An Introduction to Parallel Programming

Peter Pacheco

Chapter 2

Parallel Hardware and Parallel
Software

Roadmap

= Some background

= Modifications to the von Neumann model
= Parallel hardware

= Parallel software

= |nput and output

= Performance

= Parallel program design

= Writing and running parallel programs

s Assumptions

a)Igng Jaydey #

SOME BACKGROUND

z
z
<
I
I
]
<
=
z
<
9
=
-]
4

v
>

Serial hardware and software

programs

iInput @

Computer runs one
program at a time.

output

The von Neumann Architecture

CPU

a)Igng Jaydey #

AL Control
Fegisters Registers

[| [|

I | I |

I | I |
Interconnect

Address Contents

I | |

[I |

I [|
Main Memory

Figure 2.1

Main memory

m [his is a collection of locations, each of
which is capable of storing both
Instructions and data.

= Every location consists of an address,
which is used to access the location, and
the contents of the location.

Central processing unit (CPU)

= Divided into two parts.

= Control unit - responsible for
deciding which instruction in
a program should be
executed. (the boss)

= Arithmetic and logic unit (ALU) -
responsible for executing the actual
instructions. (the worker)

Key terms

s Register — very fast storage, part of the
CPU.

= Program counter — stores address of the
next instruction to be executed.

s Bus — wires and hardware that connects
the CPU and memory.

ITplise

memory

M<K

MORGAN KAUFMANN

write/store

M<K

MORGAN KAUFMANN

von Neumann bottleneck

An operating system “process”

= An instance of a computer program that is
being executed.

s Components of a process:
= [he executable machine language program.
= A block of memory.

= Descriptors of resources the OS has allocated
to the process.

= Security information.
= [nformation about the state of the process.

Multitasking

= Gives the illusion that a single processor
system is running multiple programs
simultaneously.

s Each process takes turns running. (time
slice)

m After its time is up, it waits until it has a
turn again. (blocks)

Threading

s Threads are contained within processes.

= They allow programmers to divide their
programs into (more or less) independent
tasks.

= The hope is that when one thread blocks
because it is waiting on a resource,
another will have work to do and can run.

A process and two threads

the “master” thread

/ Thread

Process

N,

;\ -

terminating a thread
|s called joining

starting a thread
|s called forking

Figure 2.2

MODIFICATIONS TO THE VON
NEUMANN MODEL

Basics of caching

= A collection of memory locations that can
be accessed in less time than some other
memory locations.

s A CPU cache is typically located on the
same chip, or one that can be accessed
much faster than ordinary memory.

Principle of locality

= Accessing one location is followed by an
access of a nearby location.

= Spatial locality — accessing a nearby
location.

= Temporal locality — accessing in the near
future.

Principle of locality

float z[1000];

sum = 0.0;
for (1= 0;1<1000; i++)
sum += Z][i];

Levels of Cache

smallest & fastest

?Am 0

L2

L3 PN

é——/ largest & slowest

Cache hit

L1 x sum

L2 y z total

L3 A[] radius r1 center

Cache miss

>

main
L1 y Sum memory

|2 r1 z total

L3 A[] radius center

Issues with cache

= When a CPU writes data to cache, the
value in cache may be inconsistent with
the value in main memory.

= Write-through caches handle this by
updating the data in main memory at the
time it is written to cache.

= Write-back caches mark data in the cache
as dirty. When the cache line is replaced
by a new cache line from memory, the dirty
line is written to memory.

Cache mappings

s Full associative — a new line can be
placed at any location in the cache.

= Direct mapped — each cache line has a
unigue location in the cache to which it will
be assigned.

= n-way set associative — each cache line
can be place in one of n different locations
In the cache.

n-way set associative

= \When more than one line in memory
can be mapped to several different
locations in cache we also need to be
able to decide which line should be
replaced or evicted.

