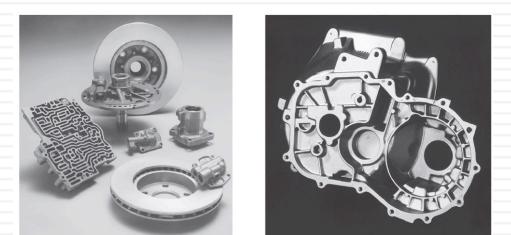
Manufacturing Engineering Technology in SI Units, 6th Edition Chapter 11: Metal Casting Processes and Equipment

Chapter Outline

- □ <u>Introduction</u>
- **Expendable-mold, Permanent-pattern Casting Processes**
- **Expendable-mold, Expendable-pattern Casting Processes**
- Permanent-mold Casting Processes
- **<u>Casting Techniques for Single-crystal Components</u>**
- **Rapid Solidification**
- □ Inspection of Castings
- Melting Practice and Furnaces
- **Foundries and Foundry Automation**

Introduction


Various casting processes developed over time to meet specific design requirements

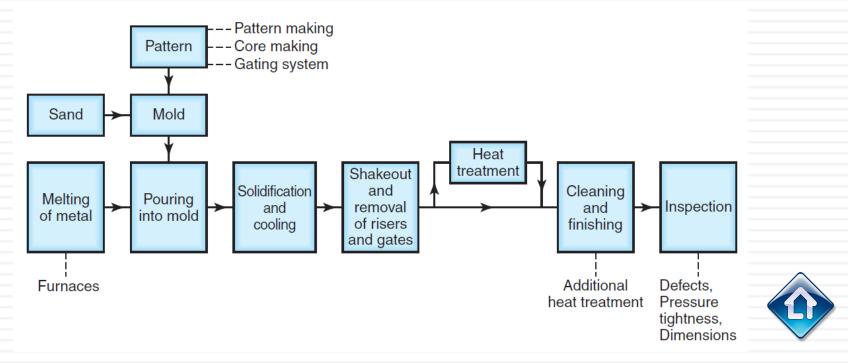
Process	Advantages	Limitations			
and Almost any metal can be cast; no limit to part size, shape, or weight; low tooling cost		Some finishing required; relatively coarse surface finish; wide tolerances			
Shell mold	Good dimensional accuracy and surface finish; high production rate	Part size limited; expensive patterns and equipment			
Evaporative pattern	Most metals can be cast, with no limit to size; complex part shapes	Patterns have low strength and can be costly for low quantities			
Plaster mold	Intricate part shapes; good dimensional accuracy and surface finish; low porosity	Limited to nonferrous metals; limited part size and volume of production; mold-making time relatively long			
Ceramic mold	Intricate part shapes; close-tolerance parts; good surface finish	Limited part size			
Investment	Intricate part shapes; excellent surface finish and accuracy; almost any metal can be cast	Part size limited; expensive patterns, molds, and labor			
Permanent mold	Good surface finish and dimensional accuracy; low porosity; high production rate	High mold cost; limited part shape and complexity; not suitable for high-melting- point metals			
Die	Excellent dimensional accuracy and sur- face finish; high production rate	High die cost; limited part size; generally limited to nonferrous metals; long lead time			
Centrifugal	Large cylindrical or tubular parts with good quality; high production rate	Expensive equipment; limited part shape			

Introduction

- Molding categories:
- 1. Expendable molds
- 2. Permanent molds
- 3. Composite molds

