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Chapter 1: 
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Methods 
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Why use Numerical Methods? 

• To solve problems that cannot be solved exactly 
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INTRODUCTION 



Why use Numerical Methods? 

• To solve problems that are intractable! 
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How do we solve an engineering 

problem? 

Problem Description 

Mathematical Model 

Solution of Mathematical Model 

Using the Solution 
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1. Introduction to Numerical Methods 

 

 
Mathematical Procedures 

http://numericalmethods.eng.usf.edu 
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Mathematical Procedures 

• Nonlinear Equations 

• Differentiation 

• Simultaneous Linear Equations 

• Curve Fitting 

– Interpolation 

– Regression 

• Integration 

• Ordinary Differential Equations 

• Other Advanced Mathematical Procedures: 

– Partial Differential Equations 

– Optimization 

– Fast Fourier Transforms 

Introduction to Numerical Methods 
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Nonlinear Equations 
How much of the floating ball is under water? 

010993.3165.0 423  xx

Diameter=0.11m 

Specific Gravity=0.6 
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Nonlinear Equations 
How much of the floating ball is under the water? 

010993.3165.0)( 423  xxxf
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Differentiation 

What is the acceleration 
at t=7 seconds? 

dt

dv
a t.

t
 v(t) 89

50001016

1016
ln2200

4

4
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Differentiation 

Time (s) 5 8 12 

Vel (m/s) 106 177 600 

What is the acceleration at t=7 seconds? 

dt

dv
a 
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Simultaneous Linear Equations 
Find the velocity profile, given 

,)( 2 cbtattv 

Three simultaneous linear equations 

106525  cba

125  t

177864  cba

60012144  cba

Time (s) 5 8 12 

Vel (m/s) 106 177 600 
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Interpolation 
What is the velocity of the rocket at t=7 seconds? 

Time (s) 5 8 12 

Vel (m/s) 106 177 600 
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Regression 
Thermal expansion coefficient data for cast steel 
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Regression (cont) 



http://numericalmethods.eng.usf.edu 15 

Integration 



fluid

room

T

T

dTDD  

Finding the diametric contraction in a steel shaft when 
dipped in liquid nitrogen. 
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Ordinary Differential Equations 
How long does it take a trunnion to cool down? 

),( ahA
dt

d
mc 


 room )0(



Additional Resources 

For all resources on this topic such as digital audiovisual 

lectures, primers, textbook chapters, multiple-choice tests, 

worksheets in MATLAB, MATHEMATICA, MathCad and 

MAPLE, blogs, related physical problems, please visit 

 

http://numericalmethods.eng.usf.edu/topics/introduction_nu

merical.html 

http://numericalmethods.eng.usf.edu/topics/gaussian_elimination.html
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2. Measuring Errors 
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Why measure errors? 

1) To determine the accuracy of numerical 

results. 

2) To develop stopping criteria for iterative 

algorithms. 
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True Error 

• Defined as the difference between the true value 

in a calculation and the approximate value found 

using a numerical method etc. 

 

True Error = True Value – Approximate Value 
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Example—True Error  

The derivative, )(xf  of a function )(xf can be  

approximated by the equation, 

h

xfhxf
xf

)()(
)('




If 
xexf 5.07)(  and  3.0h

a) Find the approximate value of )2('f

b) True value of  )2('f

c) True error for part (a) 
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Example (cont.) 

Solution: 

a) For 2x and 3.0h

3.0

)2()3.02(
)2('

ff
f




3.0

)2()3.2( ff 


3.0

77 )2(5.0)3.2(5.0 ee 


3.0

028.19107.22 
 263.10
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Example (cont.) 

Solution: 

b) The exact value of )2('f can be found by using 

our knowledge of differential calculus. 
xexf 5.07)( 

xexf 5.05.07)(' 
xe 5.05.3

)2(5.05.3)2(' ef 

So the true value of  )2('f is 

5140.9

True error is calculated as 
tE True Value – Approximate Value 

722.0263.105140.9 
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Relative True Error 

• Defined as the ratio between the true 
error, and the true value. 

