An Introduction to Parallel Programming

Peter Pacheco

Chapter 3

Distributed Memory
Programming with

MP]

Roadmap

= Writing your first MPI program.

s Using the common MPI functions.

= The Trapezoidal Rule in MPI.

= Collective communication.

= MPI derived datatypes.

s Performance evaluation of MPI programs.
= Parallel sorting.

s Safety in MPI programs.

a)Igng Jaydey #

A distributed memory system

CPU CPU CPU CPU

Memory Memory Memory Memory

Interconnect

CPU

CPU

CPU

A shared memory system

CPU

Interconnect

Memory

Hello World!

#include <stdio.h>

int main(void) |
printf("hello, world\n");

return 0O:

(a classic)

Identifying MPI processes

= Common practice to identify processes by
nonnegative integer ranks.

m) processes are numbered 0, 7, 2, .. p-1

Our first MPI program

1 (#include <stdio.h>

2 |[#include <string . h> /« For strien w/

J |#include <mpi.h> /+ For MPI functions, etc =/

4

5 [const int MAX STRING = 100;

6

7(int main(void) {

8 char greeting[MAX_STRING];

9 int comm_sz; /+ Number of processes =/

10 int my_rank: JF+ My process rank wf

11

12 MPI Init(NULL, NULL);

13 MPI_Comm_size(MPI_COMM WORLD, &comm_sz);

14 MPI_Comm_rank (MPI_COMM_WORLD, &my_rank):

15

16 if (my_rank != 0) {

17 sprintf(greeting, "Greetings from process %d of %d!",
18 my_rank, comm sz);

19 MPI_Send({greeting, strlen{greeting)+1, MPI_CHAR, 0, O,
20 MPI_COMM_WORLD}:

21 } else {

22 printf("Greetings from process %d of %d!\n", my_rank, comm _sSz};
23 for (int g = 1; g < comm_sz; g++) {

24 MPI_Recv(greeting, MAX_STRING, MPI_CHAR, g.
25 0, MPI_COMM_WORLD, MPI_STATUS_ICNORE):
26 printf("%s\n", greeting);

2¥ }

28 I;

29

30 MPI Finalize ();

31 return 0:

32|}y /= main %/

M<K

MORGAN KAUFMANN

Compilation

wrapper script to compile

< Y source file

mpicc -g -Wall -o mpi_hello mpi_hello.c

produce \B create this executable file name
debugging
information

(as opposed to default a.out)

turns on all warnings

Execution

mpiexec -n <number of processes> <executable>

mpiexec -n 1 ./mpi_hello

C/ run with 1 process

mpiexec -n 4 ./mpi_hello

L run with 4 processes

Execution

mpiexec -n 1 ./mpi_hello

Greetings from process 0 of 1|

mpiexec -n 4 ./mpi_hello

Greetings from process 0 of 4 !
Greetings from process 1 of 4 !
Greetings from process 2 of 4 |
Greetings from process 3 of 4 |

MPI Programs

s Written in C.

= Has main.
s Uses stdio.h, string.h, etc.

= Need to add mpi.h header file.

= |dentifiers defined by MPI start with
“‘MPI_".

m First letter following underscore is
uppercase.

= For function names and MPI-defined types.
= Helps to avoid confusion.

MPI Components

a MPI _Init
= Tells MPI to do all the necessary setup.

int MPI Tnit(
int=* argc_p JF% infout */,
char*sx argv_p /% infout */);
= MP| _Finalize

= Tells MPIl we're done, so clean up anything
allocated for this program.

int MPI Finalize(void):

Basic Outline

#include <mpi.h>
int main(int argc, char* argv[]) {

'+ No MPI calls before this =*/
MPI_Init(&argc, &argv);

MPI Finalize():

/# No MPI calls after this =/

return 0

Communicators

= A collection of processes that can send
messages to each other.

= MPI_Init defines a communicator that
consists of all the processes created when
the program is started.

= Called MPI_COMM_ WORLD.

Communicators

int MPI Comm size(
MPI Comm comm F In =%,
int* comm_SZ_p f= out =*/):

number of processes in the communicator

int MPI Comm rank(
MPI Comm cCcomm f# in =/,
int# my_rank_p f+ out =/);

—

my rank

(the process making this call)

SPMD

= Single-Program Multiple-Data
= \We compile one program.

s Process 0 does something different.

s Receives messages and prints them while the
other processes do the work.

= [he if-else construct makes our program
SPMD.