Introduction

General characteristics of sand casting and casting processes are summarized


General Characteristics of Cas	sting Processes							
			Evaporative			Permanent		
	Sand	Shell	pattern	Plaster	Investment	mold	Die	Centrifugal
Typical materials cast	All	All	All	Nonferrous Al, Mg, Zn, Cu)	All	All	Nonferrous (Al, Mg, Zn, Cu)	All
Weight (kg):								
Minimum	0.01	0.01	0.01	0.01	0.001	0.1	< 0.01	0.01
Maximum	No limit	100 +	100 +	50 +	100 +	300	50	5000 +
Typical surface finish (R_a in μ m)	5-25	1-3	5-25	1-2	0.3-2	2-6	1-2	2-10
Porosity ¹	3-5	4-5	3-5	4-5	5	2-3	1-3	1-2
Shape complexity ¹	1-2	2-3	1-2	1-2	1	2-3	3-4	3–4
Dimensional accuracy ¹	3	2	3	2	1	1	1	3
Section thickness (mm):								
Minimum	3	2	2	1	1	2	0.5	2
Maximum	No limit	_	_	_	75	50	12	100
Typical dimensional tolerance	1.6–4 mm	± 0.003		+0.005 - 0.010	+0.005	± 0.015	$\pm 0.001 - 0.005$	0.015
(mm)	(0.25 mm							
	for small parts)							
Equipment	3-5	3	2-3	3-5	3-5	2	1	1
Pattern/die	3-5	2-3	2-3	3-5	2-3	2	1	1
Labor	1-3	3	3	1-2	1-2	3	5	5
Typical lead time ²	Days	Weeks	Weeks	Days	Weeks	Weeks	Weeks to months	Months
Typical production rate ² (parts/mold-hour)	1-20	5-50	1-20	1-10	1-1000	5-50	2-200	1-1000
Minimum quantity ²	1	100	500	10	10	1000	10,000	10-10,000

Notes: 1. Relative rating, from 1 (best) to 5 (worst). For example, die casting has relatively low porosity, mid to low shape complexity, high dimensional accuracy, high equipment and die costs, and low labor costs. These ratings are only general; significant variations can occur, depending on the manufacturing methods used.

2. Approximate values without the use of rapid prototyping technologies. Minimum quantity is 1 when applying rapid prototyping.

Source: Data taken from J.A. Schey, Introduction to Manufacturing Processes, 3d ed., McGraw-Hill, 2000.

- Most prevalent form of casting
- Application for machine bases, large turbine impellers, propellers, plumbing fixtures

Copyright © 2010 Pearson Education South Asia Pte Ltd

Sand

- Sand-casting operations use silica sand as the mold material
- Sand is inexpensive and suitable high melting point process
- 2 types of sand: naturally bonded (bank sand) and synthetic (lake sand)
- Fine grained sand enhances mold strength and lower mold *permeability*

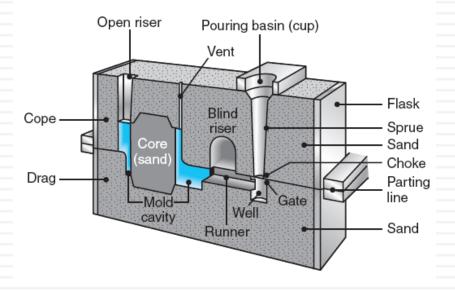
Types of Sand Molds

3 basic types:

1. Green-sand mold

Sand in the mold is moist or damp while the metal is being poured into it

2. Cold-box mold


Organic and inorganic *binders* are blended into the sand to bond the grains chemically

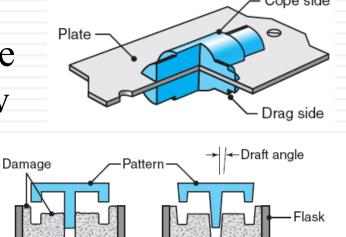
3. No-bake mold

Synthetic liquid resin is mixed with the sand and allow to hardens at room temperature

Major features of molds in sand casting

- Flask
- **Cope** on top and a **drag** on the bottom
- Pouring basin / Pouring cup
- □ Sprue
- **Runner system, gates**
- **Risers**
- **Cores**
- □ Vents

Pattern

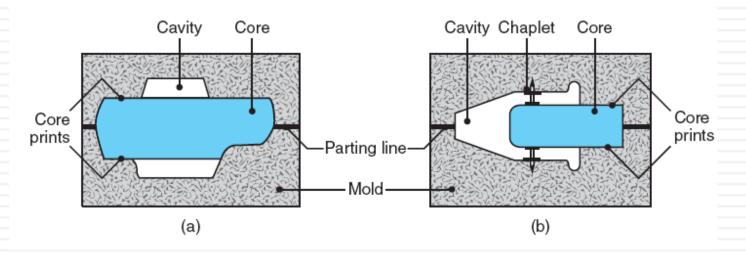

- *Patterns* are used to mold the sand mixture into the shape of the casting
- □ Selection of a pattern material depends on the
- 1. Size and shape of the casting
- 2. Dimensional accuracy
- 3. Quantity of castings required
- 4. Molding process

