Lecture and scientific	Mid-tern and final	
	coordination compounds using the laws of naming, and recognize their chemical and physical properties.	discussion	written exams.	
1.4	Discuss the mode of bonding in metal	Lecture and web based	Mid-tern and final	
	complexes using bonding theories.	study.	written exams.	
1.5	Mention the important applications of	Lecture and library	Mid-tern and final	
	metal complexes.	based study.	written exams.	
2.0	Skills			
2.1	Confirm the molecular formula of	Scientific discussion	Final exam and	
	metal complexes.	and library based	measuring the	
		activities.	response to the	
			assignments.	
2.2	Estimate the type of metal complex.	Lecture and web based		
		study.	assignments.	

Code	Course Learning Outcomes	Teaching	strategies	Assessment Methods
2.3	Apply the analytical calculations to	Scientific	discussion	Final exam and
	determine the complex geometry.	and libra	ary based	measuring the
		activities.		response to the
				assignments.
2.4	Design scientific methods and think to	Scientific	discussion	Final exam and
	solve problems concerning the course.	and libra	ary based	measuring the
		activities.		response to the
				assignments.
2.5	Work in teamwork to perform	Practical	experiments	Evaluate the results
	specific experimental tasks.		and web-	of collective works
			studies in	and duties as well as
		groups.		knowing the
				contribution of each
				individual in labs.
2.6	Prepare transitional metal complexes	Lecture,	scientific	Practical and written
	and suggest the mechanics of	discussion	and	exams.
	formation of metallic compounds. practical experiment		xperiments.	
3.0	Competence			
3.1	Evaluate the different methods of	Lecture	and web-	Checking
	preparation of inorganic compounds.	based stud	lies.	performance in
				written and practical
				exams.
3.2	Dispose the hazardous solution in right	Practical	work and	Practical and written
	way.	scientific o	discussion	exams.
3.3	Bind coordination geometry to	Lecture an	nd scientific	Periodic and final
	chemical properties such as magnetic	discussion	s.	written exams.
3.4	properties and spectra of compounds. Handle chemicals safely,	Practical	work and	Practical and written
	independently.	scientific o	discussion	exams.
3.5	Communicate results of work to	Practical	works and	Practical exams and
classmate and participate in class or			roup duties.	group presentations.
Asses	laboratory discussions.		-	
#	Assessment task*		Week Due	Percentage of Total
#	Assessment task*		week Due	Assessment Score

#	Assessment task*	Week Due	Percentage of Total Assessment Score
2	Midterm Exam.	8	20 %
3	Practical Exams.	14	30 %
4	Final Exam. (2 hours exam)	16	40 %

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

- Availability of Staff members to provide counseling and advice.
- Office hours: During the working hoursweekly.

F. Learning Resources and Facilities

1.Learning Resources

1.Learning Resources	
Required Textbooks	• P. L. Soni, Vandna Soni, Coordination Chemistry: Metal Complexes,
	CRC Press, 2013.
Essential References Materials	• Geoffrey A. Lawrance, Introduction to Coordination Chemistry,
	John Wiley & Sons, 2009.
	• William L. Jolly, Modern Inorganic Chemistry; (2 nd edition)
	McGraw-Hill, New York, 1991.
	• Kazuo Nakamoto, Infrared and Raman Spectra of Inorganic and
	Coordination Compounds, John Wiley &Sons, 2009
Electronic Materials	• http://www.chemweb.com
	• http://www.sciencedirect.com
	• http://www.rsc.org
Other Learning Materials	None

2. Facilities Required

Item	Resources				
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Equipped lecture halls and laboratories equipped specializing in inorganic chemistry.				
Technology Resources (AV, data show, Smart Board, software, etc.)	Roomequippedwithcomputers, data show and TV.				
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Noother requirements.				

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods		
Effectiveness of teaching and assessment.	Program Leaders	Periodic reviewof final exams and the student's degrees in this course.		
Extent of achievement of course learning outcomes.	Peer Reviewer	Checking selected exam papers, and student assignments.		
Quality of learning resources	Students	Complete thequestionnaireevaluation of the coursein particular		

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality oflearning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods(Direct, Indirect)

H. Specification Approval Data

Council / Committee					
Reference No.					
Date					
Received by: Dr. Ismai	il Althagafi	Denar	tment Head		

fort

Signature:

