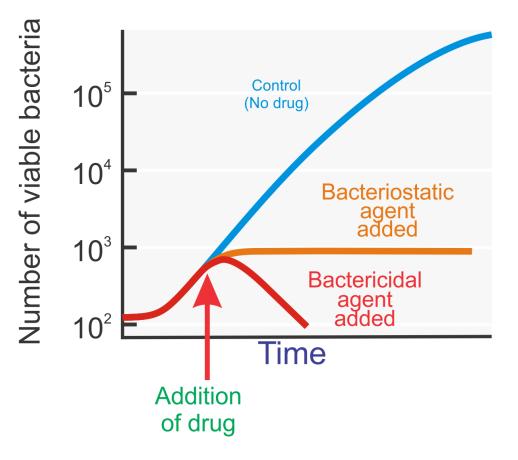
Lecture 6

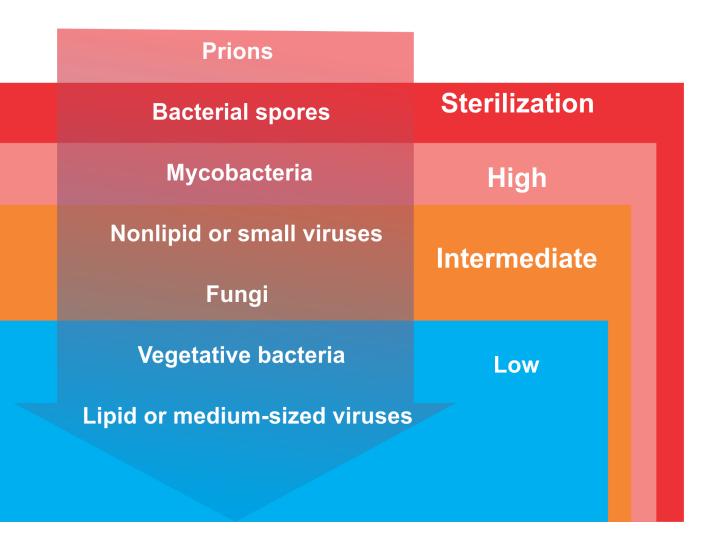
Sterilization and Disinfection


Objectives

Define	Define [bactericidal, bacteriostatic, sterilization, disinfection]	
Order	Order types of microorganisms according to level of resistance and identify most resistant types.	
Classify	Classify methods of sterilization by heat; explain the principle and enumerate applications of each method.	
Explain	Explain the principle and operating conditions of autoclave and hot air oven.	
Explain	Explain the principle and enumerate applications of sterilization by filtration and sterilization by irradiation	
Enumerate	Enumerate categories of disinfectants; give examples of some commonly used disinfectants and identify their applications.	

Definitions

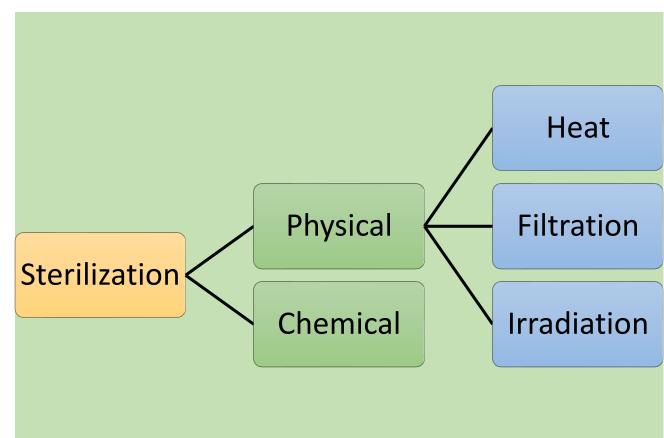
Term	Definition
Bacteri <mark>cidal</mark>	Kills bacteria
Bacteriostatic	Inhibits growth of bacteria


Definitions

Term	Definition
Sterilization	Removal or killing of all living microorganisms including bacteria and their spores.
Disinfection	Removal or killing of disease-causing microorganisms (not necessarily all microorganisms).
Antisepsis	The removal or killing of disease-causing microorganisms from the surfaces of living tissues .

Relative resistance

- Microorganisms differ in their resistance to disinfection and sterilization processes
- Bacterial endospores are the most resistant.