Pattern

Match-plate patterns

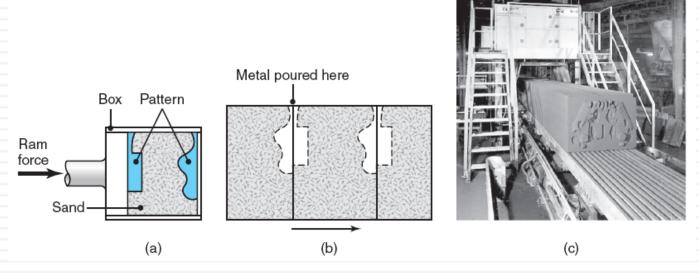
2 patterns are constructed by securing each half of one or more split patterns to the opposite sides of a single plate

 Pattern design should provide for metal shrinkage to allow the pattern to be easily removed

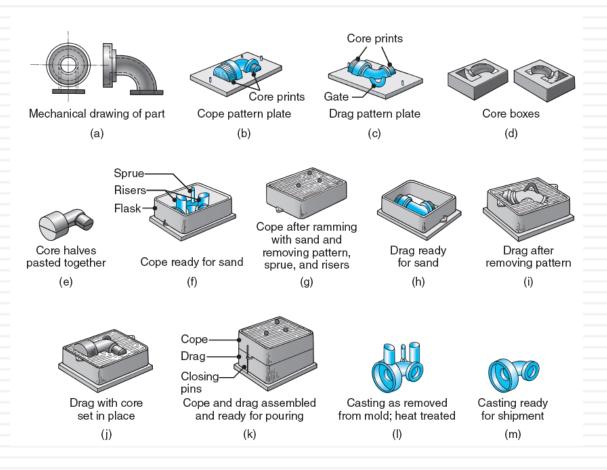

Copyright © 2010 Pearson Education South Asia Pte Ltd

Good

Sand mold


Cores

- Cores are placed in the mold cavity to form the interior surfaces of the casting
- It is removed from the finished part during shakeout and further processing

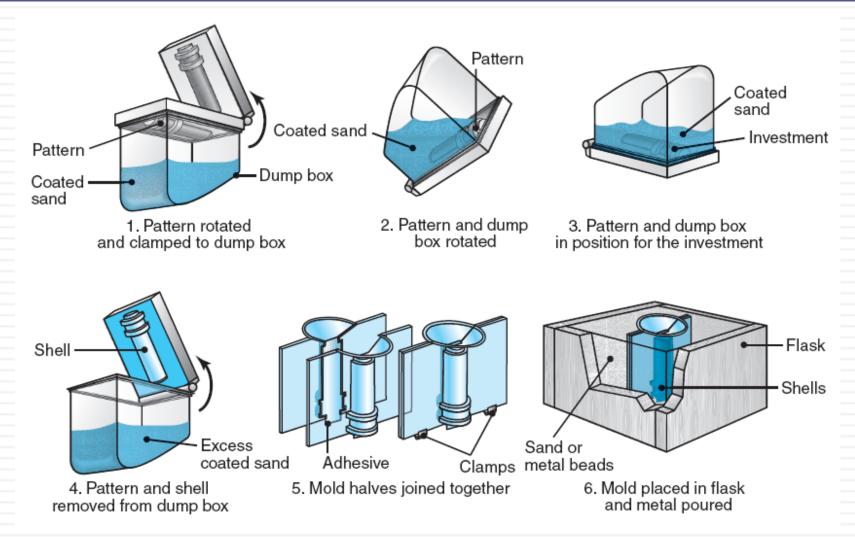


Sand-molding Machines

In vertical flaskless molding, the halves of the pattern form a vertical chamber wall against which sand is blown and compacted

The Sand-casting Operation

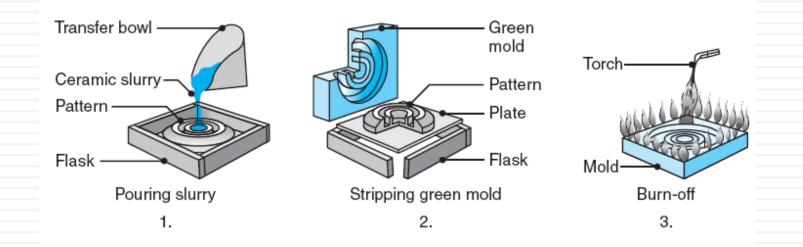
Copyright © 2010 Pearson Education South Asia Pte Ltd