Example

Cache Location
Memory Index || Fully Assoc | Direct Mapped | 2-way
0 0,1.2,or3 0 Oorl
1 0,1,2,0r3 1 2or3
2 01,2, 0r3 2 Oorl
3 0,1,2.0r3 3 2o0r3
4 0.1.2. 0or3 0 Oorl
9 0,1,2,or3 1 2or3
6 0,1,2,or3 2 Oorl
T 0,1,2,or3 3 2or3
8 0.1,2.0r3 0 Oor1l
9 0,1,2,0or3 1 2or3
10 0,1,2,0r3 2 Dorl
11 01,2, 0r3 3 2or3
12 0,1,2.0r3 0 Oorl
13 0.1.2. 0or3 1 2or3
14 0,1,2,or3 2 Oorl
15 0,1,2,or3 3 2or3

Table 2.1: Assignments of a 16-line
main memory to a 4-line cache

Caches and

double A[MAX J[MAX], x[MAX], v[MAX];

/# Initialize A and x, assign y = 0 %/

/¥ First pair of loops =/
for (i = 0; i < MAX; i++)
for (7 = 0; J < MAX: Jj++)
v[i] += A[i][i]*x[]11];
/¥ Assign y = 0 =/
f+* Second pair of loops #/
for (j = 0; j < MARX; j++)
for (i = 0; i < MAX: 1++)

y[i] += a[i][J]*=x[]1]:

programs

Cache Line Elements of &
0 A[O0]([O0] | A[O][1] | A[O][2] | A[O][3]
1 A[1][0] | Af1][1] | Af1][2] | Al1][3]
2 A[Z][0] | A[2][1] | A[2][2] | A[2] [3]
3 A[3][0] | A[3][1] | A[3][2] | A[3][3]

Virtual memory (1)

= If we run a very large program or a
program that accesses very large data
sets, all of the instructions and data may
not fit into main memory.

= Virtual memory functions as a cache for
secondary storage.

Virtual memory (2)

= It exploits the principle of spatial and
temporal locality.

= |t only keeps the active parts of running
programs in main memory.

Virtual memory (3)

= Swap space - those parts that are idle are
kept in a block of secondary storage.

= Pages — blocks of data and instructions.

= Usually these are relatively large.

» Most systems have a fixed page
size that currently ranges from -
4 to 16 kilobytes.

Virtual memory (4)

program A main memory
|‘|:

N

program B
IJ:

program C
|—|:

Virtual page numbers

= When a program is compiled its pages are
assigned virfual page numbers.

= \When the program is run, a table is
created that maps the virtual page
numbers to physical addresses.

= A page table is used to translate the
virtual address into a physical address.

Page table

Virtual Address
Virtual Page Number Byte Offset
31| 30 131211 (10{---]1]0
1 | O f[---(1]1 00 {---]1]1

Table 2.2: Virtual Address Divided into
Virtual Page Number and Byte Offset

Translation-lookaside buffer (TLB)

= Using a page table has the potential to
significantly increase each program’s
overall run-time.

= A special address translation cache in the
processor.

Translation-lookaside buffer (2)

= [t caches a small number of entries
(typically 16—512) from the page table in
very fast memory.

= Page fault — attempting to access a valid
physical address for a page in the page
table but the page is only stored on disk.

Instruction Level Parallelism (ILP)

s Attempts to improve processor
performance by having multiple processor
components or functional units
simultaneously executing instructions.

Instruction Level Parallelism (2)

= Pipelining - functional units are arranged
In stages.

= Multiple issue - multiple instructions can
be simultaneously initiated.

Pipelining

Pipelining example (1)

Time Operation Operand 1 | Operand 2 Result
1 Fetch operands 9.87 x 10* | 6.54 x 10°
2 || Compare exponents || 9.87 x 10* | 6.54 x 10°
3 || Shift one operand || 9.87 x 10* | 0.654 x 10*
4 Add 0.87 x 10* | 0.654 x 10* | 10.524 x 10*
5 || Normalize result 9.87 x 10* | 0.654 x 10% | 1.0524 x 10°
6 || Round result 9.87 x 10* | 0.654 x 10% | 1.05 x 10°
7 || Store result 9.87 x 10* | 0.654 x 10* | 1.05 x 10°

Add the floating point numbers
9.87x10%and 6.54x10°

Pipelining example (2)

float x[1000], y[1000], z[1000];

for (i = 0; i < 1000; i++)
z[i] = x[i] + v[il];

= Assume each operation
takes one nanosecond
(10-° seconds).

= [his for loop takes about
7000 nanoseconds.

Pipelining (3)

= Divide the floating point adder into 7
separate pieces of hardware or functional
units.

= First unit fetches two operands, second
unit compares exponents, etc.

= Output of one functional unit is input to the
next.