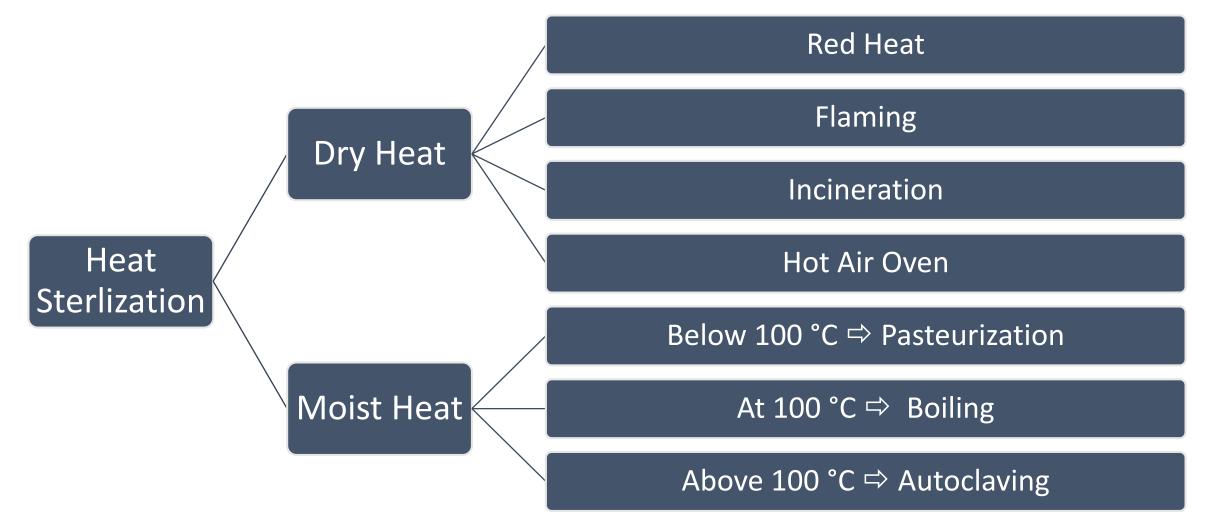

Methods of sterilization:

There are two methods of sterilization:

A- <u>Physical methods</u>:

- 1. Sterilization by Heat
- 2. Sterilization by Filtration
- 3. Sterilization by Irradiation

B- Chemical methods

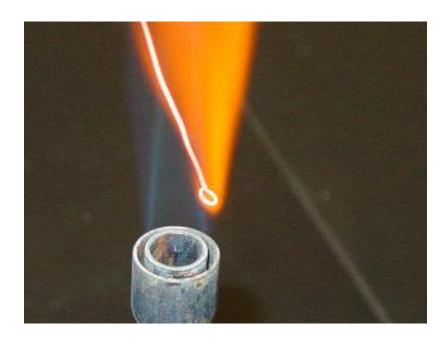

A. Sterilization by heat

Sterilization by heat

- Heat is the **most practical**, **reliable**, and **inexpensive** method of sterilization.
- It is used for sterilization of objects and materials that can <u>withstand</u> high temperatures.
- It can be either:
 - Dry heat
 - Moist Heat

Methods of Sterilization by Heat

1. Red Heat


Principal:

Holding object in Bunsen flame till they become red hot.

Used for:

Sterilization of:

- Bacteriological loops
- Tips of forceps

2. Flaming

Principal:

Passing the object through the flame of Bunsen burner without heating to redness.

Used for:

Sterilization of:

- glass slides
- mouth of culture tubes.

3. Incineration

Principal:

Infective materials is converted to sterile ash by burning in incinerator.

Used for:

Destruction of contaminated disposable materials (waste).