The Sand-casting Operation

- Finishing operations may involve machining, straightening, or forging with dies (sizing) to obtain final dimensions
- □ *Inspection* is carried out to ensure that the casting meets all design and quality-control requirements

Expendable-mold, Permanent-pattern Casting Processes: Shell Molding

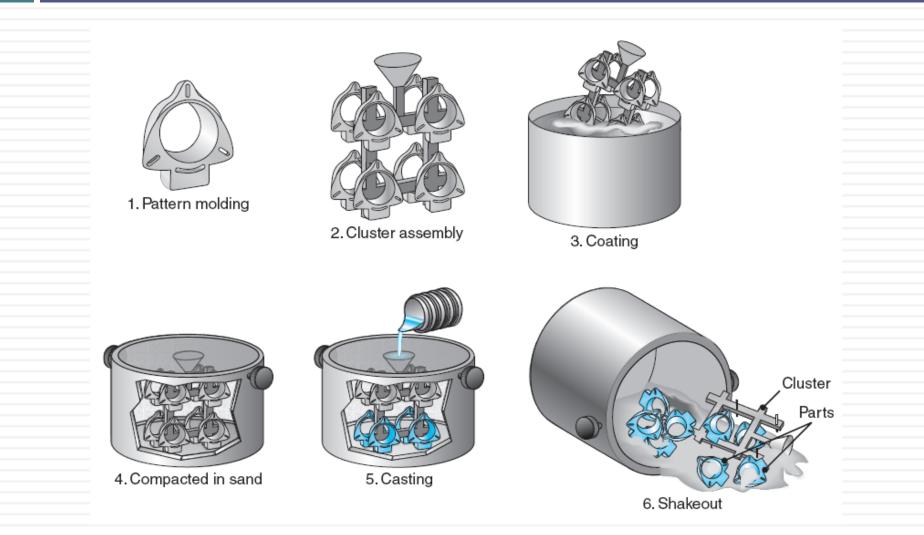
- Shell molding can produce many types of castings with close dimensional tolerances and a good surface finish at low cost
- Applications include small mechanical parts requiring high precision such as gear housings
- Shell sand has lower permeability than sand used for green-sand molding
- Complex shapes can be produced with less labor since it can be automated easily


Expendable-mold, Permanent-pattern Casting Processes: Shell Molding

Copyright © 2010 Pearson Education South Asia Pte Ltd

- Precision casting produce high dimensional accuracy and good surface finish products
- Typical parts made are lock components, gears, valves, fittings, tooling, and ornaments
- In *plaster-molding* process, the mold is made of plaster of paris with the addition of talc and silica flour to improve strength

Ceramic-mold casting process is similar to the plaster-mold process but uses refractory mold materials suitable for high-temperature applications


Expendable-mold, Expendable-pattern Casting Processes:

Evaporative-pattern Casting (Lost-foam Process)

- Evaporative-pattern casting process uses a polystyrene pattern, which evaporates upon contact with molten metal to form a cavity for the casting
- Used for ferrous and nonferrous metals which is applicable to automotive industry
- □ The advantages are:
- 1. Simple
- 2. Inexpensive flasks and polystyrene
- 3. Minimal finishing and cleaning operations
- 4. Process can be automated

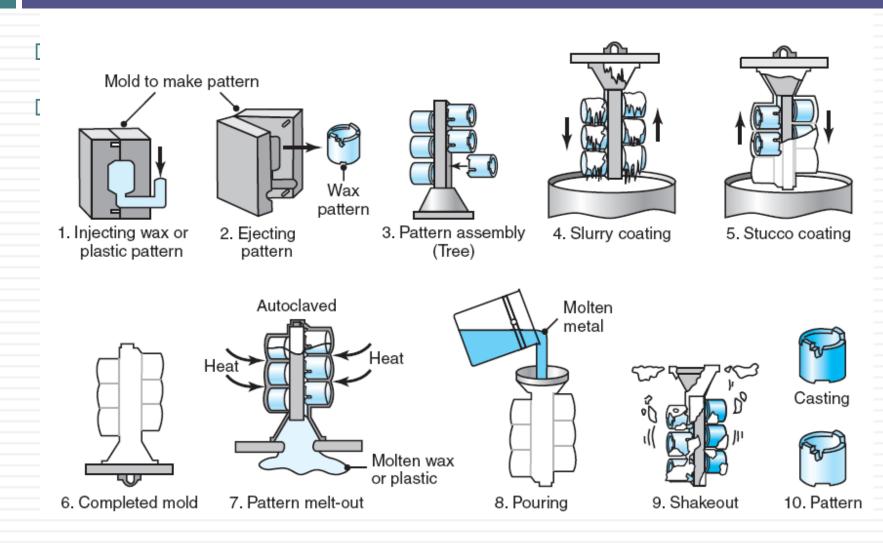
Expendable-mold, Expendable-pattern Casting Processes: Evaporative-pattern Casting (Lost-foam Process)