Pipelining (4)

Time || Fetch | Compare | Shift | Add | Normalize | Round | Store

0 0

1 1 0

2 2 1 0

3 3 2 1 0

4 4 3 2 1 0

5 5 4 3 2 1 0

6 6 5 4 3 2 1 0
999 999 998 997 | 996 995 994 993
1000 999 0998 | 997 996 995 994
1001 999 | 998 997 996 995
1002 999 998 997 996
1003 999 998 997
1004 999 998
1005 999

Table 2.3: Pipelined Addition.
Numbers in the table are subscripts of operands/results.

Pipelining (5)

= One floating point addition still takes
/ nanoseconds.

= But 1000 floating point additio S
now takes 1006 nanosecoggs!

O

Multiple Issue (1)

= Multiple issue processors replicate
functional units and try to simultaneously
execute different instructions in a
program.

for (i = 05 i < 1000; i++)

z|1] = x[1] + y[1];
orD— Z[3] z[4] orD—

adder #1 adder #2

Multiple Issue (2)

= static multiple issue - functional units are
scheduled at compile time.

= dynamic multiple issue — functional units
are scheduled at run-time.

N

superscalar

Speculation (1)

= In order to make use of multiple issue, the

system must find instructions that can be
executed simultaneously.

o

2

= In speculation, the compiler or
the processor makes a guess
about an instruction, and then

executes the instruction on the
basis of the guess.

Speculation (2)

Z=X+YVy;

if(z>0) Z will be
W=X: positive

else &
W=y,

=
—

If the system speculates incorrectly,
it must go back and recalculate w =y.

Hardware multithreading (1)

= There aren’t always good opportunities for
simultaneous execution of different
threads.

= Hardware multithreading provides a means
for systems to continue doing useful work
when the task being currently executed
has stalled.

s EX., the current task has to wait for data to be
loaded from memory.

Hardware multithreading (2)

= Fine-grained - the processor switches
between threads after each instruction,
skipping threads that are stalled.

= Pros: potential to avoid wasted machine time
due to stalls.

= Cons: a thread that's ready to execute a long
sequence of instructions may have to wait to
execute every instruction.

Hardware multithreading (3)

s Coarse-grained - only switches threads
that are stalled waiting for a time-
consuming operation to complete.

s Pros: switching threads doesn't need to be
nearly instantaneous.

= Cons: the processor can be idled on shorter

stalls, and thread switching will also cause
delays.

Hardware multithreading (3)

= Simultaneous multithreading (SMT) - a
variation on fine-grained multithreading.

= Allows multiple threads to make use of the
multiple functional units.

A programmer can write code to exploit.

PARALLEL HARDWARE

Flynn’s Taxonomy

A\

Single instruction stream
Single data stream

(SIMD)
Single instruction stream
Multiple data stream

MISD
Multiple instruction stream
Single data stream
0

f
OOL,

(MIMD)
Multiple instruction stream
Multiple data stream

@/~G0l

SIMD

= Parallelism achieved by dividing data
among the processors.

= Applies the same instruction to multiple
data items.

s Called data parallelism.

SIMD example

n data items
n ALUs

control unit

x|1] x|2]
ALU, ALU,

SIMD

= \What if we don’t have as many ALUs as
data items?

= Divide the work and process iteratively.
» EX. mM=4 ALUs and n =15 data items.

1 X[0] X[1] X[2] X[3]
2 X[4] X[5] X[6] X[7]
3 X[8] X[9] X[10] X[11]
4 X[12] X[13] X[14]

SIMD drawbacks

= All ALUs are required to execute the same
Instruction, or remain idle.

= In classic design, they must also operate
synchronously.

= The ALUs have no instruction storage.

» Efficient for large data parallel problems,
but not other types of more complex
parallel problems.

Vector processors (1)

= Operate on arrays or vectors of data while
conventional CPU’s operate on individual
data elements or scalars.

= Vector registers.

= Capable of storing a vector of operands and
operating simultaneously on their contents.

Vector processors (2)

= Vectorized and pipelined functional units.

= [he same operation is applied to each
element in the vector (or pairs of elements).

= Vector instructions.
= Operate on vectors rather than scalars.

Vector processors (3)

= Interleaved memory.

= Multiple “banks” of memory, which can be
accessed more or less independently.

= Distribute elements of a vector across multiple
banks, so reduce or eliminate delay in
loading/storing successive elements.

s Strided memory access and hardware
scatter/gather.

= [he program accesses elements of a vector
located at fixed intervals.

Vector processors - Pros

©)
©)

s Fast.
= Easy to use.

