
Chapter 4
The Processor

Chapter 4 — The Processor — 2

Introduction
 CPU performance factors

 Instruction count
 Determined by ISA and compiler

 CPI and Cycle time
 Determined by CPU hardware

 We will examine two MIPS implementations
 A simplified version
 A more realistic pipelined version

 Simple subset, shows most aspects
 Memory reference: lw, sw
 Arithmetic/logical: add, sub, and, or, slt
 Control transfer: beq, j

§4.1 Introduction

Chapter 4 — The Processor — 3

Instruction Execution
 PC  instruction memory, fetch instruction
 Register numbers  register file, read registers
 Depending on instruction class

 Use ALU to calculate
 Arithmetic result
 Memory address for load/store
 Branch target address

 Access data memory for load/store
 PC  target address or PC + 4

Chapter 4 — The Processor — 4

CPU Overview

Chapter 4 — The Processor — 5

Multiplexers
 Can’t just join

wires together
 Use multiplexers

Chapter 4 — The Processor — 6

Control

Chapter 4 — The Processor — 7

Logic Design Basics
§4.2 Logic D

esign C
onventions

 Information encoded in binary
 Low voltage = 0, High voltage = 1
 One wire per bit
 Multi-bit data encoded on multi-wire buses

 Combinational element
 Operate on data
 Output is a function of input

 State (sequential) elements
 Store information

Chapter 4 — The Processor — 8

Combinational Elements

 AND-gate
 Y = A & B
A
B Y

I0
I1 Y

M
u
x

S

 Multiplexer
 Y = S ? I1 : I0

A

B
Y+

A

B

YALU

F

 Adder
 Y = A + B

 Arithmetic/Logic Unit
 Y = F(A, B)

Chapter 4 — The Processor — 9

Sequential Elements
 Register: stores data in a circuit

 Uses a clock signal to determine when to
update the stored value

 Edge-triggered: update when Clk changes
from 0 to 1

D

Clk

Q
Clk

D

Q

Chapter 4 — The Processor — 10

Sequential Elements
 Register with write control

 Only updates on clock edge when write
control input is 1

 Used when stored value is required later

D

Clk

Q
Write

Write

D

Q

Clk

Chapter 4 — The Processor — 11

Clocking Methodology
 Combinational logic transforms data during

clock cycles
 Between clock edges
 Input from state elements, output to state

element
 Longest delay determines clock period

Chapter 4 — The Processor — 12

Building a Datapath
 Datapath

 Elements that process data and addresses
in the CPU
 Registers, ALUs, mux’s, memories, …

 We will build a MIPS datapath
incrementally
 Refining the overview design

§4.3 B
uilding a D

atapath

Chapter 4 — The Processor — 13

Instruction Fetch

32-bit
register

Increment by
4 for next
instruction

Chapter 4 — The Processor — 14

R-Format Instructions
 Read two register operands
 Perform arithmetic/logical operation
 Write register result

Chapter 4 — The Processor — 15

Load/Store Instructions
 Read register operands
 Calculate address using 16-bit offset

 Use ALU, but sign-extend offset
 Load: Read memory and update register
 Store: Write register value to memory

Chapter 4 — The Processor — 16

Branch Instructions
 Read register operands
 Compare operands

 Use ALU, subtract and check Zero output
 Calculate target address

 Sign-extend displacement
 Shift left 2 places (word displacement)
 Add to PC + 4

 Already calculated by instruction fetch

Chapter 4 — The Processor — 17

Branch Instructions

Just
re-routes

wires

Sign-bit wire
replicated

Chapter 4 — The Processor — 18

Composing the Elements
 First-cut data path does an instruction in

one clock cycle
 Each datapath element can only do one

function at a time
 Hence, we need separate instruction and data

memories
 Use multiplexers where alternate data

sources are used for different instructions

Chapter 4 — The Processor — 19

R-Type/Load/Store Datapath

Chapter 4 — The Processor — 20

Full Datapath

Chapter 4 — The Processor — 21

ALU Control
 ALU used for

 Load/Store: F = add
 Branch: F = subtract
 R-type: F depends on funct field

§4.4 A S
im

ple Im
plem

entation S
chem

eALU control Function
0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR

Chapter 4 — The Processor — 22

ALU Control
 Assume 2-bit ALUOp derived from opcode

 Combinational logic derives ALU control

opcode ALUOp Operation funct ALU function ALU control
lw 00 load word XXXXXX add 0010
sw 00 store word XXXXXX add 0010
beq 01 branch equal XXXXXX subtract 0110
R-type 10 add 100000 add 0010

subtract 100010 subtract 0110
AND 100100 AND 0000
OR 100101 OR 0001
set-on-less-than 101010 set-on-less-than 0111

