
Compiler Construction
6001310-3

Abdelrahman Osman

aamosman@uqu.edu.sa

Textbook

• Compilers: Principles, Techniques, and Tools ,A. V. Aho, R. Sethi, J. D.
Ullman; (c) 2010

Course information

• Lexical analysis, including regular languages and finite state acceptors;

• Syntactic analysis, including parsing techniques and grammars;

• Code generation

• Optimization.

• Prerequisite: 6001231-4 Programming Languages

Goals

• Understanding of the organization of a compiler

• Understanding of the concepts of scanning, parsing, and translation

• Understanding of Compiler writing tools

ABET

• (C): An ability to design, implement and evaluate a computer-based
system, process, component or program to meet desired; Students
are required design and implement a software project to meet a
specification.

• (D): An ability to function effectively on teams to accomplish a
common goal Projects are implemented in teams.

• (I): An ability to use the current techniques, skills, and tools necessary
for computing practice.; Projects use current computing and
modeling/design tools.

Topics To be Covered

• Introduction to compilers structure & goals

• Arithmetic expression processing using a stack

• Simple compiler structure

• Grammar, parse tree, and ambiguous grammar

• Translation schemes

• Context-free grammar & parsing

• Introduction to left recursion and right recursion

• Lexical analyzer (language, errors, pattern specifications)

• Operations on languages and regular expressions

• Finite automata

• Parsers and errors and sentential error

• Left recursion and left factoring

• FIRST, FOLLOW, and transition diagrams

Lecture 1
Introduction

• Programming languages are notations for describing computations
to people and to machines.

• The world as we know it depends on programming languages,
because all the software running on all the computers was
written in some programming language.

• Before a program can be run, it first must be translated into a
form in which it can be executed by a computer.

• The software systems that do this translation are called compilers.

Compiler

• A compiler is a program that can read a program in one language
- the source language - and translate it into an equivalent program
in another language - the target language

Running the target program

• If the target program is an executable machine-language program,
it can then be called by the user to process inputs and produce
outputs.

Interpreter

• An interpreter is another common kind of language processor.
Instead of producing a target program as a translation, an interpreter
appears to directly execute the operations specified in the source
program on inputs supplied by the user.

Difference between compiler and Interpreter

• The machine-language target program produced by a compiler is
usually much faster than an interpreter at mapping inputs to outputs
. An interpreter, however, can usually give better error diagnostics
than a compiler, because it executes the source program statement
by statement.

A hybrid compiler

• Java language
processors combine
compilation and
interpretation.

Image from http://starredreviews.com/wp-content/uploads/2011/04/JVM_Bytecode.png

Preprocessor

• In addition to a compiler, several other programs may be required to create
an executable target program, as shown in Fig. 1.5. A source program may
be divided into modules stored in separate files. The task of collecting the
source program is sometimes entrusted to a separate program, called a
preprocessor.

• The preprocessor may also expand shorthands, called macros, into source
language statements.

• The modified source program is then fed to a compiler. The compiler may
produce an assembly-language program as its output, because assembly
language is easier to produce as output and is easier to debug. The
assembly language is then processed by a program called an
assembler that produces relocatable machine code as its output.

• Large programs are often
compiled in pieces, so the
relocatable machine code may
have to be linked together with
other relocatable object files
and library files into the code that
actually runs on the machine.

• The linker resolves external
memory addresses, where the
code in one file may refer to a
location in another file.

• The loader then puts together all
of the executable object files into
memory for execution.

The Structure of a Compiler

• A compiler can be divided into two parts: analysis and synthesis.

Image from https://www.tutorialspoint.com/compiler_design/images/compiler_analysis_synthesis.jpg

Analysis part

• The analysis part reads the source program, divides it into core parts
and then checks for lexical, grammar and syntax errors.

• The analysis part generates an intermediate representation of the
source program and symbol table, which should be fed to the
Synthesis part as input.

Synthesis part

• The synthesis part generates the target program with the help of
intermediate source code representation and symbol table.

Phases of a compiler

Lexical Analysis (scanner)

• The lexical analyzer reads the stream of characters making up the
source program and groups the characters into meaningful sequences
called lexemes.

• For each lexeme, the lexical analyzer produces as output a token of
the form:

(token-name, attribute-value)

that it passes on to the subsequent phase, syntax analysis

Example
position = i n i t i a l + r a t e * 60

• position is a lexeme that would be mapped into a token (id, I), where id is
an abstract symbol standing for identifier and 1 points to the symbol-table
entry for position. The symbol-table entry for an identifier holds
information about the identifier, such as its name and type

• The assignment symbol = is a lexeme that is mapped into the token (=)
• initial is a lexeme that is mapped into the token (id, 2)
• + is a lexeme that is mapped into the token (+)
• * is a lexeme that is mapped into the token (*)
• 60 is a lexeme that is mapped into the token (60)

Syntax Analysis (parser)

• It takes the token produced by lexical analysis as input and generates
a parse tree (or syntax tree).

• In this phase, token arrangements are checked against the source
code grammar, i.e. the parser checks if the expression made by the
tokens is syntactically correct.

Semantic analysis
• Semantic analyzer checks whether the parse

tree constructed follows the rules of
language. For example, assignment of values
is between compatible data types, and
adding string to an integer.

• Also, the semantic analyzer keeps track of
identifiers, their types and expressions;
whether identifiers are declared before use
or not etc. The semantic analyzer produces
an annotated syntax tree as an output.

Intermediate Code Generation

• After semantic analysis the compiler
generates an intermediate code of the
source code for the target machine. It
represents a program for some abstract
machine. It is in between the high-level
language and the machine language. This
intermediate code should be generated in
such a way that it makes it easier to be
translated into the target machine code.

Code Optimization

• The next phase does code
optimization of the intermediate
code. Optimization can be assumed as
something that removes unnecessary
code lines, and arranges the sequence
of statements in order to speed up
the program execution without
wasting resources (CPU, memory).

•

Code Generation

• In this phase, the code generator
takes the optimized
representation of the intermediate
code and maps it to the target
machine language. The code
generator translates the
intermediate code into a sequence
of (generally) re-locatable machine
code. Sequence of instructions of
machine code performs the task
as the intermediate code would
do.

Symbol Table

• It is a data-structure maintained
throughout all the phases of a
compiler. All the identifier's
names along with their types are
stored here. The symbol table
makes it easier for the compiler
to quickly search the identifier
record and retrieve it. The
symbol table is also used for
scope management.

Refernces

• Compilers: Principles, Techniques, and Tools ,A. V. Aho, R. Sethi, J. D.
Ullman; (c) 2010

• https://www.tutorialspoint.com/compiler_design

• http://starredreviews.com/wp-
content/uploads/2011/04/JVM_Bytecode.png

https://www.tutorialspoint.com/compiler_design
http://starredreviews.com/wp-content/uploads/2011/04/JVM_Bytecode.png

