
1Copyright © 2010, Elsevier Inc. All rights Reserved

Chapter 1

Why Parallel Computing?

An Introduction to Parallel Programming
Peter Pacheco

2Copyright © 2010, Elsevier Inc. All rights Reserved

Roadmap

 Why we need ever-increasing performance.

 Why we’re building parallel systems.

 Why we need to write parallel programs.

 How do we write parallel programs?

 What we’ll be doing.

 Concurrent, parallel, distributed!

#
 C

h
a
p
te

r S
u
b
title

3

Changing times

Copyright © 2010, Elsevier Inc. All rights Reserved

 From 1986 – 2002, microprocessors were
speeding like a rocket, increasing in
performance an average of 50% per year.

 Since then, it’s dropped to about 20%
increase per year.

4

An intelligent solution

Copyright © 2010, Elsevier Inc. All rights Reserved

 Instead of designing and building faster
microprocessors, put multiple processors
on a single integrated circuit.

5

Now it’s up to the programmers

 Adding more processors doesn’t help
much if programmers aren’t aware of
them…

 … or don’t know how to use them.

 Serial programs don’t benefit from this
approach (in most cases).

Copyright © 2010, Elsevier Inc. All rights Reserved

6

Why we need ever-increasing
performance

 Computational power is increasing, but so
are our computation problems and needs.

 Problems we never dreamed of have been
solved because of past increases, such as
decoding the human genome.

 More complex problems are still waiting to
be solved.

Copyright © 2010, Elsevier Inc. All rights Reserved

7

Climate modeling

Copyright © 2010, Elsevier Inc. All rights Reserved

8

Protein folding

Copyright © 2010, Elsevier Inc. All rights Reserved

9

Drug discovery

Copyright © 2010, Elsevier Inc. All rights Reserved

10

Energy research

Copyright © 2010, Elsevier Inc. All rights Reserved

11

Data analysis

Copyright © 2010, Elsevier Inc. All rights Reserved

12

Why we’re building parallel
systems

 Up to now, performance increases have
been attributable to increasing density of
transistors.

 But there are
inherent
problems.

Copyright © 2010, Elsevier Inc. All rights Reserved

13

A little physics lesson

 Smaller transistors = faster processors.

 Faster processors = increased power
consumption.

 Increased power consumption = increased
heat.

 Increased heat = unreliable processors.

Copyright © 2010, Elsevier Inc. All rights Reserved

14

Solution

 Move away from single-core systems to
multicore processors.

 “core” = central processing unit (CPU)

Copyright © 2010, Elsevier Inc. All rights Reserved

 Introducing parallelism!!!

15

Why we need to write parallel
programs

 Running multiple instances of a serial
program often isn’t very useful.

 Think of running multiple instances of your
favorite game.

 What you really want is for
it to run faster.

Copyright © 2010, Elsevier Inc. All rights Reserved

16

Approaches to the serial problem

 Rewrite serial programs so that they’re
parallel.

 Write translation programs that
automatically convert serial programs into
parallel programs.

 This is very difficult to do.

 Success has been limited.

Copyright © 2010, Elsevier Inc. All rights Reserved

17

More problems

 Some coding constructs can be
recognized by an automatic program
generator, and converted to a parallel
construct.

 However, it’s likely that the result will be a
very inefficient program.

 Sometimes the best parallel solution is to
step back and devise an entirely new
algorithm.

Copyright © 2010, Elsevier Inc. All rights Reserved

18

Example

 Compute n values and add them together.

 Serial solution:

Copyright © 2010, Elsevier Inc. All rights Reserved

19

Example (cont.)

 We have p cores, p much smaller than n.

 Each core performs a partial sum of
approximately n/p values.

Copyright © 2010, Elsevier Inc. All rights Reserved

Each core uses it’s own private variables

and executes this block of code
independently of the other cores.

20

Example (cont.)

 After each core completes execution of the
code, is a private variable my_sum
contains the sum of the values computed
by its calls to Compute_next_value.

 Ex., 8 cores, n = 24, then the calls to
Compute_next_value return:

Copyright © 2010, Elsevier Inc. All rights Reserved

1,4,3, 9,2,8, 5,1,1, 5,2,7, 2,5,0, 4,1,8, 6,5,1, 2,3,9

21

Example (cont.)

 Once all the cores are done computing
their private my_sum, they form a global
sum by sending results to a designated
“master” core which adds the final result.

Copyright © 2010, Elsevier Inc. All rights Reserved

22

Example (cont.)

Copyright © 2010, Elsevier Inc. All rights Reserved

23

Example (cont.)