Chapter 4 — The Processor — 23

The Main Control Unit
 Control signals derived from instruction

0 rs rt rd shamt funct
31:26 5:025:21 20:16 15:11 10:6

35 or 43 rs rt address
31:26 25:21 20:16 15:0

4 rs rt address
31:26 25:21 20:16 15:0

R-type

Load/
Store

Branch

opcode always
read

read,
except
for load

write for
R-type

and load

sign-extend
and add

Chapter 4 — The Processor — 24

Datapath With Control

Chapter 4 — The Processor — 25

R-Type Instruction

Chapter 4 — The Processor — 26

Load Instruction

Chapter 4 — The Processor — 27

Branch-on-Equal Instruction

Chapter 4 — The Processor — 28

Implementing Jumps

 Jump uses word address
 Update PC with concatenation of

 Top 4 bits of old PC
 26-bit jump address
 00

 Need an extra control signal decoded from
opcode

2 address
31:26 25:0

Jump

Chapter 4 — The Processor — 29

Datapath With Jumps Added

ayman
Sticky Note
why shift left 2

Chapter 4 — The Processor — 30

Performance Issues
 Longest delay determines clock period

 Critical path: load instruction
 Instruction memory  register file  ALU 

data memory  register file
 Not feasible to vary period for different

instructions
 Violates design principle

 Making the common case fast
 We will improve performance by pipelining

Chapter 4 — The Processor — 31

Pipelining Analogy
 Pipelined laundry: overlapping execution

 Parallelism improves performance

§4.5 A
n O

verview
 of P

ipelining

 Four loads:
 Speedup

= 8 hrs/3.5 hrs = 2.3
 Non-stop:

 Speedup
= 2n/(0.5n + 1.5)
1.5: start-up cost
≈ 4, when n is large
= number of stages!

Chapter 4 — The Processor — 32

MIPS Pipeline
 Five stages, one step per stage

1. IF: Instruction fetch from memory
2. ID: Instruction decode & register read
3. EX: Execute operation or calculate address
4. MEM: Access memory operand
5. WB: Write result back to register

Chapter 4 — The Processor — 33

Pipeline Performance
 Assume time for stages is

 100ps for register read or write
 200ps for other stages

 Compare pipelined datapath with single-cycle
datapath

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Chapter 4 — The Processor — 34

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

Chapter 4 — The Processor — 35

Pipeline Speedup
 If all stages are balanced

 i.e., all take the same time
 Time between instructionspipelined

= Time between instructionsnonpipelined
Number of stages

 If not balanced, speedup is less
 Speedup due to increased throughput

 Latency (time for each instruction) does not
decrease

Chapter 4 — The Processor — 36

Pipelining and ISA Design
 MIPS ISA designed for pipelining

 All instructions are 32-bits
 Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory

in 4th stage
 Alignment of memory operands

 Memory access takes only one cycle

Chapter 4 — The Processor — 37

Hazards
 Situations that prevent starting the next

instruction in the next cycle
 Structure hazards

 A required resource is busy
 Data hazard

 Need to wait for previous instruction to
complete its data read/write

 Control hazard
 Deciding on control action depends on

previous instruction

Chapter 4 — The Processor — 38

Structure Hazards
 Conflict for use of a resource
 In MIPS pipeline with a single memory

 Load/store requires data access
 Instruction fetch would have to stall for that

cycle
 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require
separate instruction/data memories
 Or separate instruction/data caches

Chapter 4 — The Processor — 39

Data Hazards
 An instruction depends on completion of

data access by a previous instruction
 add $s0, $t0, $t1
sub $t2, $s0, $t3

Chapter 4 — The Processor — 40

Forwarding (aka Bypassing)
 Use result when it is computed

 Don’t wait for it to be stored in a register
 Requires extra connections in the datapath

Chapter 4 — The Processor — 41

Load-Use Data Hazard
 Can’t always avoid stalls by forwarding

 If value not computed when needed
 Can’t forward backward in time!