 
Relative True Error ( t ) =  

True Error 

True Value 
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Example—Relative True Error 

Following from the previous example for true error,  

find the relative true error for xexf 5.07)(  at )2('f

with  3.0h

722.0tE

From the previous example, 

Value True

 ErrorTrue
t

Relative True Error is defined as  

5140.9

722.0
 075888.0

as a percentage, 
%100075888.0 t %5888.7
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Approximate Error 

• What can be done if true values are not 
known or are very difficult to obtain? 

• Approximate error is defined as the 
difference between the present 
approximation and the previous 
approximation. 

 
Approximate Error ( aE ) = Present Approximation – Previous Approximation  
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Example—Approximate Error 

For  xexf 5.07)(  at  2x find the following, 

a)  )2(f  using 3.0h

b) )2(f  using 15.0h

c) approximate error for the value of )2(f  for part b) 

Solution: 

a) For 

h

xfhxf
xf

)()(
)('




2x and 3.0h

3.0

)2()3.02(
)2('

ff
f
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Example (cont.) 

3.0

)2()3.2( ff 


Solution: (cont.) 

3.0

77 )2(5.0)3.2(5.0 ee 


3.0

028.19107.22 
 263.10

b) For  2x and 15.0h

15.0

)2()15.02(
)2('

ff
f




15.0

)2()15.2( ff 
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Example (cont.) 

Solution: (cont.) 

15.0

77 )2(5.0)15.2(5.0 ee 


15.0

028.1950.20 
 8800.9

c) So the approximate error, aE is 

 aE Present Approximation – Previous Approximation 

263.108800.9 

38300.0
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Relative Approximate Error 

• Defined as the ratio between the 
approximate error and the present 
approximation. 

 

Relative Approximate Error (  
Approximate Error 

Present Approximation 
a ) = 
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Example—Relative Approximate Error 

For 
xexf 5.07)(  at 2x , find the relative approximate 

error using values from  3.0h and 15.0h

Solution: 

From Example 3, the approximate value of  263.10)2( f

using 3.0h and 8800.9)2( f using 15.0h

 aE Present Approximation – Previous Approximation 

263.108800.9 

38300.0
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Example (cont.) 

Solution: (cont.) 

a

Approximate Error 

Present Approximation 

8800.9

38300.0
 038765.0

as a percentage, 
%8765.3%100038765.0 a

Absolute relative approximate errors may also need to 
be calculated, 

|038765.0| a %8765.3or038765.0
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How is Absolute Relative Error used as a 

stopping criterion? 

If sa    || where  s is a pre-specified tolerance, then 

no further iterations are necessary and the process is 
stopped. 

If at least m  significant digits are required to be 
correct in the final answer, then 

%105.0|| 2 m

a
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Table of Values 

For 
xexf 5.07)(  at 2x with varying step size,  h

0.3 10.263 N/A 0 

0.15 9.8800 3.877% 1 

0.10 9.7558 1.273% 1 

0.01 9.5378 2.285% 1 

0.001 9.5164 0.2249% 2 

h )2(f  a m



Additional Resources 

For all resources on this topic such as digital audiovisual 

lectures, primers, textbook chapters, multiple-choice tests, 

worksheets in MATLAB, MATHEMATICA, MathCad and 

MAPLE, blogs, related physical problems, please visit 

  

http://numericalmethods.eng.usf.edu/topics/measuring_erro

rs.html 
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3. Sources of Error 
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Two sources of numerical error 

1) Round off error 

2) Truncation error 
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Round-off Error 

 
http://numericalmethods.eng.usf.edu 
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Round off Error 

• Caused by representing a number 

approximately 
 

333333.0
3

1


...4142.12 
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Truncation Error 
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Truncation error 

• Error caused by truncating or 

approximating a mathematical 

procedure. 
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Example of Truncation Error 

Taking only a few terms of a Maclaurin series to 

approximate  

....................
!3!2

1
32


xx

xex

xe

If only 3 terms are used, 











!2
1  

2x
xeErrorTruncation x
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Another Example of Truncation 

Error 

Using a finite  x to approximate  )(xf 

x

xfxxf
xf






)()(
)(

P 

Q 

secant line 

tangent line 

Figure 1. Approximate derivative using finite Δx 
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Another Example of Truncation 

Error 

Using finite rectangles to approximate an 
integral. 

y = x
2 

0

30

60

90

0 1.5 3 4.5 6 7.5 9 10.5 12

y

x
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Example 1 —Maclaurin series 

Calculate the value of  
2.1e with an absolute 

relative approximate error of less than 1%. 