Communication

int MPI_Send(

void

int
MBI_Datatype
int

int

MEI Comm

msg_buf_p
msg_size
msg_type
dest

tag
communicator

/%
/%
%
/%
/ #
/ #

in
In
in
in
in
N

Y
¥l
2/
1
2y
/)

Data types

MPI datatype C datatype
MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MBI_LONG signed long int

MPI LONG_LONG
MPI_UNSIGNED_ CHAR
MPI UNSIGNED SHORT
MPI UNSIGNED
MPI_UNSIGNED_LONG
MPI_FLOAT

MPI DOUBLE

MPI LONG_DOUBLE
MPI_ BYTE

MPI_ PACKED

signed long long int
unsigned char
unsigned short int
unsigned int
unsigned long int
float

double

long double

Communication

int MPI_ Recv(
void*
int
MPI_Datatype
int
int
MPI Comm
MPI_Statuss#

msg_buf_p
buf size
buf_type
source
tag

communicator
status_p

/%
g
/%
/%
g

[
/%

ot
In
In
In
In
N
olt

- N
%/,
sl
- N

%
*f)

Message matching

MPI_Send(send buf p., send buf sz, send type. ,
: / 4

r
MPI|_Send
Src =q
MPI_Recv
dest =r
/
MPI_Recv(recv_ buf p, recv_buf sz, recv_type, @,.@
, &status); \
q

Receiving messages

= A receiver can get a message without
Knowing:
= the amount of data in the message,
= the sender of the message,
= Or the tag of the message.

status _p argument

MPI_Recv(recv_buf p, recv_buf sz, recv type, src, recv_tag,
recv_comm, &status);

%MPI_Status* %

MPI_Status* status; MPI_SOURCE
MP|_TAG

MPI_ERROR

status.MPI_SOURCE
status.MPI_TAG

How much data am | receiving?

int MPI Get count(
MPI_ Status#* status_p J/+ In #/,
MFI_Datatype type f% in #xf;
int+* count_p /% out *=/);

Issues with send and receive

s Exact behavior is determined by the MPI
implementation.

= MP|_Send may behave differently with
regard to buffer size, cutoffs and blocking.

= MPIl_Recv always blocks until a matching
message Is received.

= Know your implementation;
don’t make assumptions!

l
el

TRAPEZOIDAL RULE IN MPI

The Trapezoidal Rule

/ > /\%s\%

N
|

S
/

1 | | | 1
a b X a b X

(a) (b)

The Trapezoidal Rule

/
Area of one trapezoid = El[f(l'f) + f(xit1)]

b—a
n

H—

Xo=a,xy=a+h,xo=a+2h, ..., xp 1=a+n—1)h, x,=b

Sum of trapezoid areas = h[f(xq)/2+ f(x1)+ f(x2) +---+ f(xp—1)+ f(xn) /2]

One trapezoid

N
’ y=f(x
f(x;) --————/%
f(Xppq) = ————p———- \
>
X Xipr X
_ J

Pseudo-code for a serial
program

/= Input: a, b, B =/
b= {b—a¥lsn:

approx = (f(a) + f(b))/2.0;
for (i = 0; 1 <= n—1;: i++) {
¥ 1= a % 1ixh;

approx += f£(x 1i):

|

approxXx = hxapprox:

Parallelizing the Trapezoidal Rule

1. Partition problem solution into tasks.

2. ldentify communication channels between
tasks.

3. Aggregate tasks into composite tasks.
4. Map composite tasks to cores.

Parallel pseudo-code

1 Get a, b, n;

2 h = (b—a)/n:

3 local n = n/comm SZ:

4 local_a = a + my_rankxlocal_n=h;

5 local b = local a + local n#h;

6 iocal integral = Trapf(loecal_a, local b, lecal n, h);
7 if (my_rank != 0)

8 Send local_integral to process 0;

9 else /+ my_rank == */

10 total integral = local integral:

11 for (proc = |; proc < comm_sz; proc++) {
12 Receive local integral from proc;

13 total_integral += local_integral;

14 }

15 }

16 if (my_rank == 0)

17 print resnli;

Tasks and communications for

Trapezoidal Rule
Compute area Compute area Compute area
of trap 0 of trap 1 of trap n—1

h = L bt —

oo~ o

11
12
13
14
15
16
17
18
19
20

First version (1)

int main(void) {
int my _rank, comm_ sz, n = 1024, local_n;

double a = 0.0, b = 3.0, h., local a, local b;:

double local int. total int;:
int source;

MPI Init(NULL, NULL):
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
MPI Comm_size(MPI COMM WORLD, &comm Sz):

h = (b—a)/n; /* h is the same for all processes =/
local_n = n/comm_sz; /% So is the number of trapezoids =/
local _a = a + my_rank+local n#*h;
local b = local a + local n=xh;
local_int = Trap(local_a, local b, local n, h);:
if (my_rank != 0) {

MPI Send(&local int, 1, MPI DOUBLE, 0, O,

MPI_COMM_WORLD);

First version (2)

21 I else |

22 total int = Lo¢al 1nt;

23 for (source = 1; source < comm_sz:; source++) |{

24 MPI Recv(&local int, 1, MPI DOUBLE., source, 0,
25 MPI COMM_WORLD, MPI STATUS_ _IGHNORE);

26 total int 4= local int;

27 }

28 }

29

30 if (my_rank == 0) {

31 printf("With n = %d trapezoids, our estimate’\n", n);
32 printf("of the integral from %f to %f = %.15e\n",
33 a; bs total int):

