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INTRODUCTION

Why use Numerical Methods?

« To solve problems that cannot be solved exactly




Why use Numerical Methods?

* To solve problems that are intractable!




How do we solve an engineering
problem?

Problem Description

Mathematical Model

|
|
|
|

Using the Solution

|
|
Solution of Mavthematical Model }
|
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1. Introduction to Numerical Methods

Mathematical Procedures
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Introduction to Numerical Methods

Mathematical Procedures

* Nonlinear Equations
« Differentiation
« Simultaneous Linear Equations
« Curve Fitting
— Interpolation
— Regression
* Integration
« Ordinary Differential Equations
« Other Advanced Mathematical Procedures:
— Partial Differential Equations
— Optimization
— Fast Fourier Transforms
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Nonlinear Equations

How much of the floating ball is under water?

Diameter=0.11m

Specific Gravity=0.6

po— 36—

Water

x° —0.165x° +3.993x10™* =0
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Nonlinear Equations

How much of the floating ball is under the water?

X 10° | | |

1t / —
— 0 N~— T
>
el

K

2

-0.1 0 0.1 0.2

X
f(x)=x>—0.165x"+3.993x10* =0
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Differentiation

What is the acceleration 6000

at t=7 seconds? N
E“ 4000
=
-
O 2000
Q
=
0 .
0 10 20 30
Time (s)
4 dv
v(t) = 2200 In 16f10 98t 9=
16 10" — 5000t dt
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Differentiation

What is the acceleration at t=7 seconds?
Time (s) 5 8 12
Vel (m/s) 106|177 |600

600 - . . ; : . : o
=500 dv
~— a=—
E dt
hy
8 300+
[
= 200} o

00— ——

4 5 6 7 8 9 10 11 12
Time (s)
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Simultaneous Linear Equations

Find the velocity profile, given

Time (s) 5 8 12

Vel (m/s) 106 |177 |600

v(t)=at’ +bt+c, 5<t <12

Three simultaneous linear equations !
25a +5b+c =106 g |

Z
64a+8b+c=177 ol |
144a +12b+ c =600 00, ¢4 8 T
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Interpolation

What is the velocity of the rocket at t=7 seconds?

Time (s) 5 8 12
Vel (m/s) 106 (177 |600

LN
o
o

-+
Q
o

(%

Velocity (m/s)

100
4

N
o
o

o

6

/7 8

Time (s)
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Regression

Thermal expansion coefficient data for cast steel

7/

a (nin/in/F)

J

2
-400

-360 -260 -160 ﬁ 100
Temperature (F)
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Regression (cont)

%00 300 200  -100 0 100
Temperature (F)
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Integration

Finding the diametric contraction in a steel shaft when

dipped in liquid nitrogen.

AD = DTTa dT

T

room

]
L
S
=
S
=
=.
o S

04

2
-400

7

6_

5_

4_

3_

@

-360 -Zbﬁ -160
Temperature (F)
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Ordinary Differential Equations

How long does it take a trunnion to cool down?

mcz—f —_hAO—0.), 00) =0
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Additional Resources

For all resources on this topic such as digital audiovisual
lectures, primers, textbook chapters, multiple-choice tests,
worksheets in MATLAB, MATHEMATICA, MathCad and
MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/introduction nu
merical.html
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2. Measuring Errors
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Why measure errors?

1) To determine the accuracy of numerical
results.

2) To develop stopping criteria for iterative
algorithms.

19



True Error

« Defined as the difference between the true value
In a calculation and the approximate value found
using a numerical method etc.

True Error = True Value — Approximate Value

20



Example—True Error

The derivative, f'(x) of a function f(x) can be

approximated by the equation,
f(x+h)— f(x)
h

If f(x)=7e"> and h=0.3
a) Find the approximate value of '(2)
b) True value of f'(2)

c) True error for part (a)

f'(X)z
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Example (cont.)

Solution:

a) For x=2 and h=0.3

f(2) = f(2+0(.):.3;—f(2)

~ f(23)-1(2)
N 0.3

7e0.5(2.3) . 7e0.5(2)
- 0.3
 22.107-19.028
i 0.3

=10.263
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Example (cont.)