= Vectorizing compilers are good at
identifying code to exploit.

s Compilers also can provide information
about code that cannot be vectorized.

= Helps the programmer re-evaluate code.
= High memory bandwidth.
= Uses every item in a cache line.

(

Vector processors - Cons

= They don’t handle irregular ClC)
data structures as well as other = 2™\
parallel architectures.

= A very finite limit to their ability to handle
ever larger problems. (scalability)

Graphics Processing Units (GPU)

= Real time graphics application
programming interfaces or API's use
points, lines, and triangles to internally
represent the surface of an object.

(O

GPUs

= A graphics processing pipeline converts
the internal representation into an array of
pixels that can be sent to a computer
screen. -

m Several stages of this pipeline
(called shader functions) are
programmable.

» Typically just a few lines of C code.

GPUs

= Shader functions are also implicitly
parallel, since they can be applied to
multiple elements in the graphics stream.

s GPU'’s can often optimize performance by
using SIMD parallelism.

= The current generation of GPU’s use SIMD
parallelism.

= Although they are not pure SIMD systems.

MIMD

s Supports multiple simultaneous instruction
streams operating on multiple data
streams.

= Typically consist of a collection of fully
iIndependent processing units or cores,
each of which has its own control unit and
its own ALU.

Shared Memory System (1)

= A collection of autonomous processors is
connected to a memory system via an
iInterconnection network.

s Each processor can access each memory
location.

= he processors usually communicate
implicitly by accessing shared data
structures.

Shared Memory System (2)

= Most widely available shared memory
systems use one or more multicore
processors.

= (multiple CPU’s or cores on a single chip)

Shared Memory System

CPU CPU CPU CPU

W N4 W/
Interconnect

Figure 2.3

UMA multicore system

Chip 1 Chip 2
Core 1 Core 2 Core 1 Core 2
M M
W W
Interconnect
M
W
Time to access all Memory
the memory locations
will be the same for Figure 2.5

all the cores.

NUMA multicore system

Chip 1 Chip 2
Core 1 Core 2 = = Core 1 Core 2
/) 7y
\/ W/
Interconnect Interconnect

/M M
W)

Memory Memory

A memory location a core is
directly connected to can be
accessed faster than a memory
location that must be accessed
through another chip.

Figure 2.6

Distributed Memory System

s Clusters (most popular)
= A collection of commodity systems.

s Connected by a commodity interconnection
network.

s Nodes of a cluster are individual
computations units joined by a
communication network.

ak.av. hwybrid systems

Distributed Memory System

CPU CPU CPU CPU
) N) A
4 v \]
Memory Memory Memory Memory
N \ A M
W W W WV
Interconnect

Figure 2.4

Interconnection networks

» Affects performance of both distributed
and shared memory systems.

= WO categories:
= Shared memory interconnects
= Distributed memory interconnects

Shared memory interconnects

s Bus interconnect

= A collection of parallel communication wires
together with some hardware that controls
access to the bus.

= Communication wires are shared by the
devices that are connected to it.

s As the number of devices connected to the
bus increases, contention for use of the bus
increases, and performance decreases.

Shared memory interconnects

s Switched interconnect

= Uses switches to control the routing of data
among the connected devices.

s Crossbar —

» Allows simultaneous communication among
different devices.

= Faster than buses.

= But the cost of the switches and links is relatively
high.

Figure 2.7

(a)
A crossbar switch connecting 4

processors (Pi) and 4 memory
modules (M)

(b)
Configuration of internal switches
in a crossbar

(c) Simultaneous memory
accesses by the processors

M1

P1 P2

P3 P4

M2

i
L
my
L

Yy
Ly
Ty
L

Pl Y
L
Y
.

o |
=y
i
e

M3

Fil
)
O
L

o
o
oy
e

O
X
)

O
"
-

(a)

0]
(b)

M1

(i

M2

M3

.)_ T
-

M4

F e

T, L
o

Distributed memory interconnects

= WO groups

s Direct interconnect

« Each switch is directly connected to a processor
memory pair, and the switches are connected to
each other.

s Indirect interconnect

=« Switches may not be directly connected to a
processor.

Direct interconnect

Figure 2.8

P2 P3

(a) (b)

ring toroidal mesh

Bisection width

x A measure of “number of simultaneous
communications” or “connectivity”.

= How many simultaneous communications
can take place “across the divide” between
the halves?

