A Hardware Model of an Expandable
RSA Cryptographic System

by
Adnan Abdul-Aziz M.S. Gutub

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

COMPUTER ENGINEERING

December, 1998

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
31377614700 800/521-0600

NOTE TO USERS

The original document received by UMI contains pages with
indistinct print. Pages were microfilmed as received.

This reproduction is the best copy available

elofel oo el Je Sl o e e e e S ol e el e el e e e et e

A Hardware Model of an Expandable
RSA Cryptographic System

BY
Adnan Abdul-Aziz M.S. Gutub

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fuffillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In
Computer Engineering

December 1998

el el el el e el el el e el e el e el e e el e el e e el el e el e el el b

éﬁﬁﬂ’ﬂﬁ%ﬁ?ﬁﬁ’%ﬂ%P&‘W*T*T%&T*T*T%WVW&WWWFW%@T*WWW*‘W"&

UMI Number: 1393212

UMI Microform 1393212
Copyright 1999, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

(,.:}jss{,e)sfmw

o o & o o
A9 I7=25 &9 [2A
6 528 oy 2l ol p2all i
2 < _ s Z . ~ -, & ~
g3 38 N2 Qs ol8 8 pag swnil sl

At ads Olankw
Jaill 3 g 1 2y SH G AN

This is of the bounty of my Lord, to test me as to
weather I am grateful or ungrateful. He who is grateful 1s
but grateful for his own good; and he who is ungrateful,
verily, my Lord is self-sufficient, most generous.

Proptiet Solomon

Quran 27:40

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN 31261, SAUDI ARABIA

COLLEGE OF GRADUATE STUDIES

The Thesis, written by
Adnan Abdul-Aziz M. S. Gutub

under the direction of his Thesis advisor and approved by his Thesis Committee, has been
presented to and accepted by the Dean of the College of Graduate Studies, in partial

fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

Thesis Committee:

27.i2- 4%
Dr. Alaaeldin Amin (Chairman)

@c(u(Z7/<hy 270238
Dr. Khalidw
% 217 %
r. Khalid Al-Tawil (Member)

ctbanllah fAmeje

Department Chairman

Dean, College of &?raduate Studies

o~ ji2-9&
Date

Dedicated
To

My Parents

Acknowledgments

First and foremost, all praise to the Almighty ALLAH who gave me the courage

and patierice to carry out this work.

Acknowledgment is due to King Fahd University of Petroleum and Minerals for

providing support to do this work.

My deep appreciation goes to Dr. Alaaeldin Amin, who served as my Thesis
advisor. I also wish to thank the other members of my Thesis Committee Dr. Khalid

Elleithy and Dr. Khalid Al-Tawil.

Thanks are due to my Professors: Dr. Sadiq Sait, Dr. Mostafa Abd-El-Barr and Dr.

Atif Al-Najjar, for their encouragement and valuable advises.

[am very grateful to my wonderful wife (Manal M. Fattani) and children (Muna
and Alaa), without their patience and sacrifices such a major undertaking and its

completion would have not been possible.
Finally, my profound gratitude and appreciation go to the rosy part of my life, to

my mother (Amnah S. Sait) and father (Dr. Abdul-Aziz M.S. Kutub), for their continuos

prayers, encouragement and moral support.

iv

Contents

Listof Figures.« 0t ittt it ix
Listof Tables i i i e x
Abstract (English) xii
Abstract (Arabic) xiii
1 Introduction 1
1.1 Thesis Objective i e 2
1.2 ThesisOutline.« o it it e 2
2 Cryptographic Systems 4
2.1 Imtroduction e 4
2.1.1 Substitutiono e 5
2.1.2 Tramsposition oo 6

2.2 Public Key Cryptosystems 6
2.2.1 Fundamental Operators 7
2.2.2 Historical Background - o oo 8

23 TheRSASystemo it ittt 9
23.1 RSAEmcryption 10
2.3.2 Generationofthe RSAKeys 10
2.3.3 Example on Encryption Using RSA System 10
2.3.4 The RSA Digital Signature Scheme 11
2.3.5 Security of the RSA Cryptosystem 12
236 RSASpeed 12