...................
!3

2.1

!2

2.1
2.11

32
2.1 e

n 

1 1 __ ___ 

2   2.2 1.2 54.545 

3 2.92 0.72 24.658 

4 3.208 0.288 8.9776 

5 3.2944 0.0864 2.6226 

6 3.3151 0.020736 0.62550 

aE %a
2.1e

6 terms are required.  How many are required to get 
at least 1 significant digit correct in your answer? 
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Example 2 —Differentiation  

Find )3(f  for  
2)( xxf  using 

x

xfxxf
xf






)()(
)(

and 2.0x

2.0

)3()2.03(
)3('

ff
f




2.0

)3()2.3( ff 


2.0

32.3 22 


2.0

924.10 


2.0

24.1
 2.6

The actual value is 

,2)(' xxf  632)3(' f

Truncation error is then, 2.02.66 

Can you find the truncation error with  1.0x
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Example 3 — Integration  

Use two rectangles of equal width to 
approximate the area under the curve for 

2)( xxf  over the interval ]9,3[

y = x
2 

0

30

60

90

0 3 6 9 12

y

x


9

3

2dxx
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Integration example (cont.) 

)69()()36()(
6

2

3

2

9

3

2 
 xx

xxdxx

3)6(3)3( 22 

13510827 

Choosing a width of 3, we have 

Actual value is given by 


9

3

2dxx

9

3

3

3










x
234

3

39 33








 


Truncation error is then 

99135234 

Can you find the truncation error with 4 rectangles? 



Additional Resources 

For all resources on this topic such as digital audiovisual 

lectures, primers, textbook chapters, multiple-choice tests, 

worksheets in MATLAB, MATHEMATICA, MathCad and 

MAPLE, blogs, related physical problems, please visit 

  

http://numericalmethods.eng.usf.edu/topics/sources_of_err

or.html 
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4. Binary Representation 
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How a Decimal Number is 

Represented 

21012 10610710710510276.257  
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Base 2 

1875.11

)21212020(

)21212021(
)0011.1011(

10

4321

0123

2
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Convert Base 10 Integer to binary 

representation  

Table 1   Converting a base-10 integer to binary representation. 

Quotient Remainder 

11/2 5 

5/2 2 

2/2 1 

1/2 0 

01 a

11 a

20 a

31 a

Hence 

2

2012310

)1011(

)()11(



 aaaa
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Start 

Input (N)10 

    i = 0 

Divide N by 2 to get 
quotient Q & remainder R 

ai = R 

Is Q = 0? 

n = i 
(N)10 = (an. . .a0)2 

STOP 

Integer N to be 
converted to binary 

format 

i=i+1,N=Q 

No 

Yes 
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Fractional Decimal Number 

to Binary 

Number Number after 
decimal 

Number before 
decimal 

0.375 0.375 

0.75 0.75 

1.5 0.5 

1.0 0.0 

Table 2.  Converting a base-10 fraction to binary representation. 

10  a

20  a

31  a

41  a

Hence 

2

2432110

)0011.0(

)()1875.0(



  aaaa

21875.0 

2375.0 

275.0 

25.0 
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Start 

Input (F)10 

Multiply F by 2 to get 
number before decimal, 
S and after decimal, T 

ai = R 

Is T =0? 

n = i 
(F)10 = (a-1. . .a-n)2 

STOP 

Fraction F to be 
converted to binary 
format 

No 

Yes 

T  F1,ii

1i 
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Decimal Number to Binary 

   
210 ?.?1875.11 

210 )1011()11( 

210 )0011.0()1875.0( 

and 

we have 

210 )0011.1011()1875.11( 

Since 
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All Fractional Decimal Numbers 

Cannot be Represented Exactly  

Number 
Number 

after 
decimal 

Number 
 before 
Decimal 

0.6 0.6 

1.2 0.2 

0.4 0.4 

0.8 0.8 

1.6 0.6 

Table 3.  Converting a base-10 fraction to approximate binary representation. 