Two bisections of a ring

(a) (b)

Figure 2.9

A bisection of a toroidal mesh

A CN a

/ NN N

Figure 2.10

Definitions

s Bandwidth

s [he rate at which a link can transmit data.

= Usually given in megabits or megabytes per
second.

= Bisection bandwidth
= A measure of network quality.

» Instead of counting the number of links joining
the halves, it sums the bandwidth of the links.

Fully connected network

= Each switch is directly connected to every
other switch.

> —
& oK
& —
€ NV
[

Figure 2.11

Hypercube

= Highly connected direct interconnect.

= Built inductively:

» A one-dimensional hypercube is a fully-
connected system with two processors.

= A two-dimensional hypercube is built from two
one-dimensional hypercubes by joining
“corresponding” switches.

= Similarly a three-dimensional hypercube is
built from two two-dimensional hypercubes.

Hypercubes

Figure 2.12

V%

(a) (b) (c)

one- two- three-dimensional

Indirect interconnects

s Simple examples of indirect networks:
s Crossbar
= Omega network

s Often shown with unidirectional links and a
collection of processors, each of which has
an outgoing and an incoming link, and a
switching network.

A generic indirect network

g I
¥
!)
(9 \\ e 8 @
> >
Switching
T N Network
\ > =

Figure 2.13

Crossbar interconnect for
distributed memory

-
4 N\
-~ N
[9 = l >—r———
I N N
NN > >)r——)r—
\ B = I = I = I =
- > = I > I > I =

Fi

ure 2.14

Q

An omega network

4)

Figure 2.15 - J

A switch in an omega network

4 ™

®i)

. /

W

p
W

Figure 2.16

More definitions

= Any time data is transmitted, we're
interested in how long it will take for the
data to reach its destination.

= Latency

= [he time that elapses between the source’s
beginning to transmit the data and the
destination’s starting to receive the first byte.

s Bandwidth

= The rate at which the destination receives data
after it has started to receive the first byte.

Message transmissiontime =1+n/b

latency (seconds) %

length of message (bytes)

bandwidth (bytes per second)

Cache coherence

Core 0 Core 1
= Programmers have no T T
control over caches —— po——
and when they get
N M
updated.
Interconnect
Figure 2.17
% Z y1

A shared memory system with two
cores and two caches y0 z1

Cache coherence

y0 privately owned by Core 0
yl and zl] privately owned by Core 1

x = 2; /* shared variable */

Time Core 0 Core 1
0 vl = x; yl = 3*x;
I x =1 Statement(s) not involving x
2 Statement(s) not involving x | z1 = 4*x;

y0 eventually ends up = 2

y1l eventually ends up = 6
7zl = 777

Shooping Cache Coherence

m | he cores share a bus .

= Any signal transmitted on the bus can be
“seen” by all cores connected to the bus.

= \When core 0 updates the copy of x stored
In Its cache it also broadcasts this
Information across the bus.

m If core 1 is “snooping” the bus, it will see
that x has been updated and it can mark
its copy of x as invalid.

Directory Based Cache Coherence

= Uses a data structure called a directory
that stores the status of each cache line.

= \When a variable is updated, the directory
IS consulted, and the cache controllers of
the cores that have that variable’'s cache
line In their caches are invalidated.

The burden is on software

s Hardware and compilers can keep up the
pace needed.

= From now on...

= In shared memory programs:
= Start a single process and fork threads.
« Threads carry out tasks.

= |In distributed memory programs:

= Start multiple processes.
= Processes carry out tasks.

SPMD - single program multiple data

= A SPMD programs consists of a single
executable that can behave as if it were
multiple different programs through the use
of conditional branches.

if (I’'m thread process 1)
do this;

else -
do that; (/g—?

Writing Parallel Programs

1. Divide the work among the | double x|n], y[n];
processes/threads

(a) so each process/thread
gets roughly the same for (1=0;1<n;it++)
amount of work : :

+= :

(b) and communication is x[i] yliJ:

minimized.

2. Arrange for the processes/threads to synchronize.
3. Arrange for communication among processes/threads.

Shared Memory

= Dynamic threads

s Master thread waits for work, forks new
threads, and when threads are done, they
terminate

= Efficient use of resources, but thread creation
and termination is time consuming.

s Static threads

s Pool of threads created and are allocated
work, but do not terminate until cleanup.

= Better performance, but potential waste of
system resources.