Expendable-mold, Expendable-pattern Casting Processes: Evaporative-pattern Casting (Lost-foam Process)

CASE STUDY 11.1

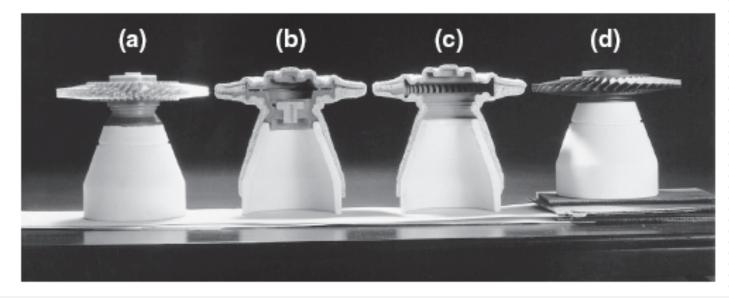
Lost-foam Casting of Engine Blocks

- Metal is poured into a mold for lost-foam casting a) of a 60-hp, three-cylinder marine engine
- Finished engine block **b**)


(b)

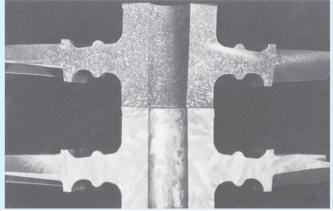
Also called lost-wax process

- Used to make office equipment, and mechanical components such as gears
- Pattern is invested (surrounded) with the refractory material
- Mold is heated up to drive off the water of crystallization and to burn off any residual wax
- Process is capable of producing intricate shapes from ferrous and nonferrous metals and alloys


Expendable-mold, Expendable-pattern Casting Processes:

Investment Casting

Ceramic-shell Investment Casting


 Process is economical and is used for the precision casting of steels and high-temperature alloys

EXAMPLE 11.1

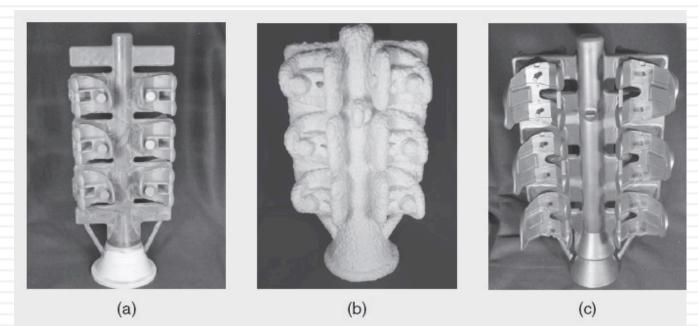
Investment-cast Superalloy Components for Gas Turbines

- Figure shows a cross section and microstructure of two rotors:
- 1. (Top) Investment cast
- 2. (Bottom) Conventionally cast