23.0 
26.0 

22.0 
24.0 
28.0 

10  a

21  a

30  a

40  a

51  a

28125.0)01001.0()()3.0( 225432110   aaaaa
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Another Way to Look at Conversion  

Convert                 to base 2  101875.11

 

 2

0123

013

13

3

10

1011

21212021

222

122

3211
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60 

 

 2

4321

43

3

10

0011.

21212020

22

0625.021875.0















   210 0011.10111875.11 



Additional Resources 

For all resources on this topic such as digital audiovisual 

lectures, primers, textbook chapters, multiple-choice tests, 

worksheets in MATLAB, MATHEMATICA, MathCad and 

MAPLE, blogs, related physical problems, please visit 

 

http://numericalmethods.eng.usf.edu/topics/binary_represe

ntation.html 
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5. Floating Point Representation 
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Floating Decimal Point : Scientific Form 

2

3

2

10.56782 as written is 78.256

10678.3 as written is 003678.0

105678.2 as written is 78.256
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Example 

exponent10mantissasign 

The form is 
 
or  
 
Example: For 
 
 
  

em 10

2105678.2 

2

5678.2

1







e

m
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Floating Point Format for Binary 

Numbers 

 

     mm

my e

22 101 mantissa

ve-for  1 ve,for  0number   ofsign 

2











1 is not stored as it is always given to be 1. 

exponentinteger e
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Example 

     

   
22

5

2210

1011011.1

21011011.111.11011075.54





9 bit-hypothetical word 

the first bit is used for the sign of the number,  
the second bit for the sign of the exponent,   
the next four bits for the mantissa, and 
the next three bits for the exponent  

 

 We have the representation as 

0 0 1 0 1 1 1 0 1 

Sign of the 
number 

mantissa 
Sign of the 
exponent 

exponent 
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Machine Epsilon 

Defined as the measure of accuracy and found 
by difference between 1 and the next number 
that can be represented  
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Example 

Ten bit word 

Sign of number 
Sign of  exponent 
Next four bits for exponent 
Next four bits for mantissa 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 

4210625.1 mach

Next 
number 

 101

   102 0625.10001.1 
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Relative Error and Machine 

Epsilon 

The absolute relative true error in representing 
a number will be less then the machine epsilon 

Example 
   

   20110

2

5

210

21100.1

21100.102832.0









10 bit word (sign, sign of exponent, 4 for exponent, 4 for mantissa) 

0 1 0 1 1 0 1 1 0 0 

   

0625.02034472.0

02832.0

0274375.002832.0

0274375.021100.1

4

0110

2
2












a

Sign of the 
number 

mantissa Sign of the 
exponent 

exponent 



IEEE 754 Standards for 

Single Precision 

Representation 
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IEEE-754 Floating Point 

Standard 

• Standardizes representation of 
floating point numbers on 
different computers in single and 
double precision. 

 
• Standardizes representation of 

floating point operations on 
different computers. 



One Great Reference 

What every computer scientist (and even if 
you are not) should know about floating point 
arithmetic! 
 
http://www.validlab.com/goldberg/paper.pdf 

http://www.validlab.com/goldberg/paper.pdf
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IEEE-754 Format Single 

Precision 

32 bits for single precision  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sign 
(s) 

Biased 
Exponent (e’) 

Mantissa (m) 

  127'

2
21)1(Value .  es m
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Example#1 

    127'

2
2.11Value  es

m

    127)10100010(

2

1
2210100000.11




    1271622625.11 

    1035 105834.52625.11 

1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sign 
(s) 

Biased 
Exponent (e’) 

Mantissa (m) 
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Example#2 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

Sign 
(s) 

Biased 
Exponent (e’) 

Mantissa (m) 

Represent -5.5834x1010 as a single 
precision floating point number. 