Nondeterminism

printf ("Thread %d > my_val = %d\n",

my_rank , my_x) ;

Thread 0 >my val =7
Thread 1 > my_val =19

Thread 1 > my_val =19
Thread 0 >my val =7

Nondeterminism

my_val = Compute_val (my_rank) ;

x += my_val ;

Time Core 0 Core 1
0 Finish assignment to my_val In call to Compute_val
1 Load x = 0 into register Finish assignment to my_val
2 Load my_val = 7 into register | Load x = 0 into register
3 Addmy val = Ttox Load my_val = 19 into register
4 Storex = 7 Add my_valtox
5 Start other work Store x = 19

Nondeterminism

s Race condition
s Critical section
= Mutually exclusive

= Mutual exclusion lock (mutex, or simply
lock)

my_val = Compute_val (my_rank) ;
Lock(&add_my_val_lock) ;
X += my_val ;

Unlock(&add_my_val_lock) ;

busy-waiting

my_val = Compute_val (my_rank) ;
if (my_rank ==1)

while (! ok _for_1); /* Busy wait loop */
x += my_val ; /* Critical section */

if (my_rank == 0)

ok_for_1 = true; /* Let thread I update x */

message-passing

char message [100 | ;

my_rank = Get_rank () ;

if (my_rank ==1) {

sprintf (message , "Greetings from process 1") ;

Send (message , MSG_CHAR , 100,0);
telseif (my_rank ==0) {

Receive (message , MSG_CHAR ,100,1) ;

printf ("Process 0 > Received: %s\n" , message) ;

Partitioned Global Address
Space Languages

sharedintn=...;

shared doublex [n |,y [n];

privatein ti, my_first_element , my_last_element ;
my_first_element = .. . ;

my_last_element = ...

/ * Initialize x and y */

f or (1= my_first_element ;i <= my_last_element ; i++)

x|[1]+=y[1];

Input and Output

= In distributed memory programs, only
process 0 will access stdin. In shared
memory programs, only the master thread
or thread O will access stdin.

= In both distributed memory and shared
memory programs all the
processes/threads can access stdout and
stderr.

Input and Output

= However, because of the indeterminacy of
the order of output to stdout, in most cases
only a single process/thread will be used
for all output to stdout other than
debugging output.

= Debug output should always include the
rank or id of the process/thread that's
generating the output.

Input and Output

= Only a single process/thread will attempt to
access any single file other than stdin,
stdout, or stderr. So, for example, each
process/thread can open its own, private
file for reading or writing, but no two
processes/threads will open the same file.

Speedup

= Number of cores =p &
s Serial run-time = T,

s Parallel run-time =T

parallel

Speedup of a parallel program

T

S — serial

T

parallel

Efficiency of a parallel program

/-I- N

serial

-

parallel

serial

E:S_= _ _/
P

o P 'Tparallel

Speedups and efficiencies of a

parallel program

P I [2] 4] 8 [16
S 0] 19 | 36 | 65 | 10.8
E—S/p| 1.0 [0.95 [0.90 | 0.81 | 0.68

Speedups and efficiencies of
parallel program on different
problem sizes

1 2 4 3 16

1.0 1.9 | 3.1 | 48 | 6.2
1.0 1 0.95 | 0.78 | 0.60 | 0.39

P
)
E
Original | § || 10| 1.9 | 36 | 65 | 10.8
E
\)
E

Half

1.0 | 0.95 | 0.90 | 0.81 | 0.68

1.0 19 | 39 | 75 | 142
1.0 | 0.95 | 0.98 | 0.94 | 0.89

Double

Speedup

16 | | | | | | |

—x— Half size
14 |- | —+— Original
—e— Double size

12

10

Speedup

Processes

M<K

MORGAN KAUFMANN

Efficiency

Efficiency

© © ©o ©o © © ©
w BN (&)] (@) ~ o ©
T

o
N
T

01}

—x— Half size
—+— Original
—e— Double size

2 4

8
Processes

10

12

14

16

Effect of overhead

Tparallel = Tserial / P + Toverhead

Amdahl’s Law

= Unless virtually all of a serial program is
parallelized, the possible speedup is going
to be very limited — regardless of the

number of cores available.
ah .

Example

= \We can parallelize 90% of a serial
program.

m Parallelization is “perfect” regardless of the
number of cores p we use.

m | = 20 seconds

serial

= Runtime of parallelizable part is

09X T/ P=18/p

Example (cont.)