Solution:
b) The exact value of f'(2) can be found by using

our knowledge of differential calculus.
f (x) = 7€

f'(x)=7x0.5xe"

23.580'5)(
So the true value of f'(?) is

f'(2) =3.5e*°®
=9.5140
True error is calculated as
E, = True Value — Approximate Value

=9.5140-10.263=-0.722
23



Relative True Error

 Defined as the ratio between the true
error, and the true value.

True Error

Relative True Error ( &) =
True Value

24



Example—Relative True Error

Following from the previous example for true error,
find the relative true error for f(x)=7e*>* at f'(2)
with h=0.3
From the previous example,
E =-0.722

Relative True Error is defined as
_ True Error

True Value

U —0.075888
9.5140

as a percentage,
c,=—0.075888 x100% = —7.5888%

=
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Approximate Error

 WWhat can be done If true values are not
known or are very difficult to obtain?

» Approximate error Iis defined as the
difference between the present
approximation and the previous
approximation.

Approximate Error (E.) = Present Approximation — Previous Approximation

26



Example—Approximate Error

For f(x) =7e*** at x=2 find the following,

a) f'(2using h=0.3

b) f'(2 using h=0.15

c) approximate error for the value of f'(2) for part b)
Solution:

a) For x=2 and h=0.3

f(x+h)— f(x)
h

f(2+0.3)— f(2)
0.3

f'(X)z

f'(2) ~
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Example (cont.)

Solution: (cont.)

 f(23)-1(2)
0.3
7005(23) _ 7505(2)

0.3

22.107 —19.028
= 3 =10.263
b) For x=2 and h=0.15
f (2+0.15) - f (2)
0.15
~ f(2.15)- f(2)
- 0.15

f'(2) =

28



Example (cont.)

Solution: (cont.)
7eo.5(2.15) . 760'5(2)
N 0.15

~20.50-19.028
0.15

=9.8800

c) So the approximate error, E, is

E. = Present Approximation — Previous Approximation
=9.8800—-10.263
=—0.38300
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Relative Approximate Error

* Defined as the ratio between the
approximate error and the present
approximation.

_ _ Approximate Error
Relative Approximate Error (€,) =

Present Approximation
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Example—Relative Approximate Error

For f(x)=7e"" at x=2, find the relative approximate
error using values from h=0.3and h=0.15

Solution:
From Example 3, the approximate value of f'(2)=10.263
using h=03and f'(2)=9.8800 using h=0.15
E. = Present Approximation — Previous Approximation
—9.8800—10.263
= —0.38300
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Example (cont.)

Solution: (cont.)
Approximate Error

e =
" Present Approximation
_—038300 __4 038765
9.8800

as a percentage,
e, =—0.038765x100% = —3.8765%

Absolute relative approximate errors may also need to
be calculated,
.| =1-0.038765 | = 0.038765 or 3.8765%
32



How Is Absolute Relative Error used as a
stopping criterion?

If le,|<e,wWhere <, is a pre-specified tolerance, then
no further iterations are necessary and the process is
stopped.

If at least m significant digits are required to be

correct in the final answer, then
€. |< 0.5x10° "%
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Table of Values

For f(X)=7e"" at x=2with varying step size, h

h f'(2) . m
0.3 10.263 N/A 0
0.15 9.8800 3.877% 1
0.10 9.7558 1.273% 1
0.01 9.5378 2.285% 1
0.001 9.5164 0.2249% 2
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Additional Resources

For all resources on this topic such as digital audiovisual
lectures, primers, textbook chapters, multiple-choice tests,
worksheets in MATLAB, MATHEMATICA, MathCad and
MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/measuring erro
rs.html

35
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3. Sources of Error
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Two sources of numerical error

1) Round off error
2) Truncation error

37



Round-off Error

http://numericalmethods.eng.usf.edu

38



Round off Error

» Caused by representing a number
approximately

% =~ (0.333333

J2 =1.4142..

39



Truncation Error

http://numericalmethods.eng.usf.edu
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Truncation error

* Error caused by truncating or
approximating a mathematical
procedure.