Review of RSA Hardware Implementations 13
3.1 Imtroduction 13
3.2 ‘General Techniques for Modular Operations 14
3.2.1 The Repeated Squaring Algorithm 14
3.2.2 General Modular Multiplication Techniques 15
3.3 Logarithmic Speed Implementation 17
3.3.1 TheAlgorithm 17
3.3.2 The Implementation 18
3.4 Implementations of Montgomery’s Algorithm 18
3.4.1 Montgomery’s Algorithm For Exponentiation 18
3.4.2 Montgomery’s Algorithm Hardware Designs 19
3.5 Full RSA Implementations 20
3.6 Systolic Arrays for Modular Exponentiation 21
3.6.1 Systolic Array for Multiplication. 21
3.6.2 Montgomery Reduction by the Systolic Multiplier 22
3.7 SUMMATY . . . o o o v e e e b e e e e e e e e e e e e e e 24

A Hardware Model of an Expandable RSA Cryptographic System 26

41 Introduction o i it i i i e 26
4.2 The Systolic Multiplier 27
4.2.1 The Basic Cell of The Systolic Multiplier 28
4.2.2 The b-bit Parallel Multiplier 29
4.3 Montgomery Product Design 29
4.3.1 Montgomery Product Implementation. 31
4.3.2 Expandability of the parallel MP Implementation 32
433 The Expandable MPDesign 33
44 The Modular Exponentiation System 35
4.4.1 The Basic Exponentiation Processor 36

4.5

442 The Expansionhardware
4.4.3 The Expandable MP Module
SUMMATY . . & & o v e e e e e e e e e e e e e e e e e e

5 Other Implementations

5.1

5.2

5.4

Introduction e
The Merged Exponentiation Hardware
5.2.1 The Merged Montgomery Product Algorithm
5.2.2 The Merged MP Implementation
5.2.3 The Multiplication Loop Implementation
5.2.4 The Reduction Loop Implementation
5.2.5 The Merged Exponentiation Implementation
The Add/Subtract Exponentiation Design
5.3.1 The Add/Subtract Reduction Unit Implementation
5.3.2 The Add/Subtract Multiplication Implementation
5.3.3 The Modular Add/Subtract Exponentiation Implementation .

SUMMATY . . .« o v v o e e e e e e et et e e e e e e e

6 Modeling and Analysis

6.1
6.2

6.3

6.4
6.5

Introduction« o . ot e e e e
Implementation Areao
6.2.1 Area of The RSA Implementations
Speedand Cost
6.3.1 The Expandable Hardware Cost
6.3.2 The Merged Exponentiation Design Cost
6.3.3 The Add/Subtract Exponentiation Design Cost
VHDL Modeling oo i

39
39
39
40
41
43

46
46
47
47
49
30

" Conclusion and Future Work 64
7.1 Conclusion. o o v v i i e e e e e e e e 64
7.2 Future Work Lo 65
Bibli.ography 66
487 70

List of Figures

2.1 The information flow in a classical cryptographic system 4
2.2 Public key cryptographic system (general concept) 8
3.1 The repeated squaring algorithm 14
3.2 The improved repeated squaring algorithm 15
3.3 The multiplication with reduction modified algorithm 16
3.4 Montgomery’s algorithm for modular exponentiation 18
3.5 Thesystolicarray - « « v« o o i ittt e e 21
3.6 The algorithm for a cell behavior 22
3.7 The systolic Montgomery reduction 23
3.8 Sauerbrey’s implementation of Montgomery modular multiplication . . 24
4.1 The word-serial multiplier (systolicarray) 27
4.2 Expandability of the systolic multiplier 27
4.3 Hardware designofthecell. 28
4.4 Hardware design of 4-bits parallel multiplier 30
4.5 The MP-algorithm (Montgomery Product) 31
46 Thesignalflowgraph 31
4.7 The signal flow graph MP implementation (parallel hardware) 32
4.8 Expandability of the parallel implementation 33
49 Projecting all parallel and systolic multipliersintoone 33
4.10 The expandable serial MP implementation 34
4.11 Expandable shift registersdesign 34