    ?110 2?.11105834.5 
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Exponent for 32 Bit IEEE-754 

8 bits would represent 

2550  e

Bias is 127; so subtract 127 from 
representation 

128127  e



Exponent for Special Cases 

eActual range of 

2541  e

0e and 255e are reserved for special numbers 

Actual range of 

127126  e

e



Special Exponents and Numbers 

0e all zeros 

255e all ones 

s m Represents 

0 all zeros all zeros 0 

1 all zeros all zeros -0 

0 all ones all zeros 

1 all ones all zeros 

0 or 1 all ones non-zero NaN 

e
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IEEE-754 Format 

The largest number by magnitude  

The smallest number by magnitude  

Machine epsilon   

  38127

2 1040.321........1.1 

  38126

2 1018.220......00.1  

723 1019.12  mach



Additional Resources 

For all resources on this topic such as digital audiovisual 

lectures, primers, textbook chapters, multiple-choice tests, 

worksheets in MATLAB, MATHEMATICA, MathCad and 

MAPLE, blogs, related physical problems, please visit 

 

http://numericalmethods.eng.usf.edu/topics/floatingpoint_re

presentation.html 
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6. Propagation of Errors 
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Propagation of Errors 

In numerical methods, the calculations are not 
made with exact numbers. How do these 
inaccuracies propagate through the calculations? 
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Example 1: 
Find the bounds for the propagation in adding two numbers. For example 

if one is calculating X +Y  where 

  X = 1.5 ± 0.05 

  Y = 3.4 ± 0.04 

Solution 

Maximum possible value of  X = 1.55 and Y = 3.44 

 

Maximum possible value of  X + Y = 1.55 + 3.44 = 4.99 

 

Minimum possible value of  X = 1.45 and Y = 3.36. 

 

Minimum possible value of X + Y = 1.45 + 3.36 = 4.81 

 

Hence  

  4.81 ≤ X + Y ≤4.99. 
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Propagation of Errors In Formulas 

f nn XXXXX ,,.......,,, 1321 

f

n

n

n

n

X
X

f
X

X

f
X

X

f
X

X

f
f 



















 



1

1

2

2

1

1

.......

If    is a function of several variables  

then the maximum possible value of the error in   is 
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Example 2: 

The strain in an axial member of a square cross-
section is given by 
 
 
Given 
 
 
 
 
Find the maximum possible error in the measured 
strain. 

 

Eh

F
2



N9.072F
mm1.04h
GPa5.170E



                                           
http://numericalmethods.eng.usf.edu 

86 

Example 2: 

)1070()104(

72
923 




610286.64 

286.64

E
E

h
h

F
F

















Solution 
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Example 2: 

EhF 2

1






Eh

F

h 3

2





22Eh

F

E






E
Eh

F
h

Eh

F
F

Eh
E 

2232

21

9

2923

933923

105.1
)1070()104(

72

0001.0
)1070()104(

722
9.0

)1070()104(

1



















3955.5

Thus 

Hence 

)3955.5286.64(  



Example 3: 

Subtraction of numbers that are nearly equal can create unwanted 
inaccuracies. Using the formula for error propagation, show that this is true. 
 
Solution 
Let 
 
Then 
 
 
 
 
 
So the relative change is 

 
 

 

yxz 

y
y

z
x

x

z
z 











yx  )1()1(

yx 

yx

yx

z

z
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Example 3: 

For example if 
 001.02x

001.0003.2 y

|003.22|

001.0001.0








z

z

= 0.6667  

= 66.67% 
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Additional Resources 

For all resources on this topic such as digital audiovisual 

lectures, primers, textbook chapters, multiple-choice tests, 

worksheets in MATLAB, MATHEMATICA, MathCad and 

MAPLE, blogs, related physical problems, please visit 

  

http://numericalmethods.eng.usf.edu/topics/propagation_of

_errors.html 
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   7. Taylor Series Revisited 
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What is a Taylor series? 