Chapter 4 — The Processor — 42

Code Scheduling to Avoid Stalls
 Reorder code to avoid use of load result in

the next instruction
 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

Chapter 4 — The Processor — 43

Control Hazards
 Branch determines flow of control

 Fetching next instruction depends on branch
outcome

 Pipeline can’t always fetch correct instruction
 Still working on ID stage of branch

 In MIPS pipeline
 Need to compare registers and compute

target early in the pipeline
 Add hardware to do it in ID stage

Chapter 4 — The Processor — 44

Stall on Branch
 Wait until branch outcome determined

before fetching next instruction

Chapter 4 — The Processor — 45

Branch Prediction
 Longer pipelines can’t readily determine

branch outcome early
 Stall penalty becomes unacceptable

 Predict outcome of branch
 Only stall if prediction is wrong

 In MIPS pipeline
 Can predict branches not taken
 Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 46

MIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

Chapter 4 — The Processor — 47

More-Realistic Branch Prediction
 Static branch prediction

 Based on typical branch behavior
 Example: loop and if-statement branches

 Predict backward branches taken
 Predict forward branches not taken

 Dynamic branch prediction
 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend
 When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 48

Pipeline Summary

 Pipelining improves performance by
increasing instruction throughput
 Executes multiple instructions in parallel
 Each instruction has the same latency

 Subject to hazards
 Structure, data, control

 Instruction set design affects complexity of
pipeline implementation

The BIG Picture

Chapter 4 — The Processor — 49

MIPS Pipelined Datapath
§4.6 P

ipelined D
atapath and C

ontrol

WB

MEM

Right-to-left
flow leads to
hazards

Chapter 4 — The Processor — 50

Pipeline registers
 Need registers between stages

 To hold information produced in previous cycle

Chapter 4 — The Processor — 51

Pipeline Operation
 Cycle-by-cycle flow of instructions through

the pipelined datapath
 “Single-clock-cycle” pipeline diagram

 Shows pipeline usage in a single cycle
 Highlight resources used

 c.f. “multi-clock-cycle” diagram
 Graph of operation over time

 We’ll look at “single-clock-cycle” diagrams
for load & store

Chapter 4 — The Processor — 52

IF for Load, Store, …

Chapter 4 — The Processor — 53

ID for Load, Store, …

Chapter 4 — The Processor — 54

EX for Load

Chapter 4 — The Processor — 55

MEM for Load

Chapter 4 — The Processor — 56

WB for Load

Wrong
register
number

Chapter 4 — The Processor — 57

Corrected Datapath for Load

Chapter 4 — The Processor — 58

EX for Store

Chapter 4 — The Processor — 59

MEM for Store

Chapter 4 — The Processor — 60

WB for Store

Chapter 4 — The Processor — 61

Multi-Cycle Pipeline Diagram
 Form showing resource usage

Chapter 4 — The Processor — 62

Multi-Cycle Pipeline Diagram
 Traditional form

Chapter 4 — The Processor — 63

Single-Cycle Pipeline Diagram
 State of pipeline in a given cycle

Chapter 4 — The Processor — 64

Pipelined Control (Simplified)

Chapter 4 — The Processor — 65

Pipelined Control
 Control signals derived from instruction

 As in single-cycle implementation

Chapter 4 — The Processor — 66

Pipelined Control

Chapter 4 — The Processor — 67

Data Hazards in ALU Instructions
 Consider this sequence:

sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

 We can resolve hazards with forwarding
 How do we detect when to forward?