41



Example of Truncation Error

Taking only a few terms of a Maclaurin series to

approximate e’

D &

B =l Xt —F—F s
21 3l

If only 3 terms are used,

2
- X
Truncation Error =¢e* —[1+ X +—j

2!
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Another Example of Truncation
Error

Using a finite AX to approximate f'(X)
f (X+Ax)— f (X)

f'(x) =
(X) Ax

secant line

tangent line

[ ————

Figure 1. Approximate derivative using finite Ax
43



Another Example of Truncation
Error

Using finite rectangles to approximate an
integral.

90 -

60 -

30 -

0 T T T T 1 X
0 15 3 4.5 6 7.5 9 10.5 12
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Example 1 —Maclaurin series

Calculate the value of € with an absolute
relative approximate error of less than 1%.

2 3
el'z=1+1.2+1'2 +1'2 ...................
3!
N el.2 Ea ‘Ea ‘%
1 1 . L
2 2.2 1.2 54.545
3 2.92 0.72 24.658
4 3.208 0.288 8.9776
5 3.2944 0.0864 2.6226
6 3.3151 0.020736 0.62550

6 terms are required. How many are required to get
at least 1 significant digit correct in your answer?
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Example 2 —Differentiation

Find ') for 00=x" using f'(x)~-2)=T0)

AX
and Ax=0.2
f'@)- 1B+02) - @
0.2
_f@2-f@ _32°-3° 1024-9 _124 _ .,
02 02 02 02

The actual value is
f(x)=2x, f (3)=2x3=6

Truncation error is then, 6—-6.2=-0.2

Can you find the truncation error with Ax=0.1

46



Example 3 — Integration

Use two rectangles of equal width to
approximate the area under the curve for

f (x) = x? over the interval [3,9]

90 ~

60

y

a7

9
szdx
3



Integration example (cont.)

Choosing a width of 3, we have
j x2dx = (x2)\ng (6—3) + (XZ)La (9-6)

= (3)3+(6%)3
~27+108=135

Actual value is given by
szdx _ {XT :{93‘33}:234
) 3 |, 3

Truncation error is then

234 —-135=99
Can you find the truncation error with 4 rectangles?

48




Additional Resources

For all resources on this topic such as digital audiovisual
lectures, primers, textbook chapters, multiple-choice tests,
worksheets in MATLAB, MATHEMATICA, MathCad and
MAPLE, blogs, related physical problems, please visit

http://numericalmethods.enqg.usf.edu/topics/sources of err
or.html
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4. Binary Representation
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How a Decimal Number iIs
Represented

257.76 = 2x10° +5x10" + 7x10° + 7x10 ' +6x10*

51



Base 2

(Ix2° +0x 2% +1x 2" +1x2°)
(1011.0011), =
10

+ (027 +0x2°+1x2° +1x27%)
=11.1875

52



Convert Base 10 Integer to binary
representation

Table 1 Converting a base-10 integer to binary representation.

Quotient Remainder
11/2 5 1=a,
5/2 2 1=a
2/2 1 O0=a,
1/2 0 1=a,
Hence

(11)10 — (8.38.2 alaO)Z
= (1012),

53



A

_____________ Integer N to be
nput (o / converted to binary

l format
i=0

A 4

Divide N by 2 to get
quotient Q & remainder R

v

i=i+1,N=Q

«—| N <

No

IsQ=107?

lYes
n=i

(N)yo = (@, - -ap),

STOP

o

54



Fractional Decimal Number
to Binary

Table 2. Converting a base-10 fraction to binary representation.

vumper | Nugbgrafer | Numer befor
0.1875x 2 0.375 0.375 O=a,
0.375x2 0.75 0.75 O=a,
0.75x 2 1.5 0.5 l=a,
0.5x2 1.0 0.0 l=a,
Hence

(0.1875),, =(a_,a_,a_a_,),

= (0.0011),

55




No

A 4

Multiply F by 2 to get
number before decimal,
S and after decimal, T

A 4
a =R

Is T =07?

Yes

n=i
Py = (a4. . .a,),

v

STOP

Fraction

“| converted

format

F

to
to

be
binary

56




Decimal Number to Binary

(11.1875),, =( 2.? )

Since

(11)10 — (1011) 2
and

(0.1875),, = (0.0011),

2

we have
(11.1875)10 =(1011.0011),

57



All Fractional Decimal Numbers
Cannot be Represented Exactly

Table 3. Converting a base-10 fraction to approximate binary representation.