Some examples of Taylor series which you must have 
seen 


!6!4!2

1)cos(
642 xxx

x


!7!5!3

)sin(
753 xxx

xx


!3!2

1
32 xx

xe x
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General Taylor Series 

The general form of the Taylor series is given by 

     
   







 32

!3!2
h

xf
h

xf
hxfxfhxf

provided that all derivatives of f(x) are continuous and 
exist in the interval [x,x+h]  

What does this mean in plain English? 

As Archimedes would have said, “Give me the value of the function 
at a single point, and the value of all (first, second, and so on) its 
derivatives at that single point, and I can give you the value of the 
function at any other point” (fine print excluded)  



                                           
http://numericalmethods.eng.usf.edu 

94 

Example—Taylor Series 

Find the value of  6f given that   ,1254 f   ,744 f

  ,304 f   64 f and all other higher order derivatives 

of  xf at 4x are zero. 

Solution: 

          
!3!2

32 h
xf

h
xfhxfxfhxf

4x

246 h
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Example (cont.) 

Solution: (cont.) 

Since the higher order derivatives are zero, 

         
!3

2
4

!2

2
424424

32

fffff 

    


















!3

2
6

!2

2
302741256

32

f

860148125 

341

Note that to find   6f exactly, we only need the value 

of the function and all its derivatives at some other 
point, in this case 4x
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Derivation for Maclaurin Series for ex 

Derive the Maclaurin series 


!3!2

1
32 xx

xe x

The Maclaurin series is simply the Taylor series about  
the point x=0 

              
54!3!2

5432 h
xf

h
xf

h
xf

h
xfhxfxfhxf

              
5

0
4

0
!3

0
!2

0000
5432 h

f
h

f
h

f
h

fhffhf
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Derivation (cont.) 

Since xnxxx exfexfexfexf  )( , ... , )(  , )( , )( and 

1)0( 0  ef n

the Maclaurin series is then 

...
!3

)(

!2

)(
)()()( 3

0
2

0
00 h

e
h

e
heehf 

...
!3

1

!2

1
1 32 hhh 

So, 

...
!3!2

1)(
32


xx

xxf
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Error in Taylor Series 

            xR
n

h
xf

h
xfhxfxfhxf n

n
n 

!!2
''

2



where the remainder is given by 

 
    cf

n

hx
xR n

n

n

1

1

)!1(










where 
hxcx 

that is, c is some point in the domain [x,x+h] 

The Taylor polynomial of order n of a function f(x) 
with (n+1) continuous derivatives in the domain 
[x,x+h] is given by 
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Example—error in Taylor series 

The Taylor series for  
xe at point 0x is given by 


!5!4!3!2

1
5432 xxxx

xex

It can be seen that as the number of terms used 

increases, the error bound decreases and hence a 

better estimate of the function can be found.  

How many terms would it require to get an 
approximation of e1 within a magnitude of 
true error of less than 10-6. 
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Example—(cont.) 

Solution: 

Using   1n terms of Taylor series gives error bound of 

 
 
 

  cf
n

hx
xR n

n

n

1

1

!1










xexfhx  )(,1,0

 
 
 

  cf
n

R n

n

n

1

1

!1

10
0 








 
 

c

n

e
n !1

1
1








Since 
hxcx 

100  c

10  c
 

)!1(
0

)!1(

1




 n

e
R

n
n
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Example—(cont.) 

Solution: (cont.) 

So if we want to find out how many terms it would 

require to get an approximation of  
1e within a 

magnitude of true error of less than  610 , 
610

)!1(


n

e

en 610)!1( 

310)!1( 6 n

9n

So 9 terms or more are needed to get a true error 

less than  610



Additional Resources 

For all resources on this topic such as digital audiovisual 

lectures, primers, textbook chapters, multiple-choice tests, 

worksheets in MATLAB, MATHEMATICA, MathCad and 

MAPLE, blogs, related physical problems, please visit 

  

http://numericalmethods.eng.usf.edu/topics/taylor_series.ht

ml 

 

http://numericalmethods.eng.usf.edu/topics/gaussian_elimination.html
http://numericalmethods.eng.usf.edu/topics/taylor_series.html
http://numericalmethods.eng.usf.edu/topics/taylor_series.html