§4.7 D
ata H

azards: Forw
arding vs. S

talling

Chapter 4 — The Processor — 68

Dependencies & Forwarding

Chapter 4 — The Processor — 69

Detecting the Need to Forward

 Pass register numbers along pipeline
 e.g., ID/EX.RegisterRs = register number for Rs

sitting in ID/EX pipeline register
 ALU operand register numbers in EX stage

are given by
 ID/EX.RegisterRs, ID/EX.RegisterRt

 Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

Chapter 4 — The Processor — 70

Detecting the Need to Forward
 But only if forwarding instruction will write

to a register!
 EX/MEM.RegWrite, MEM/WB.RegWrite

 And only if Rd for that instruction is not
$zero
 EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

Chapter 4 — The Processor — 71

Forwarding Paths

Chapter 4 — The Processor — 72

Forwarding Conditions
 EX hazard

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10
 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
ForwardB = 10

 MEM hazard
 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

Chapter 4 — The Processor — 73

Double Data Hazard
 Consider the sequence:

add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

 Both hazards occur
 Want to use the most recent

 Revise MEM hazard condition
 Only fwd if EX hazard condition isn’t true

Chapter 4 — The Processor — 74

Revised Forwarding Condition
 MEM hazard

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

Chapter 4 — The Processor — 75

Datapath with Forwarding

Chapter 4 — The Processor — 76

Load-Use Data Hazard

Need to stall
for one cycle

Chapter 4 — The Processor — 77

Load-Use Hazard Detection
 Check when using instruction is decoded

in ID stage
 ALU operand register numbers in ID stage

are given by
 IF/ID.RegisterRs, IF/ID.RegisterRt

 Load-use hazard when
 ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

 If detected, stall and insert bubble

Chapter 4 — The Processor — 78

How to Stall the Pipeline
 Force control values in ID/EX register

to 0
 EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register
 Using instruction is decoded again
 Following instruction is fetched again
 1-cycle stall allows MEM to read data for lw

 Can subsequently forward to EX stage

Chapter 4 — The Processor — 79

Stall/Bubble in the Pipeline

Stall inserted
here

Chapter 4 — The Processor — 80

Stall/Bubble in the Pipeline

Or, more
accurately…

Chapter 4 — The Processor — 81

Datapath with Hazard Detection

Chapter 4 — The Processor — 82

Stalls and Performance

 Stalls reduce performance
 But are required to get correct results

 Compiler can arrange code to avoid
hazards and stalls
 Requires knowledge of the pipeline structure

The BIG Picture

Chapter 4 — The Processor — 83

Branch Hazards
 If branch outcome determined in MEM

§4.8 C
ontrol H

azards

PC

Flush these
instructions
(Set control
values to 0)

Chapter 4 — The Processor — 84

Reducing Branch Delay
 Move hardware to determine outcome to ID

stage
 Target address adder
 Register comparator

 Example: branch taken
36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7

...
72: lw $4, 50($7)

Chapter 4 — The Processor — 85

Example: Branch Taken

Chapter 4 — The Processor — 86

Example: Branch Taken

Chapter 4 — The Processor — 87

Data Hazards for Branches
 If a comparison register is a destination of

2nd or 3rd preceding ALU instruction

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

 Can resolve using forwarding

Chapter 4 — The Processor — 88

Data Hazards for Branches
 If a comparison register is a destination of

preceding ALU instruction or 2nd preceding
load instruction
 Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw $1, addr

beq $1, $4, target

Chapter 4 — The Processor — 89

Data Hazards for Branches
 If a comparison register is a destination of

immediately preceding load instruction
 Need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw $1, addr

beq $1, $0, target

Chapter 4 — The Processor — 90

Dynamic Branch Prediction
 In deeper and superscalar pipelines, branch

penalty is more significant
 Use dynamic prediction

 Branch prediction buffer (aka branch history table)
 Indexed by recent branch instruction addresses
 Stores outcome (taken/not taken)
 To execute a branch

 Check table, expect the same outcome
 Start fetching from fall-through or target
 If wrong, flush pipeline and flip prediction

Chapter 4 — The Processor — 91

1-Bit Predictor: Shortcoming
 Inner loop branches mispredicted twice!

outer: …
…

inner: …
…
beq …, …, inner
…
beq …, …, outer

 Mispredict as taken on last iteration of
inner loop

 Then mispredict as not taken on first
iteration of inner loop next time around

Chapter 4 — The Processor — 92

2-Bit Predictor
 Only change prediction on two successive

mispredictions

Chapter 4 — The Processor — 93

Calculating the Branch Target
 Even with predictor, still need to calculate

the target address
 1-cycle penalty for a taken branch

 Branch target buffer
 Cache of target addresses
 Indexed by PC when instruction fetched

