

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point (real numbers)
 - Representation and operations

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (–6)
 - +7: 0000 0000 ... 0000 0111
 - <u>-6: 1111 1111 ... 1111 1010</u>
 - +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - c.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video

Multiplication Hardware

Optimized Multiplier Perform 32 add/shift steps with 1 register **Multiplicand** 32 bits 32-bit ALU Shift right Control Product Write test

64 bits

1 cycle per partial-product (add+shift), i.e.

- HI(Product) = HI(Product) + Multiplicand
- Product = srl(Product) srl is unconditional!

A Faster Multiplier

How many adders, how much faster?
Must consider cost/performance tradeoff

Can be "pipelined"

How many multiplications in parallel?

MIPS Multiplication

- Use two 32-bit registers to store the product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product now stored in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of the product goes into rd

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division (LEFT to RIGHT)
 - If divisor ≤ dividend
 - 1 bit in quotient, then subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware Start Initially divisor Subtract the Divisor register from the in left half Remainder register and place the result in the Remainder register Divisor Remainder ≥ 0 Remainder < 0 Shift right Test Remainder 64 bits 2a. Shift the Quotient register to the left, 2b. Restore the original value by adding Quotient setting the new rightmost bit to 1 the Divisor register to the Remainder 64-bit ALU register and placing the sum in the Shift left Remainder register. Also shift the 32 bits Quotient register to the left, setting the new least significant bit to 0 Remainder Control Write test 64 bits 3. Shift the Divisor register right 1 bit No: < 33 repetitions 33rd repetition? Initially dividend Yes: 33 repetitions Done Chapter 3 — Arithmetic for Computers — 13

Optimized Divider

Perform 33 sub/srl/sll steps with 1 register

1 cycle per partial-remainder (sub+srl+sll)

- **Exercise:** Trace it like the optimized multiplier.
 - Same hardware can be used for both!

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT division) generate multiple quotient bits per step
 - Interesting historical tidbit:
 - http://en.wikipedia.org/wiki/Division_(digital)
 - Many proposed algorithms exist.

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mfl o to access result

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

- In binary
 - $\pm 1.xxxxxx_2 \times 2^{yyyy}$
 - Types fl oat and doubl e in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

	single: 8 bits double: 11 bit	single: 23 bits s double: 52 bits
S	Exponent	Fraction

 $x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- S: sign bit ($0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative)
- Normalize significand: $1.0 \le |significand| < 2.0$
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: using excess representation
 - actual exponent = Exponent Bias
 - Ensures Exponent is unsigned (i.e. for very small numbers)
 - Single: Bias = 127_{10} ; Double: Bias = 1023_{10}

Single-Precision Range

- Exponents 0000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001
 - \Rightarrow actual exponent = 1 127 = –126
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110 \Rightarrow actual exponent = 254 - 127 = +127
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001 ⇒ actual exponent = 1 – 1023 = –1022
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 1111111110
 ⇒ actual exponent = 2046 1023 = +1023
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 × log₁₀2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

Floating-Point Example

Represent and store –0.75

- $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
- S = 1
- Fraction (stored) = $1000...00_2$
- Exponent (stored) = -1 + Bias
 - Single: -1 + 127 = 126 = 01111110₂

Double: $-1 + 1023 = 1022 = 01111111110_2$

- Single: 1011111101000...00 (in mem)
- Double: 101111111101000...00 (in mem)

Floating-Point Example

- What number is represented by the singleprecision float
 - 1100000101000...00 (stored in memory)
 - S = 1

- Fraction = 01000...00₂
- Exponent = 10000001₂ = 129

•
$$\mathbf{x} = (-1)^1 \times (1 + 01_2) \times 2^{(129 - 127)}$$

= $(-1) \times 1.25 \times 2^2$
= -5.0

• Exponent = 000...1; hidden bit = 0 $x = (-1)^{S} \times (0 + Fraction) \times 2^{1-Bias}$

- Gradual underflow (smaller gap to zero)
 - Smallest +ve SP norm: 1.0000... 0 × 2⁻¹²⁶
 - Smallest +ve SP denorm: 0.0000... 1×2^{-126}

±Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - Cover $\pm \infty$
 - Can be used in subsequent calculations, avoiding need for overflow checks
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined results
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Addition

- Consider a 4-digit <u>decimal</u> example
 - $9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - $9.999 \times 10^1 + 0.016 \times 10^1$
- 2. Add the significands
 - $9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1$
- 3. Normalize result & check for over/underflow
 - 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002 × 10²

Floating-Point Addition

- Now consider a 4-digit <u>binary</u> example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add the significands
 - $\bullet 1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long (i.e. cycle time will be long)
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles

But it can be pipelined

FP Adder Hardware

Floating-Point Multiplication

- Consider a 4-digit <u>decimal</u> example
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply the significands
 - $1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^5$
- 3. Normalize result & check for over/underflow
 - 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - 1.021 × 10⁶
- 5. Determine sign of result from signs of operands
 - +1.021 × 10⁶