34 }

33 MPI Finalize();

36 return 0:

37 |} /+ main %/

First version (3)

double Trap(
double left endpt /% in =%/,
double right endpt /% in %/,
int trap_count /% in x/,
double base len /% in /) {
double estimate. x:
int 1i:

estimate = (f(left _endpt) + f(right_endpt))/2.0;
for (i = 1; i <= trap_count—1: i++) {

X = left_endpt + ixbase_len;

estimate += f(Xx);

!

estimate = estimatexbase len;

return estimate:
b /x Trap =/

Dealing with 1/O

#include <stdio.h>
#include <mpi.h>

Each process just

int main(void) | prints a message.
int my_rank, comm_sz;

MPI Init(NULL, NULL);:
MPI Comm size(MPI COMM WORLD, &comm sz):
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank):

printf("Proc %d of %d > Does anyone have a toothpick?\n",
my_rank. comm_sz);:

MPI Finalize():
return 0;
b /% main =/

Proc
Proc
Proc
Proc
Prac
Proc

h e b bdo— O

of 6 > Does
of 6 > Does
of 6 > Does
6f 6 > Does
of 6 > Does
of 6 > Does

anyone
anyone
anyone
anyone
anyone
anyone

unpredictable output

have
have
have
have
have
have

LRI L B E E o I o & B o &

Running with 6 processes

toothpick?
toothpick?
toothpick?
toothpick?
toothpick?
toothpick?

Input

= Most MPI implementations only allow
process 0 in MPI_COMM_WORLD access

to stdin.

s Process 0 must read the data (scanf) and
send to the other processes.

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank):
MPI Comm_size(MPI_ COMM WORLD, &comm_sSz):

Get_data(my_rank, comm_ sz, &a, &b, &n);

h = (b—a)/n;

Function for reading user input

void Get_input(

int my_rank [+ in */,
int comm_Sz [+ in #/.
double+ a_p /% out */,
double+ b p /% out */,
int= n_p [+ out */) |
int dest;
if (my_rank == 0) {

printf("Enter a, b, and n\n");
gcanf("%$1f %1 %d™, a. p., b p, 1i_p);
for (dest = 1; dest < comm_sz; dest++) {
MPI_Send(a_p. 1, MPI_DOUBLE, dest, 0O, MPI_COMM_WORLD);
MPI_Send(b_p. 1, MPI_DOUBLE, dest, 0, MPI_COMM WORLD):
MPI Send(n_p, 1, MPI_INT, dest, 0O, MPI_COMM WORLD);
}
} else { /% my_rank != 0 =/
MPI Recv(a_p., 1, MPI DOUBLE, 0O, 0O, MPI_COMM WORLD,
MPI_STATUS IGNORE):
MPI_Recv(b_p, 1, MPI_DOUBLE, 0O, 0O, MPI_COMM WORLD,
MPI STATUS IGNORE);:
MPI Recv(n_p, 1, MPI_INT, 0, O, MPI_COMM WORLD,
MPI_STATUS IGNORE):

} /= Get_input */

MORGAN KAUFMANN

COLLECTIVE
COMMUNICATION

Tree-structured communication

1.

In the first phase:
(a) Process 1 sends to 0, 3 sends to 2, 5 sends to 4, and

/ sends to 6.
(b) Processes 0, 2, 4, and 6 add in the received values.

(c) Processes 2 and 6 send their new values to

processes 0 and 4, respectively.
(d) Processes 0 and 4 add the received values into their

new values.

2. (a) Process 4 sends its newest value to process 0.
(b) Process 0 adds the received value to its newest
value.

sum

-structured global

A tree

Processes

-structured

An alternative tree

global sum

Processes

MPI| _Reduce

int MPI Reduce(
void input_data_p fx il ®F,
void output data p /Fx out x/,
int count [+ in %/,
MPI Datatype datatype f% TH ¥,
MPI_ Op operator f# In =/,
int dest_process ok A0 w5
MPI Comm comm Fe dm wL);

MPI_Reduce(&local int, &total int, 1, MPI DOUBLE, MPI_SUM, O,
MPI_COMM_ WORLD):

double local x[N]. sum[N]:

MPI Reduce(local x, sum, N, MPI DOUBLE, MPI SUM, O,
MPI COMM WORLD):

Predefined reduction operators
in MPI

Operation Value | Meaning

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical and

MPI_BAND Bitwise and

MPI_LOR Logical or

MPI_BOR Bitwise or

MPI_LXOR Logical exclusive or

MPI_BXOR Bitwise exclusive or

MPI_MAXLOC Maximum and location of maximum
MPI_MINLOC Minimum and location of minimum

Collective vs. Point-to-Point
Communications

= All the processes in the communicator
must call the same collective function.

s For example, a program that attempts to
match a call to MP|I Reduce on one
process with a call to MP| Recv on
another process Is erroneous, and, in all
likelihood, the program will hang or crash.