Number Number

Number after before

decimal Decimal
0.3x2 0.6 0.6 O=a,
0.6x2 1.2 0.2 l1=a,
0.2x2 0.4 0.4 O=a,
0.4x2 0.8 0.8 O=a,
0.8x2 1.6 0.6 l1=a,

(0.3),,=(a,a,a.a ,a.), =(0.01001), =0.28125
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Another Way to Look at Conversion

Convert (11.1875),, to base 2
(11),=2°+3
=2°4+2'+1
=2°+2'+2°
=1x2°+0x2° +1x2' +1x2°
=(1011),

59



(0.1875),, = 27 +0.0625
=273 427
=0x2 " +0x2°+1x27° +1x2°°
= (.0011),

(11.1875),, =(1011.0011),

60



Additional Resources

For all resources on this topic such as digital audiovisual
lectures, primers, textbook chapters, multiple-choice tests,
worksheets in MATLAB, MATHEMATICA, MathCad and
MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/binary represe
ntation.html
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5. Floating Point Representation
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Floating Decimal Point : Scientific Form

256.78 is writtenas + 2.5678x10°
0.003678 is writtenas +3.678x10°°
— 256.78 is writtenas — 2.5678 x104

63
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Example

The form is

sign x mantissa x10%®°e

or

o xmx10°
Example: For

—2.5678x10°
o=-1
m=2.5678
e=2



Floating Point Format for Binary
Numbers

y=oxmx2°
o = sign of number (O for + ve,1for - ve)

m = mantissa [(1), < m < (10), |
1 is not stored as it is always given to be 1.
e = Integer exponent

65
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Example

9 bit-hypothetical word

sthe first bit is used for the sign of the number,
»the second bit for the sign of the exponent,
sthe next four bits for the mantissa, and

»the next three bits for the exponent

(54.75),, = (110110.11), = (1.1011011), x 2°
=~ (1.1011), x (101),

We have the representation as

|001011101

g N J
/ /]\ g Y
mantissa exponent

Sign of the  Sign of the
number exponent




67

Machine Epsilon

Defined as the measure of accuracy and found
by difference between 1 and the next number
that can be represented



68

number

Ten bit word
=Sign of number
=Sign of exponent

Example

=Next four bits for exponent

sNext four bits for mantissa

0

0

0

0

0

0

0

0

0

0

Next —> O

0

0

0

0

0

0

0

0

1

e .=10625-1=2"

mach

(1)1 0

(1.0001), =(1.0625),,



Relative Error and Machine
Epsilon

The absolute relative true error in representing
a number will be less then the machine epsilon

Example
(0.02832),,

112

(1.1100),x 2°°
= (1.1100), x 27210

10 bit word (sign, sign of exponent, 4 for exponent, 4 for mantissa)

oj1]o|1]1]o[1]1]0]0O
// \ v N ~ W
Sign of the /I\ exponent mantissa
number

Sign of the
exponent

(1.1100), x 2719 = 0.0274375

_ _|0.02832-0.0274375
° 0.02832

=0.034472 < 27" = 0.0625




IEEE 754 Standards for
Single Precision
Representation
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IEEE-754 Floating Point

Standard

e Standardizes representation of

f

oating point numbers on

different computers in single and
double precision.

e Standardizes representation of
floating point operations on
different computers.



One Great Reference

What every computer scientist (and even if

you are not) should know about floating point
arithmetic!

http://www.validlab.com/goldberg/paper.pdf



http://www.validlab.com/goldberg/paper.pdf

IEEE-754 Format Single
Precision

32 bits for single precision

0/0(0|0|0({0|0(0|0|0(0O|0O(0|0O|0O(0O|O0|0|0|0(0|0|0|0O|0O(0|0O]|0O(O|0O

\/\ hd A '

Sign Biased Mantissa (m)
(s) Exponent (e)

Value = (—1)° x (1 . m)2 x 26+



74

Example#l

1/1|0({1{0(0|0|21({0|1|0|1|0(0|0|0|0|0|0|0|0[|0|0|0|0|0[0|0(0|0|0|0O
PN g DN ~ /

>ion SLEEIS Mantissa (m)
(s) Exponent (e")

(1) x(1.10100000), x 21101000127
( 1) (1 625) $162-127
=(-

1)x (1.625)x 2% = 55834 x10"

Value = (_1)8 ><(1 m) o 9¢-127



Example#2

Represent -5.5834x101° as a single
precision floating point number.