 If hit and instruction is branch predicted taken, can
fetch target immediately

Chapter 4 — The Processor — 94

Exceptions and Interrupts
 “Unexpected” events requiring change

in flow of control
 Different ISAs use the terms differently

 Exception
 Arises within the CPU

 e.g., undefined opcode, overflow, syscall, …

 Interrupt
 From an external I/O controller

 Dealing with them without sacrificing
performance is hard

§4.9 E
xceptions

Chapter 4 — The Processor — 95

Handling Exceptions
 In MIPS, exceptions managed by a System

Control Coprocessor (CP0)
 Save PC of offending (or interrupted) instruction

 In MIPS: Exception Program Counter (EPC)
 Save indication of the problem

 In MIPS: Cause register
 We’ll assume 1-bit

 0 for undefined opcode, 1 for overflow

 Jump to handler at 8000 00180

Chapter 4 — The Processor — 96

An Alternate Mechanism
 Vectored Interrupts

 Handler address determined by the cause
 Example:

 Undefined opcode: C000 0000
 Overflow: C000 0020
 …: C000 0040

 Instructions either
 Deal with the interrupt, or
 Jump to real handler

Chapter 4 — The Processor — 97

Handler Actions
 Read cause, and transfer to relevant

handler
 Determine action required
 If restartable

 Take corrective action
 use EPC to return to program

 Otherwise
 Terminate program
 Report error using EPC, cause, …

Chapter 4 — The Processor — 98

Exceptions in a Pipeline
 Another form of control hazard
 Consider overflow on add in EX stage

add $1, $2, $1

 Prevent $1 from being clobbered
 Complete previous instructions
 Flush add and subsequent instructions
 Set Cause and EPC register values
 Transfer control to handler

 Similar to mispredicted branch
 Use much of the same hardware

Chapter 4 — The Processor — 99

Pipeline with Exceptions

Chapter 4 — The Processor — 100

Exception Properties
 Restartable exceptions

 Pipeline can flush the instruction
 Handler executes, then returns to the

instruction
 Refetched and executed from scratch

 PC saved in EPC register
 Identifies causing instruction
 Actually PC + 4 is saved

 Handler must adjust

Chapter 4 — The Processor — 101

Exception Example
 Exception on add in

40 sub $11, $2, $4
44 and $12, $2, $5
48 or $13, $2, $6
4C add $1, $2, $1
50 slt $15, $6, $7
54 lw $16, 50($7)
…

 Handler
80000180 sw $25, 1000($0)
80000184 sw $26, 1004($0)
…

Chapter 4 — The Processor — 102

Exception Example

Chapter 4 — The Processor — 103

Exception Example

Chapter 4 — The Processor — 104

Multiple Exceptions
 Pipelining overlaps multiple instructions

 Could have multiple exceptions at once
 Simple approach: deal with exception from

earliest instruction
 Flush subsequent instructions
 “Precise” exceptions

 In complex pipelines
 Multiple instructions issued per cycle
 Out-of-order completion
 Maintaining precise exceptions is difficult!

Chapter 4 — The Processor — 105

Imprecise Exceptions
 Just stop pipeline and save state

 Including exception cause(s)
 Let the handler work out

 Which instruction(s) had exceptions
 Which to complete or flush

 May require “manual” completion

 Simplifies hardware, but more complex handler
software

 Not feasible for complex multiple-issue
out-of-order pipelines

Chapter 4 — The Processor — 106

Instruction-Level Parallelism (ILP)
 Pipelining: executing multiple instructions in

parallel
 To increase ILP

 Deeper pipeline
 Less work per stage  shorter clock cycle

 Multiple issue
 Replicate pipeline stages  multiple pipelines
 Start multiple instructions per clock cycle
 CPI < 1, so use Instructions Per Cycle (IPC)
 E.g., 4GHz 4-way multiple-issue