Collective vs. Point-to-Point
Communications

= [he arguments passed by each process to
an MPI collective communication must be
“compatible.”

s For example, if one process passes in 0 as
the dest process and another passes in 1,
then the outcome of a call to MPI| Reduce
IS erroneous, and, once again, the
program is likely to hang or crash.

Collective vs. Point-to-Point
Communications

= [he output data p argument is only used
on dest process.

= However, all of the processes still need to
pass in an actual argument corresponding
to output_data p, eveniifit's just NULL.

Collective vs. Point-to-Point
Communications

= Point-to-point communications are
matched on the basis of tags and
communicators.

= Collective communications don’t use tags.

= They're matched solely on the basis of the
communicator and the order in which
they're called.

Example (1)

Time || Process 0 Process 1 Process 2
0 3= A g g 3ol e g =15 8 = 2
| MPI Reduce(&a, &b, ...) | MPI_Reduce(&c, &d, ...) | MPI_Reduce(&a, &b, ...)
2 MPI_ Reduce(&c, &d, ...) | MPI_Reduce(&a, &b, ...) | MPI_Reduce(&c, &d, ...)

Multiple calls to MPIl _Reduce

Example (2)

s Suppose that each process calls
MPI| Reduce with operator MPI_SUM, and
destination process 0.

= At first glance, it might seem that after the
two calls to MPI Reduce, the value of b
will be 3, and the value of d will be 6.

Example (3)

= However, the names of the memory
locations are irrelevant to the matching of
the calls to MP| Reduce.

s [he order of the calls will determine the
matching so the value stored in b will be
1+2+1 = 4, and the value stored in d will
be 2+1+2 = 5.

MPI Allreduce

s Useful in a situation in which all of the
processes need the result of a global sum
In order to complete some larger

computation.
int MPI Allreduce(
void = input_data_p [+ In #/,
void = output_data_p /* out =/,
int count /% i %,
MPI_Datatype datatype fk IR xf
MPI_Op operator fx th =i,

MPI Comm comm f+ in %x/):

Processes

8
=
S
S
S
S
%]
=
Q
S
@)
<

by distribution of the

result.

Processes

Processes

Broadcast

= Data belonging to a single process is sent
to all of the processes in the
communicator.

int MPI Bcast(

void = data_p S Infout =/,
int count [+ In */ |
MPI Datatype datatype [x In -7
int source_proc /+ 0N %l

MPI Comm Comm f* IR k) ;

A tree-structured broadcast.
Processes

A version of Get_input that uses
MPI| Bcast

void Get_ input(

int my_rank /x in *x/,

int comm_sz J/x In %/,

double+ 2 p /x out =/,

double+x b p fx out */,

int n_p [out /) {
if (my_rank == 0) {

printf("Enter a, b, and n\n");
gcanf("81lf %31f %d"™, a py; bp; n_p);

i

MPI_ Bcast(a_p, 1, MPI DOUBLE, 0O, MPI_COMM WORLD):
MPI Bcast(b_p, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI Bcast(n_p, 1, MPI INT, O, MPI_COMM WORLD):

} /= Get_input */

Data distributions

X+y = (X0,%1,...,%—1)+ (0, Y1,. - Yn—1)
(X0 +Y0,%1 + Y15+« sXn—1+Yn—1)

= KT T}
Vi

Compute a vector sum.

Serial implementation of vector
addition

void Vector_sum(double x[], double y[], double z[]. int n) {
int i;

for (1 = 0; 1 € n; i++)
z[i] = x[i] + ylil;
} /% Vector_sum =/

Different partitions of a 12-
component vector among 3

Processes
Components
Block-cyclic
Process Block Cyclic Blocksize = 2
0 B 1 2|2 |¥ 3|9 (R 1|6 |7
I 4 15|16 |7 ||1[4(7(10]2]|3]| 8|9
2 S|9[10 711 (25811 }|4]|5(10]11

Partitioning options

= Block partitioning

= Assign blocks of consecutive components to
each process.

= Cyclic partitioning
= Assign components in a round robin fashion.
= Block-cyclic partitioning

= Use a cyclic distribution of blocks of
components.

Parallel implementation of
vector addition

void Parallel vector_ sum(
double 1local x[] /= in =%/,
double local_y][] /= in =*/,
double local z[] /% out =*/.
int local_n % Im w) 4
int local i;

for (leocal i = 0; local i < local n; local i++)
local _z[local i] = local x[local i] + local y[local_ il];
} [/« Parallel_vector_sum =/

Scatter

s MPI_Scatter can be used in a function that
reads in an entire vector on process 0 but
only sends the needed components to
each of the other processes.

int MPI Scatter(

void send _buf p /% in %/,
int send count /x in */,
MPI_Datatype send_type l in %/,
void * recv_buf p /x out */,
int recv_count /% in %/,
MPI_ Datatype recv_type i¥ itk ®S,
int Src_proc fe i
MPI Comm comm fx m *L);