JEEEEEEEEEEEEEEEEEEREEEEREEEREEE
NS A >
s g

(s) Exponent (e)

~5.5834x10' = (—1) x(1.?)x 2"

75
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Exponent for 32 Bit IEEE-754

8 bits would represent
0<e <255

Bias is 127; so subtract 127 from
representation
—127<e <128



Exponent for Special Cases

/
Actual range of €

1<e'<254

e’ =0and e =255 are reserved for special numbers

Actual range of €

—126<e <127



Special Exponents and Numbers

e'=0 — all zeros
e’ =255 — all ones
S e’ m Represents
O |all zeros | all zeros 0
1 all zeros | all zeros -0
0 all ones | all zeros o0
1 all ones | all zeros — 00
Oor 1| all ones |non-zero NaN
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IEEE-754 Format

The largest number by magnitude

(L.1........1), x 2" =3.40x10°

The smallest number by magnitude

(1.00......0), x 271 = 2.18x10"*

Machine epsilon

& . =2=119%x10""

mach



Additional Resources

For all resources on this topic such as digital audiovisual
lectures, primers, textbook chapters, multiple-choice tests,
worksheets in MATLAB, MATHEMATICA, MathCad and
MAPLE, blogs, related physical problems, please visit

http://numericalmethods.enqg.usf.edu/topics/floatingpoint re
presentation.html
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6. Propagation of Errors
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Propagation of Errors

In numerical methods, the calculations are not
made with exact numbers. How do these
inaccuracies propagate through the calculations?

82



Example 1.

Find the bounds for the propagation in adding two numbers. For example
if one is calculating X +Y where
X=1.5%0.05
Y =3.4+%0.04
Solution
Maximum possible value of X=1.55and Y =3.44

Maximum possible value of X +Y =1.55+ 3.44 =4.99
Minimum possible value of X =1.45and Y = 3.36.
Minimum possible value of X + Y = 1.45 + 3.36 = 4.81

Hence
4.81 <X +Y =4.99.

83



Propagation of Errors In Formulas

If f is a function of several variables X,, X,, X,......., X X,
then the maximum possible value of the error in f is

Af =~ iAX

oX,

84



Example 2:

The strain in an axial member of a square cross-
section is given by

F
=~ hZE
Given
F=72+09 N
h=4+0.1 mm
E=70+1.5 GPa

Find the maximum possible error in the measured
strain.

85



Example 2:

Solution

72
E:
(4x107°)*(70x10°)
— 64.286x107°
= 64.286 1
A ez |2€ AF| 42 A 4|95
OF oh OE

AE

86




Example 2:

oe__1 8e_2F 9e__ F
oF h°E oh ~ h°E 0E  h2E?
Thus ,
AE = h;LE AF‘+ éAh‘+ hZFEZ AE‘
_ 1 « 0.9+ X i «0.000
1(4x107°)2(70x10°%) | |(4x107°)%(70%x10°)
+ e x1.5x10°
(4><1O_3)2(70><109)2 '

=5.3955 4
Hence

e= (64.286 11 + 5.3955 1)

87



Example 3:

Subtraction of numbers that are nearly equal can create unwanted
inaccuracies. Using the formula for error propagation, show that this is true.

Solution

Let
Z=X—-Y

Then

Az| = % 5

OX
=|(D)Ax| +|(-1)Ay]
=|AX +|Ay
So the relative change is
Az  |AX|+|Ay

z ) ‘X—y‘ 88

X +|—Ay




For example if

Example 3:

X = 2 +0.001
y =2.003+0.001

AZ

~ |0.001 +0.001

VA

= 0.6667
= 66.67%

|2—2.003]

89



Additional Resources

For all resources on this topic such as digital audiovisual
lectures, primers, textbook chapters, multiple-choice tests,
worksheets in MATLAB, MATHEMATICA, MathCad and
MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/propagation of
errors.html



http://numericalmethods.eng.usf.edu/topics/gaussian_elimination.html
http://numericalmethods.eng.usf.edu/topics/propagation_of_errors.html
http://numericalmethods.eng.usf.edu/topics/propagation_of_errors.html

/. Taylor Series Revisited
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What Is a Taylor series?