CASE STUDY 11.2

Investment Casting of Total Knee Replacements

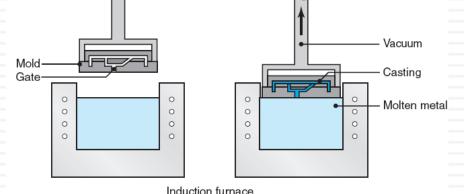
Manufacture of total knee replacements



CASE STUDY 11.2

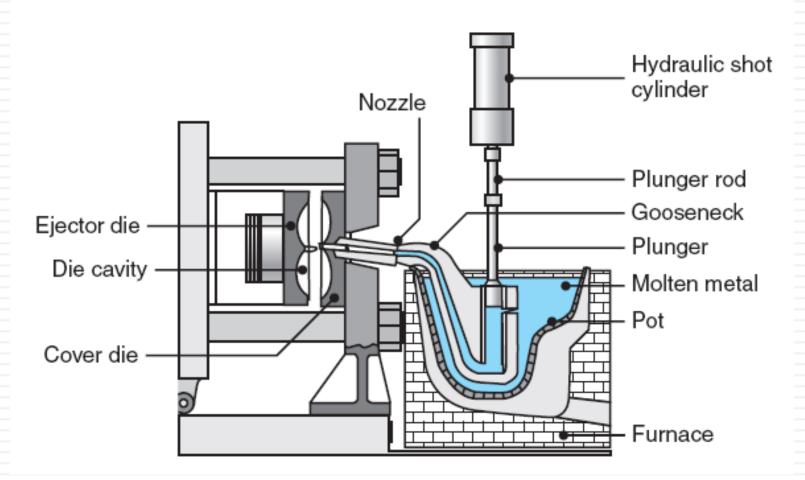
Investment Casting of Total Knee Replacements

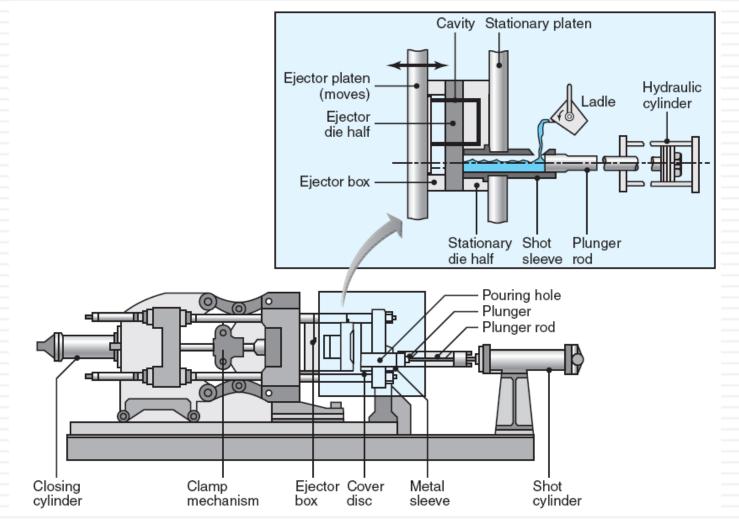
Progression of the tree


Permanent-mold Casting Processes: Permanent-mold Casting

- 2 halves of a mold are made from materials with high resistance to erosion and thermal fatigue
- In order to increase the life of permanent molds, the surfaces of the mold cavity are coated with a refractory slurry or sprayed with graphite
- Equipment costs is high but labor costs are kept low through automation
- Not economical for small production runs

Permanent-mold Casting Processes: Vacuum Casting


- Vacuum casting is an alternative to other casting and is suitable for thin-walled complex shapes with uniform properties
- A mixture of fine sand and urethane is molded over metal dies and cured with amine vapor
- Automated and production costs are similar green-sand casting


Permanent-mold Casting Processes: Die Casting

- Die-casting process is a further example of permanent-mold casting
- □ 2 basic types of die-casting machines:
- 1. **Hot-chamber process** use a piston to forces a certain volume of metal into the die cavity through a gooseneck and nozzle
- 2. **Cold-chamber process** is where molten metal is poured into the injection cylinder (*shot chamber*)

Permanent-mold Casting Processes: Die Casting (Hot Chamber)

Permanent-mold Casting Processes: Die Casting (Cold Chamber)

Copyright © 2010 Pearson Education South Asia Pte Ltd

Permanent-mold Casting Processes: Die Casting

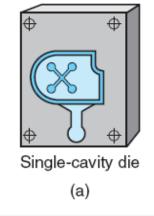
Process Capabilities and Machine Selection

- Die casting is able to produce strong and highquality parts with complex shapes
- Also produces good dimensional accuracy and surface details
- Strength-to-weight ratio of die-cast parts increases with decreasing wall thickness

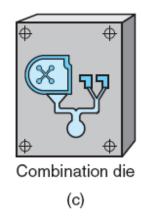
Permanent-mold Casting Processes: Die Casting

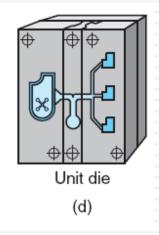
Process Capabilities and Machine Selection