Reading and distributing a vector

void Read vector(

double local al] /% out */,
int local n /¥ in %/,
int n [+ in %/,
char vec_name[] [/ in */,
int my_rank [+ in %/,
MPI Comm comm [+ in /) {

double+ a = NULL:
int i:

if (my_rank == 0) {
a = malloc(nssizeof(double)):
printf("Enter the vector %s\n", vec_name);
fer (i = 8% 4 < g A44)
seant ("$1EN, &alil):
MPI Scatter(a, local n, MPI DOUBLE., leccal a, local n, MPFI DCUBLE,
0, comm);
free(a);
} else |
MPI_Scatter(a, local _n, MPI_DOUBLE, local_a, local_n, MPI_DOUBLE,
0, comm);

}

t /+ Read_vector +/

M<K

MORGAN KAUFMANN

Gather

= Collect all of the components of the vector
onto process 0, and then process 0 can
process all of the components.

int MPI Gather(

void + send buf p /% in %/,
int send count /% in %/,
MPI_Datatype send_type f In %/,
void = recv_buf_p /* out =*/,
int recv_count /+ in %/,
MPI_Datatype recv_type f IR */,
int dest_proc /= in */,

MPI Comm comm I/ In ")

Print a distributed vector

void Print vector(

double
int

int

char

int

MPI Comm

doubles+ b =
int i:

loccal bl]
local n

n

title|[]
my_rank
comm

NULL ;

/%
e

e
[%

n
in
in
in
IR
in

(1)

%/
"
&k
7
%/
T T |

Print a distributed vector (2)

if (my_rank = 0) {
b = malloc(n#sizeof (double)):
MPI_Gather(local_b, local_n, MPI_DOUBLE, b, local n, MPI_DOURBRLE,
0, comm);
priabEE{"E8\n" . Eitkia)
for (i = 0; i < n; i++)
préobE(™EE *_ bl1 i
pEInEEC YR)

free(b);:
I else {
MPI_Gather(local_b, local_n, MPI_DOUBLE, b, local_n, MPI_DOUBLE,
0., comm);

h

t /% Print_vector =/

Allgather

s Concatenates the contents of each
process’ send buf p and stores this in
each process’ recv_buf p.

s As usual, recv_count is the amount of data
being received from each process.

int MPI Allgather(

void + send _buf p /% in %/,
int send_count /x in %/,
MPI_Datatype send_type Bk B W
void * recv_buf p /+ out =/,
int recv_count /% Iin %/,
MPI Datatype recv_type e in wf

MPI Comm comm x i &)

Matrix-vector multiplication

A = (ajj) 1s an m x n matrix

.

X 1s a vector with n components

e

Yy =AX 1is a vector with m components

\

Vi = dijpXp + dji X1 +dpXy + - dj p—1Xp—1
, i

I-th component of y

Dot product of the ith
row of A with x.

Matrix-vector multiplication

anon

(o1

d0.n—1

amn

11

d1n—1

djl

I

tm—1.,0

Um—1.1

tUm—1.n—1

X

ALY

Vi

Vi = aipXo + A X1 + - dip1Xp—|

Vm—1

Multiply a matrix by a vector

/= For each row of A x*/

for (i = 0: 1 < m: i++) {
/+ Form dot product of ith row with x =/
viil = 0.0;

for (j = 0; j < n; j++)
ylil += A[i]ljl*=x[]];

Serial pseudo-code

C style arrays

(

oo = O

1 2 3
5 6 7
. 0

1011 stored as

B

~

01234567891011

Serial matrix-vector
multiplication

void Mat vect mult (
double 2] /= in /.
double x|]| /+ in /.
double y[] /+ out +/,

int m /= in #/,
int n [in *=/) {
int 4§
for (1 = 0; i < m; i++) {
vli]) = B.D;

for (7 0: 1 < n: j++)
v[i] += Ali*n+j]=*x[jl;

h

V' /¢ Mat_vect_mult =/

An MPI matrix-vector
multiplication function (1)

void Mat vect_mult(

double local A[] J/% In %/,
double Tocal x[] /fx in
double local_vy[] /% out =*/,
int local m /¥ in *x/,
int n /¥ In *x/,
int local n Fx In xf
MPI Comm comm [in x/) {

double+ x:
int local i, 7j;
int 1ocal ok = 1:

An MPI matrix-vector

multiplication function (2)

x = malloc(n+sizeof (double));
MPI_Allgather(local_x, local_n, MPI_DQUBLE,
x, local n, MPI DOUBLE, comm);

for (local_i = 0; local i < local_m; local_i++) {
Iloeal yllocal 4] = 0.0;
for (j = 0; j < n; j++)
local_v[local _i] += local A[local_isn+jl*x[j]:

}

free(x):
/+« Mat_vect_mult +/

28

MPI DERIVED DATATYPES

Derived datatypes

s Used to represent any collection of data items in
memory by storing both the types of the items
and their relative locations in memory.

s The idea is that if a function that sends data
knows this information about a collection of data
items, it can collect the items from memory
before they are sent.

= Similarly, a function that receives data can
distribute the items into their correct destinations
iIn memory when they're received.