4.12 The expandable MP system 35

4.13 The Montgomery modular exponentiation algorithm 36
4.14 The basic exponentiation processor 36
4.15 The expansion hardware 37
4.16 -The expanded MPmodule 38
5.1 The MP merged algorithm [40
5.2 The reorganized MP merged algorithm 41
5.3 The MP merged algorithm implementation model 42
5.4 The merged MP multiplier implementation 43
5.5 The multiplication process implementation outline 43
5.6 The multiplication process implementation 44
5.7 The reduction process implementation 45
5.8 The merged modular exponentiation hardware 46
5.9 The add/subtract modular multiplication hardware 47
5.10 The add/subtract multiplication algorithm 48
5.11 The modular add/subtract reduction implementation 48
5.12 The modular add/subtract multiplication implementation 49
5.13 The modular exponentiation outline. 49
5.14 The modular add/subtract exponentiation implementation 20
6.1 The area of the designs for key size of 1024-bits 54
6.2 The VHDL code of the parallel multipliermodel 38
6.3 The time vs. number of bitsanalysis 59
6.4 The Cost (Area * Time?) analysis for key size of 1024-bits 61
6.5 The expandable and merged designs costs for different key sizes 62

List of Tables

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

The number of transistors building the basicgates
The number of transistors building the basic components used
Area (number of transistors) of the expandable RSA implementation

Area (number of transistors) of the merged exponentiation hardware . .
Area (number of transistors) of the add/subtract exponentiation design
Analysis of the add/subtract modular exponentiation design
Analysis of the merged Montgomery modular exponentiation design . .
Analysis of the expandable modular exponentiation design

52
52
33
95

39
60

Abstract

Name: Adnan Abdul-Aziz M. S. Gutub

Title: A Hardware Model of an Expandable RSA Cryptographic System
Major Field: Computer Engineering

Date of Degree: December 1998

Data security is an important aspect of information transmission and storage in an
electronic form. Cryptographic systems are used to encrypt such information to guarantee
its security. To retrieve such information, the encrypted form must be first decrypted. One
of the most popular cryptographic systems is the RSA system. The security of the RSA-
encrypted information largely depends on the size of the used encryption key. The larger
the key size is the longer the encryption/decryption time will be. To cope with the
continuous demand for larger key sizes, faster hardware implementations of the RSA
algorithm has become an active area of research. One disadvantage of hardware
implementations is their fixed key sizes. If the key size is to be increased, the hardware
design should be fully replaced.

The work reported here proposes an RSA hardware implementation that can be
expanded as the key size gets larger. This implementation is modeled using VHDL ina
parametrizable manner. Two other parameterized RSA hardware designs have also been
VHDL modeled for comparison. The three models are compared for a 1024-bit key size
and the results are analyzed. The complexity of the designs are compared and conclusions

regarding optimal delay and area parameters are made.

Master of Science Degree

King Fahd University of Petroleumn and Minerals
Dhahran, Saudi Arabia
December 1998

sl gas Il Sl gy

ddlu) AdlA

e Las e

dod) Tr Ul o gzl TG 3855 459 ST) 3515 goes 1 Al J1 OV g
RSA pllay pddll

R NSEE S SREL 1 Rl

RV EVA OLad Balgl fuyb

S b gl amly gn e o By ol gall et Jul1 o LY 4a (Cryptography) i
Bl I Bl sotnd 5 aid) i g o dazed I 4, Bl o2y ¢ (RSA)— N JPY PR E MU RPY-L L |
OF (g ¢ Gl 255 SIY1 350 Yaranss 3 Tk (0 (RSA) 3 b 5y ¢ o 23y § Gl
AL g SN ot i Y 25 P ¢ ol e pomm g3 08 panl] deenan S

e 2 Ay SOV 5 gl 550 e s S Wy b el Coedl L 3 F A3
¢« (VHDL) i plasc G Y o) 312 5 46 Jlonial poaadl lia |22 ¢ ot il
Uy il poead oy ¢ (VHDL) plasiiels Ll g T Gpmonnts o Joily 235081 U 0
vimlws 1SV pan 6 0 02 JU 3o 01 3

(il % B Llt = LSy Sy Tl y ehoW 3l S e T aladl G B, o)) 5
a3 85,80 By ull Jlin athl o p 5 2SI S35 et s JadY Bl 1S ol eadl b
il el o o ghail) B e 5 renadl

pykdl 3yl dxr s
Ostalty J g2l dgh UL Znstr
43 gaadl &y 0t ALl — O ,ghalt

—2Y €14 Olad

xiii

Chapter 1

Introduction

Encryption is a well recognized technique for information protection. It is used effec-
tively to protect sensitive data such as passwords that are stored in a computer as well
as information transmitted through different communication media.