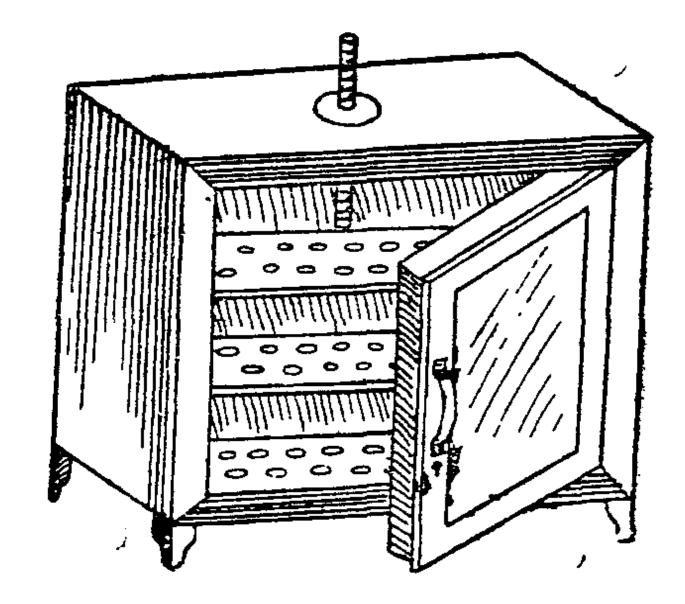
4. Hot air oven

Principle:

- Articles to be sterilized are exposed to high temperature in an electrically heated oven.
- Even distribution of heat throughout the chamber is achieved by a fan.

Holding time:

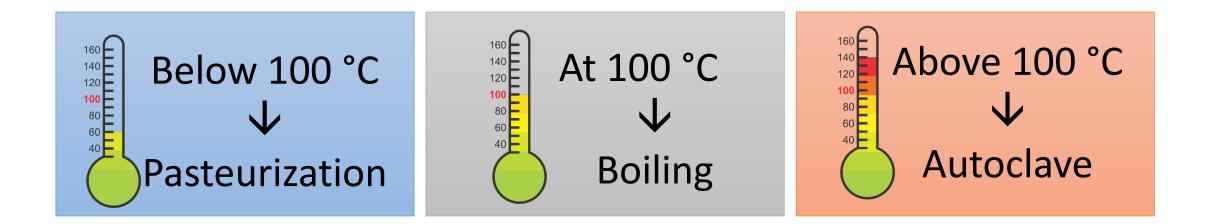
- 160°C for two hour
- 180°C for one hour



4. Hot air oven

Used for Sterilization of:

- All **glasses**: test tubes, Petri dishes, flasks, pipettes.
- Instruments: as forceps, scalpels, scissors, etc.
- Dry material in sealed containers as fat, oils, powder.



Hot air oven

Moist Heat

Can be used at different temperatures:

1. Pasteurization (Below 100)

Principal:

Pasteurization is a process of **heating** a liquid to a specific temperature for a definite length of time and then **cooling** it **immediately**.

Used for:

Pasteurization is commonly used in milk processing.

2. Boiling (At 100 °C)

Principle:

Boiling in water for fifteen minutes will kill most vegetative bacteria and inactivate viruses.

However boiling is ineffective against many bacterial and fungal spores.

Used for:

Boiling water is used for disinfection of drinking water in emergency situations.

3. Autoclaving (above 100 °C)

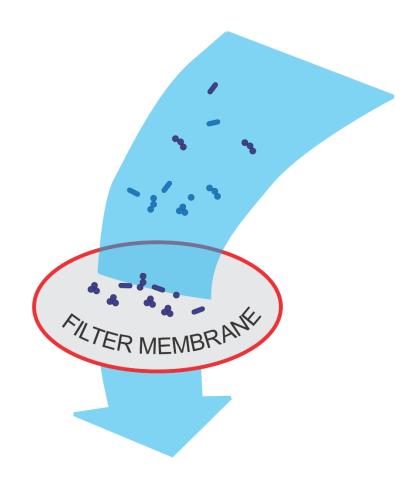
Principle:

- When the pressure is increased inside a closed container, the temperature at which water boils exceeds 100°C.
- At double atmospheric pressure the temperature of the steam reaches 121°C.
- Autoclaving is the most reliable method of sterilization that kills all kinds of bacteria and spores.