Derived datatypes

= Formally, consists of a sequence of basic
MPI| data types together with a
displacement for each of the data types.

s [rapezoidal Rule example:

Variable

Address

24

40

48

{(MPI_DOUBLE,O0), (MPI_DOUBLE, 16),(MPI_INT,24)}

MPI_Type create_ struct

= Builds a derived datatype that consists of
individual elements that have different

basic types.
int MPI_Type_create_struct(
int count f+ in I
int array_of_blocklengths|[] [+ In .
MPI Aint array_of displacements|[] /% in ;
MPI_Datatype array_of_ types]|] VETN ¥/ %/

MPI_Datatypes new_type_p lx out */);

MPIl_Get_address

= Returns the address of the memory
location referenced by location p.

= [he special type MPI|_Aint is an integer
type that is big enough to store an address
on the system.

int MPI Get address(
void « location p /% in %/,
MPI Aint#* address p '+ out =*/);

MPI_Type commit

= Allows the MPI implementation to optimize
its internal representation of the datatype
for use in communication functions.

int MPI_Type commit(MPI_Datatype* new _mpi t p /% in/out x/):

MPI_Type free

= \When we’re finished with our new type,
this frees any additional storage used.

int MPI_Type_ free(MPI _Datatypex old_mpi_t_ p /% in/out =/);

Get input function with a derived
datatype (1)

void Build mpi_type(

double = a p fa $H wE,
double = b_p . AR wely
intsx n_p i ogn %,
MPI_Datatype* input_mpi_t p /* out /) {

int array_of_blocklengths[3] = {1, 1, 1};

MPI_Datatype array_of_types[3] = {MPI_DOUBLE, MPI_DOUBLE, MPI_INT};
MPI Aint a _addr, b _addr, n_ addr;

MPI_Aint array_of displacements[3] = {0};

Get input function with a derived
datatype (2)

MPI_Get_address(a_p, &a_addr);
MPI_Get_address(b_p, &b_addr);
MPI_Get_address(n_p, &n_addr);
array_of_displacements|[l] = b_addr—a_addr;
array_of displacements|[2] = n_addr—a_addr;
MPI_Type_create_struct(3, array_of_blocklengths,
array_of_displacements, array_of types,
input_mpi_ t p);
MPI_Type_commit(input_mpi_t_p);
t 7/ Build_mpi_type =/

Get input function with a derived
datatype (3)

void Get_input(int my_rank, int comm_sz, doublex a_p, doublex b_p,.
intx n_p) {
MPI Datatype input mpi t;

Build mpi_type(a_p. b p, n_p, &input_mpi t);

if (my_rank == 0) {
printf("Enter a, b, and n\n");
sgcanf ("$1f %1f %d", a p, b p, n_p);

j

MPI Bcast(a_p, 1, input mpi t, 0, MPI_COMM WORLD):

MPI_Type_ free(&input_mpi_t):
} /% Get_input */

Elapsed parallel time

s Returns the number of seconds that have
elapsed since some time in the past.

double MPI Wtime(void):

double start., finish:

start = MPI Wtime ():
/+ Code to be timed =/

finish = MPI Wtime ();

printf("Proc %d > Elapsed time = %e seconds\n"
my_rank, finish—start);

Elapsed serial time

= In this case, you don’t need to link in the
MPI libraries.

s Returns time in microseconds elapsed
from some point in the past.

#include "timer .h"

double now:

GET _TIME(now):

Elapsed serial time

#include "timer.h"
double start ., finish:

GET TIME(start):
/+ Code to be timed +/

GET_TIME(finish);

printf("Elapsed time = %e seconds\n", finish—start);

MPI|_Barrier

= Ensures that no process will return from
calling it until every process in the
communicator has started calling it.

int MPI Barrier(MPI Comm comm F% In »):

MPI|_Barrier

double local start, local finish, local elapsed, elapsed;

MPI Barrier(comm);
local start = MPI Wtime ():
/+ Code to be timed =/

local finish = MPI Wtime();

local_elapsed = local finish — local_start;

MPI_Reduce(&local elapsed, &elapsed, 1, MPI_DOUBLE,
MPI MAX, 0, comm);

if (my_rank == 0)
printf("Elapsed time = %e seconds\n", elapsed);

Run-times of serial and parallel
matrix-vector multiplication

Order of Matrix
comm_sz || 1024 | 2048 | 4096 | 8192 | 16,384
l 41| 16.0| 640 | 270 1100
2 T3 85| 33.0| 140 360
4 2.0 5.1 | 18.0 70 280
8 17 3.3 0.8 36 140
16 e 2.6 5.9 19 11

(Seconds)

Speedup

Tserial (1)

S(n,p) =

Tparallel (n,p)

| Efficiency

E(n,p)= S(f:p) — Tserial (")

p Tparallel(ﬂnp)