Copyright © 2010, Elsevier Inc. All rights Reserved

Core 0 1 2 3 4 5 6 7

my_sum 8 19 7 15 7 13 12 14

Global sum

8 + 19 + 7 + 15 + 7 + 13 + 12 + 14 = 95

Core 0 1 2 3 4 5 6 7

my_sum 95 19 7 15 7 13 12 14

24Copyright © 2010, Elsevier Inc. All rights Reserved

But wait!

There’s a much better way
to compute the global sum.

25

Better parallel algorithm

 Don’t make the master core do all the
work.

 Share it among the other cores.

 Pair the cores so that core 0 adds its result
with core 1’s result.

 Core 2 adds its result with core 3’s result,
etc.

 Work with odd and even numbered pairs of
cores.

Copyright © 2010, Elsevier Inc. All rights Reserved

26

Better parallel algorithm (cont.)

 Repeat the process now with only the
evenly ranked cores.

 Core 0 adds result from core 2.

 Core 4 adds the result from core 6, etc.

 Now cores divisible by 4 repeat the
process, and so forth, until core 0 has the
final result.

Copyright © 2010, Elsevier Inc. All rights Reserved

27

Multiple cores forming a global
sum

Copyright © 2010, Elsevier Inc. All rights Reserved

28

Analysis

 In the first example, the master core
performs 7 receives and 7 additions.

 In the second example, the master core
performs 3 receives and 3 additions.

 The improvement is more than a factor of 2!

Copyright © 2010, Elsevier Inc. All rights Reserved

29

Analysis (cont.)

 The difference is more dramatic with a
larger number of cores.

 If we have 1000 cores:

 The first example would require the master to
perform 999 receives and 999 additions.

 The second example would only require 10
receives and 10 additions.

 That’s an improvement of almost a factor
of 100!

Copyright © 2010, Elsevier Inc. All rights Reserved

30

How do we write parallel
programs?

 Task parallelism

 Partition various tasks carried out solving the
problem among the cores.

 Data parallelism

 Partition the data used in solving the problem
among the cores.

 Each core carries out similar operations on
it’s part of the data.

Copyright © 2010, Elsevier Inc. All rights Reserved

31

Professor P

Copyright © 2010, Elsevier Inc. All rights Reserved

15 questions

300 exams

32

Professor P’s grading assistants

Copyright © 2010, Elsevier Inc. All rights Reserved

TA#1
TA#2 TA#3

33

Division of work –
data parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved

TA#1

TA#2

TA#3

100 exams

100 exams

100 exams

34

Division of work –
task parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved

TA#1

TA#2

TA#3

Questions 1 - 5

Questions 6 - 10

Questions 11 - 15

35

Division of work –
data parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved

36

Division of work –
task parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved

Tasks

1) Receiving

2) Addition

37

Coordination

 Cores usually need to coordinate their work.

 Communication – one or more cores send
their current partial sums to another core.

 Load balancing – share the work evenly
among the cores so that one is not heavily
loaded.

 Synchronization – because each core works
at its own pace, make sure cores do not get
too far ahead of the rest.

Copyright © 2010, Elsevier Inc. All rights Reserved

38

What we’ll be doing

 Learning to write programs that are
explicitly parallel.

 Using the C language.

 Using three different extensions to C.

 Message-Passing Interface (MPI)

 Posix Threads (Pthreads)

 OpenMP

Copyright © 2010, Elsevier Inc. All rights Reserved

39

Type of parallel systems

 Shared-memory

 The cores can share access to the
computer’s memory.

 Coordinate the cores by having them examine
and update shared memory locations.

 Distributed-memory

 Each core has its own, private memory.

 The cores must communicate explicitly by
sending messages across a network.

Copyright © 2010, Elsevier Inc. All rights Reserved

40

Type of parallel systems

Copyright © 2010, Elsevier Inc. All rights Reserved

Shared-memory Distributed-memory

41

Terminology

 Concurrent computing – a program is one
in which multiple tasks can be in progress
at any instant.

 Parallel computing – a program is one in
which multiple tasks cooperate closely to
solve a problem

 Distributed computing – a program may
need to cooperate with other programs to
solve a problem.

Copyright © 2010, Elsevier Inc. All rights Reserved

42

Concluding Remarks (1)

 The laws of physics have brought us to the
doorstep of multicore technology.

 Serial programs typically don’t benefit
from multiple cores.

 Automatic parallel program generation
from serial program code isn’t the most
efficient approach to get high performance
from multicore computers.

Copyright © 2010, Elsevier Inc. All rights Reserved

43

Concluding Remarks (2)

 Learning to write parallel programs
involves learning how to coordinate the
cores.

 Parallel programs are usually very
complex and therefore, require sound
program techniques and development.

Copyright © 2010, Elsevier Inc. All rights Reserved