 16 BIPS, peak CPI = 0.25, peak IPC = 4
 But dependencies reduce this in practice

§4.10 P
arallelism

 and A
dvanced Instruction Level P

arallelism

Chapter 4 — The Processor — 107

Multiple Issue
 Static multiple issue

 Compiler groups instructions to be issued together
 Packages them into “issue slots”
 Compiler detects and avoids hazards

 Dynamic multiple issue
 CPU examines instruction stream and chooses

instructions to issue each cycle
 Compiler can help by reordering instructions
 CPU resolves hazards using advanced techniques at

runtime

Chapter 4 — The Processor — 108

Speculation
 “Guess” what to do with an instruction

 Start operation as soon as possible
 Check whether guess was right

 If so, complete the operation
 If not, roll-back and do the right thing

 Common to static and dynamic multiple issue
 Examples

 Speculate on branch outcome
 Roll back if path taken is different

 Speculate on load
 Roll back if location is updated

Chapter 4 — The Processor — 109

Compiler/Hardware Speculation
 Compiler can reorder instructions

 e.g., move load before branch
 Can include “fix-up” instructions to recover

from incorrect guess
 Hardware can look ahead for instructions

to execute
 Buffer results until it determines they are

actually needed
 Flush buffers on incorrect speculation

Chapter 4 — The Processor — 110

Speculation and Exceptions
 What if exception occurs on a

speculatively executed instruction?
 e.g., speculative load before null-pointer

check
 Static speculation

 Can add ISA support for deferring exceptions
 Dynamic speculation

 Can buffer exceptions until instruction
completion (which may not occur)

Chapter 4 — The Processor — 111

Static Multiple Issue
 Compiler groups instructions into “issue

packets”
 Group of instructions that can be issued on a

single cycle
 Determined by pipeline resources required

 Think of an issue packet as a very long
instruction
 Specifies multiple concurrent operations
  Very Long Instruction Word (VLIW)

Chapter 4 — The Processor — 112

Scheduling Static Multiple Issue
 Compiler must remove some/all hazards

 Reorder instructions into issue packets
 No dependencies with a packet
 Possibly some dependencies between

packets
 Varies between ISAs; compiler must know!

 Pad with nop if necessary

Chapter 4 — The Processor — 113

MIPS with Static Dual Issue
 Two-issue packets

 One ALU/branch instruction
 One load/store instruction
 64-bit aligned

 ALU/branch, then load/store
 Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

Chapter 4 — The Processor — 114

MIPS with Static Dual Issue

Chapter 4 — The Processor — 115

Hazards in the Dual-Issue MIPS
 More instructions executing in parallel
 EX data hazard

 Forwarding avoided stalls with single-issue
 Now can’t use ALU result in load/store in same packet

 add $t0, $s0, $s1
load $s2, 0($t0)

 Split into two packets, effectively a stall

 Load-use hazard
 Still one cycle use latency, but now two instructions

 More aggressive scheduling required

Chapter 4 — The Processor — 116

Scheduling Example
 Schedule this for dual-issue MIPS

Loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

 IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Chapter 4 — The Processor — 117

Loop Unrolling
 Replicate loop body to expose more

parallelism
 Reduces loop-control overhead

 Use different registers per replication
 Called “register renaming”
 Avoid loop-carried “anti-dependencies”

 Store followed by a load of the same register
 Aka “name dependence”

 Reuse of a register name

Chapter 4 — The Processor — 118

Loop Unrolling Example

 IPC = 14/8 = 1.75
 Closer to 2, but at cost of registers and code size

ALU/branch Load/store cycle
Loop: addi $s1, $s1,–16 lw $t0, 0($s1) 1

nop lw $t1, 12($s1) 2

addu $t0, $t0, $s2 lw $t2, 8($s1) 3

addu $t1, $t1, $s2 lw $t3, 4($s1) 4

addu $t2, $t2, $s2 sw $t0, 16($s1) 5

addu $t3, $t4, $s2 sw $t1, 12($s1) 6

nop sw $t2, 8($s1) 7

bne $s1, $zero, Loop sw $t3, 4($s1) 8

Chapter 4 — The Processor — 119

Dynamic Multiple Issue
 “Superscalar” processors
 CPU decides whether to issue 0, 1, 2, …

each cycle
 Avoiding structural and data hazards

 Avoids the need for compiler scheduling
 Though it may still help
 Code semantics ensured by the CPU