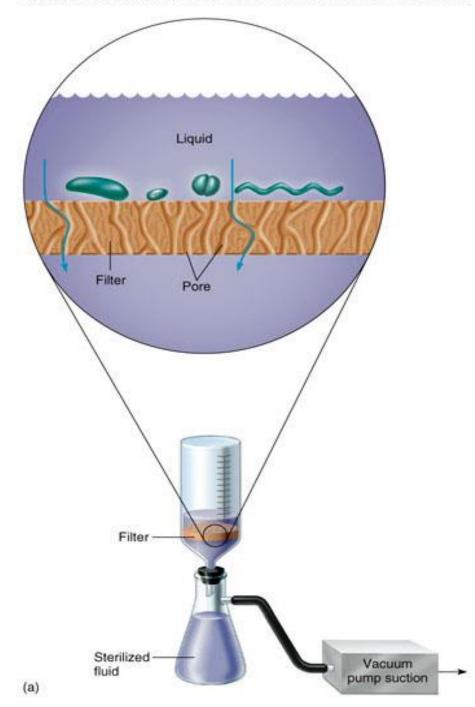
3. Autoclaving

Temperature of sterilization:

- 121°C for 20 – 30 minutes.


Used for sterilization of:

- Culture media.
- Surgical supply e.g. dressing, and surgical instruments.

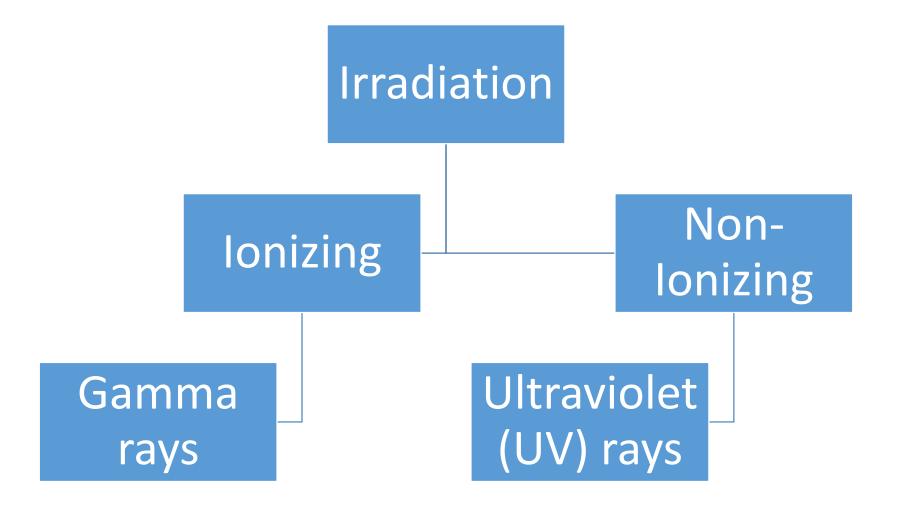


Filtration

Filtration

It is possible to remove bacteria from fluids by passing them through filters with pores so small that bacteria are arrested.

Filtration


 Filtrations is used to sterilize liquids that would be damaged by heat as sera, antibiotic solutions and vaccines.

C-Sterilization by irradiation

Sterilization by irradiation

Ultraviolet radiation

Used for.

- 1. Sterilization of operating theatre.
- 2. Sterilization of the interiors of biological safety cabinets.

Ionizing irradiation (gamma rays)

 Used for sterilization of an article not stand heat as rubber catheters, gloves, plastic syringes.

Chemical methods of Sterilization

Disinfectant/Antiseptics

- **Disinfectant:**
- Are chemical materials used for sterilization but are toxic to the human tissues and cells.
- Antiseptics:
- Are chemicals for sterilization but not toxic to the human body e.g. "mouth gargles".

Examples of disinfectant and antiseptics

There are a number of chemicals that can act as disinfectants or antiseptics. These include:

- Phenol and its derivatives e.g. Chloroxylenol (Dettol).
- Halogens e.g. Chlorine, povidone iodine (Betadine).
- Alcohols e.g. ethyl alcohol.
- Aldehydes e.g. glutaraldehyde (Cidex), Formalin.
- Quaternary Ammonium Compounds (Cationic detergents).