Some examples of Taylor series which you must have
seen

cos(x)=1—x +X X +A
21 4 4l
3 5 7
Sin(X) = X — —+ 20— 24 A
3 5 7

2 3
X =14 X+t 24 A
21 3

92



General Taylor Series

The general form of the Taylor series is given by
f(x+h)= £ (x)+ f()h+f2()h2 f';( Jhe 1A

provided that all derivatives of f(x) are continuous and
exist in the interval [x,x+h]

What does this mean in plain English?

As Archimedes would have said, " Give me the value of the function
at a single point, and the value of all (first, second, and so on) its
derivatives at that single point, and I can give you the value of the
function at any other point” (fine print excluded)
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Example—Taylor Series

Find the value of f(6) given that f(4)=125 f'(4)=74,
f"(4)=30, f"(4)=6 and all other higher order derivatives
of f(x) at x=4 are zero.

Solution:
f(x+h)= f(x)+ F(Oh+ f”(x)% ; f”’(x)% +A
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Example (cont.)

Solution: (cont.)
Since the higher order derivatives are zero,
F(a+2)= f(@)+ £(aR+ ()5 + 17(4)3

f(6)=125+74(2)+ 30(273 + 6{%:3 3!

=125+148+60+8

=341
Note that to find (6) exactly, we only need the value
of the function and all its derivatives at some other
point, in this case x=4
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Derivation for Maclaurin Series for ex

Derive the Maclaurin series
2 3

eX:1+x+§—+§—+A

21 3

The Maclaurin series is simply the Taylor series about
the point x=0

h? h* h* h°

F(x+h)= 00+ F00h+ 760 + 1700 4 #7700+ £ A
2! 3 4 5
h5

2- 3- 4
£(0+h)=f(0)+ F/(O)h+ f "(o)% i1 "'(o)% i f ""(O)hZ - £0) +A
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Derivation (cont.)

Since f(x)=e, f'(x)=¢e*, f"(x)=€*,..., f"(xX)=¢* and
fr(0)=e® =1
the Maclaurin series is then
€),., ("), 3
f(h)=(")+(e)h+—2 - h? + 5 he...
:l+h+£h2+1h3...
21 3

2 3

So,
X

f(x)= T+ x+ s Xy
21 3
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Error In Taylor Series

The Taylor polynomial of order n of a function 7(x)
with (n+1) continuous derivatives in the domain
[ x.x+h/is given by

oesl= bk 16 f"(x)h?j A+ T 1R, (0
where the remainder is given by

B (X . h)n+l (n+l)
R, (- U g

where
X<C<X+h

that is, c is some point in the domain [x,x+h]
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Example—error in Taylor series

The Taylor series for €* at point x=0 is given by

x> x2 x* x°

e =1+ X+—+—+—+—+A
21 3 41 5

[t can be seen that as the number of terms used
increases, the error bound decreases and hence a
better estimate of the function can be found.

How many terms would it require to get an
approximation of e! within a magnitude of
true error of less than 10
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Example—(cont.)

Solution:

Using (n+1) terms of Taylor series gives error bound of
(x—h)"™

_ (n+1) _ _ _ aX
R (x)= i) f () x=0,h=1f(x)=e

R (0)= (0-2)" £ (c)

(n+1)
(_ 1)n +1 i

m+me

Since
X<C<X+h
O<c<0+1 1 <“%®X< €
O<c<1 (n+1)! (n+1)!
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Example—(cont.)

Solution: (cont.)

So if we want to find out how many terms it would
require to get an approximation of e* within a
magnitude of true error of less than 107,

(n+1)!1>10°%
(N+1)1>10° x 3
n>9

So 9 terms or more are needed to get a true error

less than 10°°
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Additional Resources

For all resources on this topic such as digital audiovisual
lectures, primers, textbook chapters, multiple-choice tests,
worksheets in MATLAB, MATHEMATICA, MathCad and
MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/taylor series.ht
ml



http://numericalmethods.eng.usf.edu/topics/gaussian_elimination.html
http://numericalmethods.eng.usf.edu/topics/taylor_series.html
http://numericalmethods.eng.usf.edu/topics/taylor_series.html