Floating-Point Multiplication

- Now consider a 4-digit <u>binary</u> example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2}$ (0.5 × -0.4375)
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply the significands
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve \times –ve \Rightarrow –ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a <u>multiplier</u> for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, and square-root
 - FP \leftrightarrow integer conversion (type cast?)
- Operations usually takes several cycles
 - Can be pipelined like FP adder

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - Iwc1, Idc1, swc1, sdc1
 - e.g., I dc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add. s, sub. s, mul. s, div.s
 - e.g., add. s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add. d, sub. d, mul. d, di v. d
 - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c. xx. s, c. xx. d (xx can be eq, l t, l e, ...)
 - Sets or clears FP condition-code bit
 - e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
    return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:
 - f2c: lwc1 \$f16, const5(\$gp) # 5.0
 lwc2 \$f18, const9(\$gp) # 9.0
 div.s \$f16, \$f16, \$f18
 lwc1 \$f18, const32(\$gp) # 32.0
 sub.s \$f18, \$f12, \$f18
 mul.s \$f0, \$f16, \$f18
 jr \$ra

FP Example: Array Multiplication

$$X = X + Y \times Z$$

All 32 × 32 matrices, 64-bit double-precision elements

C code:

i, j, k in \$s0, \$s1, \$s2

FP Example: Array Multiplication

MIPS code:

	li	\$t1,	32		#	\$t1	= 32 (row size/loop end)
	l i	\$s0,	0		#	i =	O; initialize 1st for loop
L1:	l i	\$s1,	0		#	j =	0; restart 2nd for loop
L2:	l i	\$s2,	0		#	k =	0; restart 3rd for loop
	sH	\$t2,	\$s0,	5	#	\$t2	= i * 32 (size of row of x)
	addu	\$t2,	\$t2,	\$s1	#	\$t2	= i * size(row) + j
	sH	\$t2,	\$t2,	3	#	\$t2	<pre>= byte offset of [i][j]</pre>
	addu	\$t2,	\$a0,	\$t2	#	\$t2	<pre>= byte address of x[i][j]</pre>
	I.d	\$f4,	0(\$t2	2)	#	\$f4	= 8 bytes of x[i][j]
L3:	sH	\$t0,	\$s2,	5	#	\$t0	= k * 32 (size of row of z)
	addu	\$t0,	\$t0,	\$s1	#	\$t0	= k * size(row) + j
	sH	\$t0,	\$t0,	3	#	\$t0	<pre>= byte offset of [k][j]</pre>
	addu	\$t0,	\$a2,	\$t0	#	\$t0	<pre>= byte address of z[k][j]</pre>
	I.d	\$f16,	0(\$1	t0)	#	\$f16	6 = 8 bytes of z[k][j]

...

FP Example: Array Multiplication

. . .

•••					
sll \$	\$tO, \$	\$s0, 5	5	#	<pre>\$t0 = i *32 (size of row of y)</pre>
addu	\$t0,	\$t0,	\$s2	#	\$t0 = i *size(row) + k
sH	\$t0,	\$t0,	3	#	<pre>\$t0 = byte offset of [i][k]</pre>
addu	\$t0,	\$a1,	\$t0	#	<pre>\$t0 = byte address of y[i][k]</pre>
I.d	\$f18,	0(\$1	t0)	#	<pre>\$f18 = 8 bytes of y[i][k]</pre>
mul.d	\$f16,	\$f18	3, \$f16	#	<pre>\$f16 = y[i][k] * z[k][j]</pre>
add. d	\$f4,	\$f4,	\$f16	#	f4=x[i][j] + y[i][k]*z[k][j]
addi u	\$s2,	\$s2,	1	#	\$k k + 1
bne	\$s2,	\$t1,	L3	#	if (k != 32) go to L3
s.d	\$ f 4,	0(\$t2	2)	#	x[i][j] = \$f4
addi u	\$s1,	\$s1,	1	#	\$j = j + 1
bne	\$s1,	\$t1,	L2	#	if (j != 32) go to L2
addi u	\$s0,	\$s0,	1	#	\$i = i + 1
bne	\$s0,	\$t1,	L1	#	if (i != 32) go to L1

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Interpretation of Data

The BIG Picture

Bits have no inherent meaning

 Interpretation depends on the instructions applied (i.e. how it is encoded)

Computer representations of numbers

- Finite range and precision
- Need to account for this in user programs

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

	Initial	(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
у	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism (y >> z)

x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 × 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), …
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS	FICOMP FIUCOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSI N
	FRNDI NT		FYL2X

- Optional variations
 - I : integer operand
 - P: pop operand from stack
 - R: reverse operand order
 - But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously

<u>Single-Instruction Multiple-Data</u>

Right Shift and Division

- Left shift by *i* places multiplies an integer by 2ⁱ
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - $11111011_2 >> 2 = 11111110_2 = -2$
 - Rounds toward —∞
 - c.f. 11111011₂ >>> 2 = 00111110₂ = +62

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent