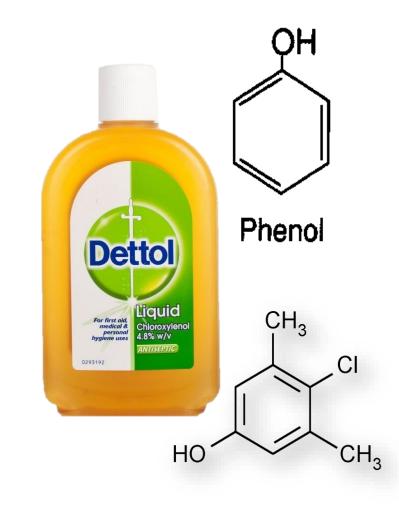
Alcohols

- Ethyl alcohol and isopropyl alcohol are the two most widely used.
- Alcohol is commonly used as a skin antiseptic and is commonly used prior to injection.
- Alcohol-based (about 62% alcohol) hand rubs are very popular for sanitizing hands when hands are not visibly soiled.

- Chlorine and iodine are the only two routinely used halogens.
- Chlorine gas has been employed to disinfect public water-supplies.
- Sodium hypochlorite (NaOCl), is used as a household disinfectant (Clorox).

Cl

Br



- Iodines are used mainly for skin disinfection and wound treatment.
- The most common commercial iodine preparation is Betadine, which is a *povidone-iodine*.

Phenols

- Phenol is the *oldest* known disinfectant, but rarely used currently, because it *irritates* the skin and has a disagreeable *odor.*
- Phenolics are phenol derivatives that are less irritating and more active.
- Example: Chloroxylenol is used in antiseptic and disinfectants solutions e.g. Dettol.

Examples of some commonly used disinfectants

Quizzes

1. Sterilization in autoclave is considered Sterilization by:

- A. Dry heat
- B. Moist heat
- C. Irradiation
- D. Filtration

2. Sterilization in autoclave is done at temperature of:

- A. 121°C for 20 minutes
- B. 180°C for 2 hours
- C. 180°C for 20 minute
- D. 121°C for 2 hours

Dry heat sterilization can be achieved by:

- A. Autoclave
- B. Hot air oven
- C. Boiling
- D. Incubator

4. Moist Heat sterilization can be achieved by:

- A. Autoclave
- B. Incineration
- C. Flaming
- D. Hot air oven

5. An agent that inhibit the growth of bacteria is:

- A. Bactericidal
- B. Bacteriostatic.

6. Bacteriostatic agent means:

- A. Which inhibit growth of bacteria.
- B. Which stimulate growth of bacteria.
- C. Which kills the bacteria.

7. Sterilization in Hot air oven is done at:

- A. at 121°C for 20 minutes
- B. at 180°C for 2 hours
- C. at 180°C for 20 minute
- D. at 160° C for 2 hours.

8. How can you sterilize culture media

- A. Boiling
- B. Incineration
- C. Autoclaving
- D. Hot air oven
- E. Filtration
- F. UV radiation.

9. How can you sterilize sera

- A. Boiling
- B. Incineration
- C. Autoclaving
- D. Hot air oven
- E. Filtration
- F. UV radiation

10. How can you sterilize Oil/powders

- A. Boiling
- B. Incineration
- C. Autoclaving
- D. Hot air oven
- E. Filtration
- F. UV radiation

11. How can you sterilize Bacteriological loops

- a) Boiling
- b) Red Heat
- c) Autoclaving
- d) Hot air oven
- e) Filtration
- f) UV radiation
- g) Gamma rays

12. How can you sterilize interiors of biological safety cabinets:

- a) Boiling
 b) Incineration
 c) Autoclaving
 d) Hot air oven
 e) Filtration
 f) UV radiation
- g) Gamma rays

13. How can you sterilize glassware e.g. test tubes:

a) Boiling
b) Incineration
c) Hot air oven
d) Filtration
e) UV radiation
f) Gamma rays

14. How can you sterilize plastic syringes:

a) Boiling
b) Incineration
c) Hot air oven
d) Filtration
e) UV radiation
f) Gamma rays

15. True or False

- a) Bactericidal inhibits growth of bacteria
- b) Bacteriostatic inhibits growth of bacteria
- c) Sterilization is the removal or killing of disease-causing microorganisms
- d) Disinfection is the removal or killing of disease-causing microorganisms
- e) Objects can be sterilized in hot air oven at 160°C for 20 minutes

Skin can be sterilized by using:

- a) Antibiotics
- b) Disinfectant
- c) Irradiation
- d) Antiseptic