Alloy	Ultimate tensile strength (MPa)	Yield strength (MPa)	Elongation in 50 mm (%)	Applications
Aluminum 380 (3.5 Cu-8.5 Si)	320	160	2.5	Appliances, automotive components,
13 (12 Si)	300	150	2.5	electrical motor frames and housings Complex shapes with thin walls, part requiring strength at elevated
Brass 858 (60 Cu)	380	200	15	temperatures Plumbing fixtures, lock hardware, bushings, ornamental castings
Magnesium AZ91 B (9 Al-0.7 Zn)	230	160	3	Power tools, automotive parts, sporting goods
Zinc No. 3 (4 Al)	280	—	10	Automotive parts, office equipment, household utensils, building
No. 5 (4 Al-1 Cu)	320	—	7	hardware, toys Appliances, automotive parts, building hardware, business equipment


Source: American Die Casting Institute.

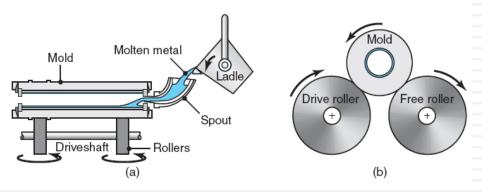
Permanent-mold Casting Processes: Die Casting


Process Capabilities and Machine Selection


- Die-casting dies can be
- 1. Single cavity
- 2. Multiple cavity (several identical cavities)
- 3. Combination cavity (several different cavities)

4. Unit dies

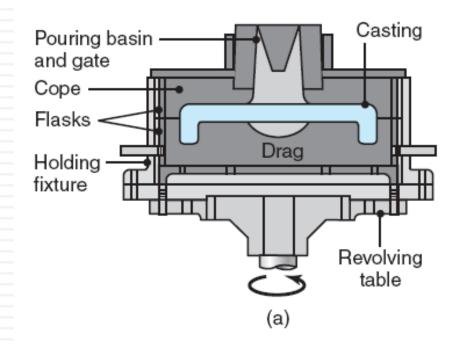
Multiple-cavity die


Copyright © 2010 Pearson Education South Asia Pte Ltd

Permanent-mold Casting Processes: Centrifugal Casting

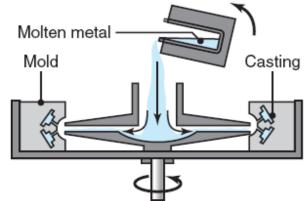
Centrifugal-casting process utilizes inertial forces to distribute the molten metal into the mold cavities

True Centrifugal Casting


 Cylindrical parts (such as pipes, gun barrels) are produced by the technique

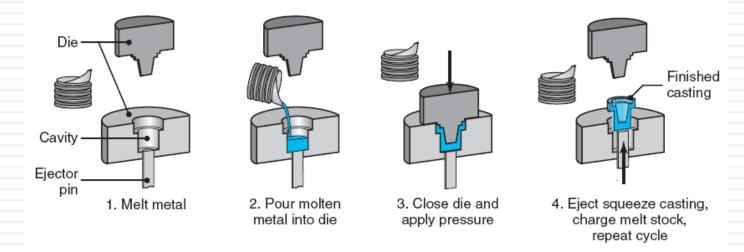
Permanent-mold Casting Processes: Centrifugal Casting

Semicentrifugal Casting


 Used to cast parts with rotational symmetry, such as a wheel with spokes.

Permanent-mold Casting Processes: Centrifugal Casting

Centrifuging


- Mold cavities of any shape are placed at a certain distance from the axis of rotation
- Properties of the castings can vary by distance from the axis of rotation, as in true centrifugal casting

Permanent-mold Casting Processes: Squeeze Casting and Semisolid-metal Forming

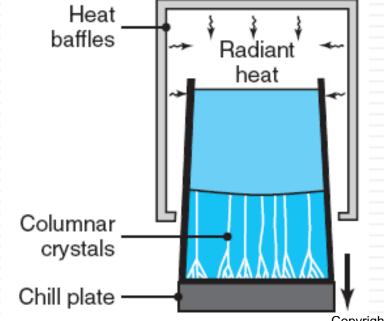
Squeeze Casting

- Involves the solidification of molten metal under high pressure
- Products made are automotive components and mortar bodies