= Runtime of “unparallelizable” part is

0.1xT =2

serial

s Overall parallel run-time is

T oo =0.9X T/ P+0.1X Ty =18/p +2

serial

parallel

Example (cont.)

s Speed up

Tserial 20
18/p + 2

S = 09X T/ P+0.1 X Ty

serial

Scalability

= In general, a problem is scalable if it can handle
ever increasing problem sizes.

= |f we increase the number of processes/threads
and keep the efficiency fixed without increasing
problem size, the problem is strongly scalable.

= |f we keep the efficiency fixed by increasing the
problem size at the same rate as we increase
the number of processes/threads, the problem is
weakly scalable.

Taking Timings

= What is time?
s Start to finish?
= A program segment of interest?
s CPU time?

= Wall clock time”?

Taking Timings
theoretical

double start. finish;/g function

start = Get current time{):
/¥ Code that we want to Ti

¥/

finish = Get_curyent _tima();
printf("The elapBed time = %e seconds\n", finish—start);

omp_get wtime

MPI_Wtime

Taking Timings

uuhie start, finish;

gstart = Get.current time{):;
/% Code that we want to time =#/

finish = Get. . current time(}):
printf("The elapsed time = %e secondsin", finish—start);

Taking Timings

shared double global_elapsed;
private double my_start, my_finish, my_elapsed;

/+ Synchronize all processes/threads =/
Barrier();
my_start = Get_current_time();

/¥ Code thatr we want to time =*/

my finish = Get_current _time();
my_elapsed = my _finish — my_start;

/f# Find the max across all processes/threads =/
global elapsed = Global max{my elapsed);
if (my_rank == 0)
printf("The elapsed time = %e seconds\n", global elapsed);

PARALLEL PROGRAM
DESIGN

Foster’'s methodology

1. Partitioning: divide the computation to be
performed and the data operated on by
the computation into small tasks.

The focus here should be on identifying
tasks that can be executed in parallel.

Foster’s methodology

2. Communication: determine what
communication needs to be carried out
among the tasks identified in the previous
step.

Foster’'s methodology

3. Agglomeration or aggregation: combine
tasks and communications identified in
the first step into larger tasks.

For example, if task A must be executed
before task B can be executed, it may
make sense to aggregate them into a
single composite task.

Foster’s methodology

4. Mapping: assign the composite tasks
identified in the previous step to
processes/threads.

This should be done so that
communication is minimized, and each

process/thread gets roughly the same
amount of work.

Example - histogram

s 1.3,2.9,0.4,0.3,1.3,4.4,1.7,0.4,3.2,0.3,4.9,2
4,3.1,4.4,3.9,0.4,4.2,4.5,4.9,0.9

\

Serial program - input

1. The number of measurements:
data count

2. An array of data_count floats: data

3. The minimum value for the bin containing
the smallest values: min_meas

4. The maximum value for the bin containing
the largest values: max meas

5. The number of bins: bin _count

Serial program - output

1. bin_maxes : an array of bin_count floats

2. bin_counts : an array of bin_count ints

First two stages of Foster’s
Methodology

Find bin ...

Increment
bin_ counts

data[i-1]

data[1i]

data[i+l] X

\

/

e | bin_counts[b-1]++

bin_counts[b]++]| ¢

Alternative definition of tasks

and communication

Find _bin ..« |[data[i-1]

data[i]

data[i+1]

datal[i+2]]| e~

/\/\

e [loc_bin cts[b-1]

loc _bin cts[b]++

/

N v \
loc_bin _cts[b-1]++ ||loc_bin cts[b]++

o

e

N\

e | bin_counts[b-1]+=

bin_counts[b]+=| e«

Adding the local arrays

?

Concluding Remarks (1)

= Serial systems

= The standard model of computer hardware
has been the von Neumann architecture.

s Parallel hardware
= Flynn’s taxonomy.

s Parallel software

= We focus on software for homogeneous MIMD
systems, consisting of a single program that
obtains parallelism by branching.

= SPMD programs.

Concluding Remarks (2)

= Input and Output

= We'll write programs in which one process or
thread can access stdin, and all processes
can access stdout and stderr.

= However, because of nondeterminism, except
for debug output we’ll usually have a single
process or thread accessing stdout.

Concluding Remarks (3)

s Performance
= Speedup
» Efficiency
= Amdahl’s law
= Scalability

= Parallel Program Design
s Foster's methodology