Speedups of Parallel Matrix-

Vector Multiplication

Order of Matrix
comm_sz || 1024 | 2048 | 4096 | 8192 | 16.384
1 1.0 1.0 1.0 1.0 1.0
s [.8 1.9 1.9 1.9 2.0
4 S| %1 3.6 3.9 3.9
8 2.4 4.8 6.5 1.5 1.9
16 2.4 6.2 108 | 14.2 15.5

Efficiencies of Parallel Matrix-
Vector Multiplication

Order of Matrix
comm_sz || 1024 | 2048 | 4006 | 8192 | 16.384
I .00 | 1.00 | 1.00 | 1.00 1.00
2 0.89 | 094 | 0.97 | 0.96 0.98
4 051 | 0.78 | 0.89 | 0.96 (.98
8 0.30 | 0.61 | 0.82 | 0.94 (.98
16 0.15] 0.39 | 0.68 | 0.89 0.97

Scalability

= A program is scalable if the problem size
can be increased at a rate so that the
efficiency doesn’t decrease as the number
of processes increase.

Scalability

= Programs that can maintain a constant
efficiency without increasing the problem
size are sometimes said to be strongly
scalable.

= Programs that can maintain a constant
efficiency if the problem size increases at
the same rate as the number of processes
are sometimes said to be weakly scalable.

A PARALLEL SORTING
ALGORITHM

Sorting

= N keys and p = comm Sz processes.
= N/p keys assigned to each process.

= No restrictions on which keys are assigned
to which processes.

= \When the algorithm terminates:

= The keys assigned to each process should be
sorted in (say) increasing order.

» IO <qg<r<p,then each key assigned to
process g should be less than or equal to
every key assigned to process r.

Serial bubble sort

void Bubble sort(
int a[] /% in/out #/.
int n /¥ 0n /)
int list length, i, temp;

for {(list length = n; list length = 2; 1ist length——)

for (i = 0; 1 < 1ist length—1;
if (a[il > al[i+1]) 1
temp = [
al[i] = ali+1];
ali+l] = temp;

Il

j

} /+ Bubble_sort %/

i4++)

Odd-even transposition sort

= A sequence of phases.
= Even phases, compare swaps:

(a[0], a[1]), (a[2], a[3]), (al4]. a[3])....

s Odd phases, compare swaps:

Example

Start: 5,9,4, 3

Even phase: compare-swap (5,9) and (4,3)
getting the list 5, 9, 3, 4

Odd phase: compare-swap (9,3)
getting the list 5, 3, 9, 4

Even phase: compare-swap (5,3) and (9,4)
getting the list 3, 5,4, 9

Odd phase: compare-swap (5,4)
getting the list 3,4, 5,9

Serial odd-even transposition
sort void Cdd_even_sort(

int a[] /x in/out */,
int n /% 0in /) |
int phase, i, temp:

for (phase = 0; phase < n: phase++)
if (phase % 2 == 0) { /* Even phase =/
for (i = 13 4 <€ 3 i 3= 2)
if (a[i—1] > a[i]) {
temp = al[il;
alzl :=-dff—dF
al[i—1] = temp;
}
t else | /+ Odd phase =/
for (i = 1; i < n—1; i += 2)
if (ali] > ali+1]) {
temp = alil;
ali] = dliFlk;
ali+l] = temp:

1

1
} /+ Odd_even_sort =/

Communications among tasks in
odd-even sort

! ! !

ali-11[] alil ali+1] [phasej
> ﬁp J
vV V Vv
S slali-1] alil |, Plali+1] phase j+1

! ! !

Tasks determining a[i] are labeled with ali].

Parallel odd-even transposition

sort
Process
Time 0 | 2 3
Start 15,11.,9.16 3,14, 8,7 4,6,12, 10 s s N I T |
After Local Sort || 9. 11, 15,16 3,7.8, 14 4.6, 10, 12 o
After Phase 0 37,89 11, 14, 15, 16 1,2,4,5 6,10, 12, 13
After Phase 1 3.7.8.9 1.2:4.5 11,14.15,16 | 6,10, 12,13
After Phase 2 1.2, 5,4 Nl 89 6,10,11, 12 | 13, 14, 15, 16
After Phase 3 1,2,3.4 5.6,7.8 0,10, 11,12 | 13. 14, 15. 16

Pseudo-code

Sort local keys;
for (phase = 0; phase < comm_sz; phase++) |{
partner = Compute_partner(phase, my_rank):
if (I'm not idle)
Send my keys to partner;
Receive keys from partner;
1f (my_rank < partner)
Keep smaller keys;

else
Keep larger keys;

Compute partner

if (phase % 2 = 0) /+ Even phase =%/
if (my rank % 2 != 0) /+ Odd rank +/
partner = my_rank — 1;
else /= Even rank =/
partner = my_rank + 1;
else /¥ Odd phase =/
if (my rank % 2 != 0) /= Odd rank =/
partner = my_rank + 1;
else /+ Even rank =+/
partner = my _rank — 1;
if (partner == —1 || partner == comm_sz)

partner = MPI_PROC_NULL;

Safety in MPI programs

= The MPI standard allows MP| _Send to
behave in two different ways:

= it can simply copy the message into an MPI
managed buffer and return,

= Or it can block until the matching call to
MPI| Recv starts.