Copyright © 2010 Pearson Education South Asia Pte Ltd

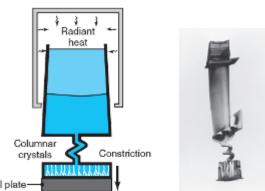
Permanent-mold Casting Processes: Composite-mold Casting Operations

- Composite molds are made of two or more different materials
- Used for casting complex shapes such as impellers for turbines
- Composite molds
- 1. Increase the strength of the mold
- 2. Improve the dimensional accuracy and surface finish
- 3. Help reduce overall costs and processing time


Conventional Casting of Turbine Blades

- Uses a ceramic mold
- Molten metal is poured into the mold and solidify at the ceramic walls
- □ Grain structure developed is polycrystalline
- Grain boundaries cause structure to creep and cracking along the boundaries

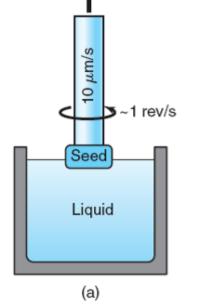
Directionally Solidified Blades


- Ceramic mold is preheated by radiant heating
- Metal is poured into the mold and allow crystals to grow

Copyright © 2010 Pearson Education South Asia Pte Ltd

Single-crystal Blades

- The mold has a constriction in the shape of a corkscrew or helix
- Only the most favourably oriented crystals are able to grow through the helix
- Blades are more expensive, lack of grain boundaries has resistant to creep and thermal shock
- Longer and more reliable service life

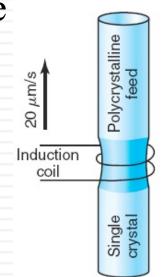

Copyright © 2010 Pearson Education South Asia Pte Ltd

Single-crystal Growing

- □ 2 basic methods of crystal growing:
- 1. Czochralski (CZ) process

- a seed crystal is dipped into the molten metal and then pulled out slowly while being rotated

- liquid metal solidify on the seed and crystal structure of the seed is continued throughout

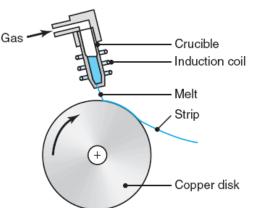

Single-crystal Growing

2. Floating-zone method

- a rod of polycrystalline silicon resting on a single crystal

induction coil heats these
two pieces while the coil
moves slowly upward

single crystal grows
upward while maintaining
its orientation



Rapid Solidification

disk

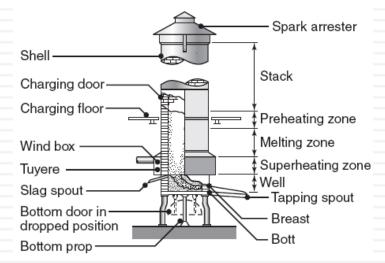
- Technique for making *amorphous alloys* involves cooling the molten metal at high rates
- □ Thus does not have sufficient time to crystallize
- For melt spinning, the alloy is melted by induction in a ceramic crucible and propelled under high gas pressure against a rotating copper

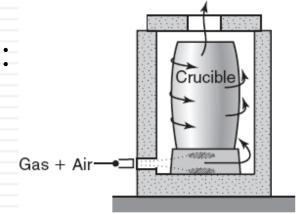
Copyright © 2010 Pearson Education South Asia Pte Ltd

Inspection of Castings

- Control of all casting stages is essential to maintaining good quality
- Castings can be inspected visually or optically for surface defects
- In *destructive* testing, specimens are determined for the presence, location, and distribution of porosity and defects
- Pressure tightness of cast components is determined by sealing the openings in the casting and pressurizing it with water, oil, or air

Melting Practice and Furnaces


- Melting practice has a direct bearing on the quality of castings
- Fluxes are inorganic compounds that refine the molten metal by removing dissolved gases and various impurities
- Added manually or injected automatically into the molten metal



Melting Practice and Furnaces

Melting Furnaces

- Commonly used melting furnaces:
- 1. Electric-arc furnaces
- 2. Induction furnaces
- 3. Crucible furnaces
- 4. Cupolas
- 5. Levitation melting

Foundries and Foundry Automation

- Casting operations usually are carried out in foundries
- Modern foundries have automated and computerintegrated facilities for all aspects of their operations
- Automation minimizes labor, reduces the possibility of human error, increases the production rate and attains higher quality level