Chapter 4 — The Processor — 120

Dynamic Pipeline Scheduling
 Allow the CPU to execute instructions out

of order to avoid stalls
 But commit result to registers in order

 Example
lw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20

 Can start sub while addu is waiting for lw

Chapter 4 — The Processor — 121

Dynamically Scheduled CPU

Results also sent
to any waiting

reservation stations

Reorders buffer for
register writes Can supply

operands for
issued instructions

Preserves
dependencies

Hold pending
operands

Chapter 4 — The Processor — 122

Register Renaming
 Reservation stations and reorder buffer

effectively provide register renaming
 On instruction issue to reservation station

 If operand is available in register file or
reorder buffer
 Copied to reservation station
 No longer required in the register; can be

overwritten
 If operand is not yet available

 It will be provided to the reservation station by a
function unit

 Register update may not be required

Chapter 4 — The Processor — 123

Speculation
 Predict branch and continue issuing

 Don’t commit until branch outcome
determined

 Load speculation
 Avoid load and cache miss delay

 Predict the effective address
 Predict loaded value
 Load before completing outstanding stores
 Bypass stored values to load unit

 Don’t commit load until speculation cleared

Chapter 4 — The Processor — 124

Why Do Dynamic Scheduling?
 Why not just let the compiler schedule

code?
 Not all stalls are predicable

 e.g., cache misses
 Can’t always schedule around branches

 Branch outcome is dynamically determined
 Different implementations of an ISA have

different latencies and hazards

Chapter 4 — The Processor — 125

Does Multiple Issue Work?

 Yes, but not as much as we’d like
 Programs have real dependencies that limit ILP
 Some dependencies are hard to eliminate

 e.g., pointer aliasing
 Some parallelism is hard to expose

 Limited window size during instruction issue
 Memory delays and limited bandwidth

 Hard to keep pipelines full
 Speculation can help if done well

The BIG Picture

Chapter 4 — The Processor — 126

Power Efficiency
 Complexity of dynamic scheduling and

speculations requires power
 Multiple simpler cores may be better
Microprocessor Year Clock Rate Pipeline

Stages
Issue
width

Out-of-order/
Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Core 2006 2930MHz 14 4 Yes 2 75W

UltraSparc III 2003 1950MHz 14 4 No 1 90W

UltraSparc T1 2005 1200MHz 6 1 No 8 70W

Chapter 4 — The Processor — 127

The Opteron X4 Microarchitecture
§4.11 R

eal S
tuff: The A

M
D

 O
pteron X

4 (B
arcelona) P

ipeline

72 physical
registers

Chapter 4 — The Processor — 128

The Opteron X4 Pipeline Flow
 For integer operations

 FP is 5 stages longer
 Up to 106 RISC-ops in progress

 Bottlenecks
 Complex instructions with long dependencies
 Branch mispredictions
 Memory access delays

Chapter 4 — The Processor — 129

Fallacies
 Pipelining is easy (!)

 The basic idea is easy
 The devil is in the details

 e.g., detecting data hazards

 Pipelining is independent of technology
 So why haven’t we always done pipelining?
 More transistors make more advanced techniques

feasible
 Pipeline-related ISA design needs to take account of

technology trends
 e.g., predicated instructions

§4.13 Fallacies and P
itfalls

Chapter 4 — The Processor — 130

Pitfalls
 Poor ISA design can make pipelining

harder
 e.g., complex instruction sets (VAX, IA-32)

 Significant overhead to make pipelining work
 IA-32 micro-op approach

 e.g., complex addressing modes
 Register update side effects, memory indirection

 e.g., delayed branches
 Advanced pipelines have long delay slots

Chapter 4 — The Processor — 131

Concluding Remarks
 ISA influences design of datapath and control
 Datapath and control influence design of ISA
 Pipelining improves instruction throughput

using parallelism
 More instructions completed per second
 Latency for each instruction not reduced

 Hazards: structural, data, control
 Multiple issue and dynamic scheduling (ILP)

 Dependencies limit achievable parallelism
 Complexity leads to the power wall

§4.14 C
oncluding R

em
arks