Safety in MPI programs

= Many implementations of MPI set a
threshold at which the system switches
from buffering to blocking.

= Relatively small messages will be buffered
by MPI_Send.

s Larger messages, will cause it to block.

Safety in MPI programs

s If the MPI_Send executed by each process
blocks, no process will be able to start
executing a call to MPIl_Recyv, and the
program will hang or deadlock.

s Each process is blocked waiting for an
event that will never happen.

(see pseudo-code)

Safety in MPI programs

= A program that relies on MPI provided
buffering is said to be unsafe.

= Such a program may run without problems
for various sets of input, but it may hang or
crash with other sets.

MPIl_Ssend

= An alternative to MP|_Send defined by the
MPI standard.

= The extra “s” stands for synchronous and

MPI| _Ssend is guaranteed to block until the
matching receive starts.

int MPI Ssend(

void = msg_buf_p /% In %/,
int msg_size /% In #/,
MPI Datatype msg type [+ In #/,
int dest /% in #/,
int tag [in %/,

MPI Comm communicator /x in x/);

MPI_Send(msg. size, MPI_INT, (my_rank+1) % comm sz, O,

Restructuring communication

comm)

MPI_Recv(new_msg, size, MPI_INT, (my_rank+comm _sz—1) % comm_sz .

0, comm, MPI STATUS IGNORE.

if (my_rank % == f)) {
MPI_Send(msg, size, MPI_INT, (my_rank+1l) % comm sz,

0, comm, MPI_STATUS_IGNORE.
! else {

MPI_Recv(new_msg, size, MPI_INT, (my_rank+comm_sz—1) %

0, comm, MPI_ STATUS IGNORE.
MPI_Send(msg, size, MPI_INT, (my_rank+1l) % comm sz,

M<K

0,
MPI_Recv(new_msg, size, MPI_ INT., (my_rank+comm sz—1) %

0,

comm)
comm Sz,

comm_sSzZ,

comm) ;

MORGAN KAUFMANN

MPIl_Sendrecv

= An alternative to scheduling the
communications ourselves.

= Carries out a blocking send and a receive
In a single call.

s [he dest and the source can be the same
or different.

m Especially useful because MPI| schedules
the communications so that the program
won’t hang or crash.

MPIl_Sendrecv

int MPI Sendrecv(
void #
int
MPI Datatype
int
int
void +
int
MPI_Datatype
int
int
MPI Comm
MPI Status#

send_buf p
send buf size
send_buf type
dest

send_tag

recv_buf p
recv_buf size
recv_buf type
source
recv_tag

communicator

status_p

/ %
/#*
/
/ *
! *
/*
/*
/#

/%
/%
/#

in
in
in
In
In
out
in
in
in
in
in
in

Safe communication with five

Processes

Time 2

Parallel odd-even transposition sort

void Merge low(

int my _keys|], /+ in/out *f
int recv_keys|], VEI s/
int temp_keys|], /+ scratch +/
int local_n /+ = n/p, in /) {

int m i, r i, t i;

W L Er A= L=l
while (t_i < local_n) {
if (my_keys[m i] <= recv_keys[r_i]) {
temp_keys[t_i] = my_keys[m_1i];
t i+4; m_1+4+4;
} else {
temp_keys[t_i] = recv_keys|[r_il]:
L o1++] £ 14+

h

for (m i = 0; m i < local n; m_i++)
my_keys[m_i] = temp_keys[m_i];
} /+ Merge_low +/

Run-times of parallel odd-even
sort

Number of Keys (in thousands)

Processes || 200 | 400 | 800 | 1600 | 3200
I 88 | 190 | 390 | 830 | 1800

2 43 | 91 | 190 | 410 | 860

4 22 | 46 | 96 | 200 | 430

8 12 | 24 | 5l 110 | 220

16 75| 14 | 29 60 130

(times are in milliseconds)

Concluding Remarks (1)

= MPI or the Message-Passing Interface is a
library of functions that can be called from
C, C++, or Fortran programs.

= A communicator is a collection of
processes that can send messages to
each other.

= Many parallel programs use the single-
program multiple data or SPMD approach.

Concluding Remarks (2)

= Most serial programs are deterministic: if
we run the same program with the same
input we’ll get the same output.

= Parallel programs often don’t possess this
property.

m Collective communications involve all the
processes in a communicator.

Concluding Remarks (3)

= \When we time parallel programs, we're
usually interested in elapsed time or “wall
clock time”.

s Speedup is the ratio of the serial run-time
to the parallel run-time.

s Efficiency is the speedup divided by the
number of parallel processes.

Concluding Remarks (4)

m If it's possible to increase the problem size
(n) so that the efficiency doesn’t decrease
as p Is increased, a parallel program is
said to be scalable.

= An MPI program is unsafe if its correct
behavior depends on the fact that
MPI|_Send is buffering its input.