Encryption is the transformation of data into a form which is unreadable without a
secret decryption key. Over the years, several encryption (or cryptographic) techniques
have been used, however, most of them were not practical [10, 13].

Depending on the encryption/decryption key, cryptographic systems can be classi-
fied into two main categories: secret key cryptosystems and public key cryptosystems.
The secret key cryptosystems uses one key for both encryption and decryption. Public
key cryptosystems, however, use two different keys, one for encryption and the other
for decryption.

The most popular public key method is the RSA [1, 6, 10, 11, 12]. The security of
this method depends on the size of the key. The larger the key size is, thé more secure
the system will be [2]. More security, in this context, means that more computation
time would be needed to hack the system. This largely depends on the implementation
technology which is growing at a very fast rate.

RSA cryptographic systems can either be software or hardware implemented. Soft-
ware implementations are typically very slow compared to hardware ones. Whereas

software implementations are flexible allowing changes in the key size, hardware im-

plementations lack such flexibility. For example, if the RSA key size is to be increased

to improve security, the hardware must be redesigned.

1.1 Thésis Objective

The objective of this Thesis is to design an expandable implementation of an RSA
processor. The processor is to be designed in a bit-sliced manner, such that larger key
sizes can be easily accommodated by merely adding more slices.

For proper evaluation of the proposed expandable implementation, a VHDL struc-
tural model is to be developed. This model will be used to verify and simulate the
operation of the proposed design. Furthermore, other available RSA implementations
are modeled using VHDL as well to be compared to the proposed expandable design

in terms of area and speed.

1.2 Thesis Outline

In the next chapter, a general review of cryptographic concepts is given. Some ex-
amples of traditional secret key cryptosystems are discussed. The public key RSA
cryptosystem has been covered in more depth because of its simplicity and popularity.

In chapter 3, reported RSA hardware implementations are described. The empha-
sis, however, is on the design of a custom integrated circuit, to achieve the highest
performance. Some general techniques for performing modular operations are briefly
discussed.

In chapter 4, the design and operation of the proposed expandable RSA hardware
is detailed.

Chapter 5, introduces two other hardware implementations. Both of which use
the repeatéd squaring algorithm for modulo-exponentiation. However, the techniques
used to compute modular multiplication are different. One implementation is based

on Montgomery’s method for module multiplication, while the other method performs

-

the modulo multiplication through integrated addition and subtraction operations.
In chapter 6, the proposed expandable hardware is compared with the two other
implementations on the basis of time, area and AT cost. The three implementations
are analyzed for 1024-bit key size, and the results are compared.
Chapter 7, summarizes the results of this thesis work and provides some proposed

future work in this area.

Chapter 2

Cryptographic Systems

2.1 Introd’uction

Cryptography is the science concerned with the process of encryption and decryption.
The word, cryptography, is taken from the Greek word kryptos meaning hidden, and
graphia meaning writing [6]. In data communication, for example, the original message
is called the plain text ‘P’. If this P is to be sent over an insecure channel it must be
encrypted (Figure 2.1). The resulting text is referred to as the cipher text ‘C’; sending
C over an insecure channel protects the original message P against possible attacks
of eavesdroppers. Encryption must be a reversible process, i.e. an inverse operation
(decryption or deciphering) must exist to transform the encrypted information back
to the original plain text [1].

The encryption algorithm is the procedure followed to encipher the plain text into

2[Eavesdroper (cryptanalyst)]_1.
Sender |_P,, [Encryption L€ _|_C,.'Decryption |—B,.[Recaiver
| Sender |-E»-{ Encryption | == || Recelver |

T Secret key (K) I

Figure 2.1: The information flow in a classical cryptographic system

its cipher form using a si)ecial number called the encryption/decryption key. This key
is like a password to the encrypted message. Without knowledge of this key and the
used algorithm, the cipher text can not be transformed back to the plain text. For
this reason, the key must be transmitted to the receiver through a very secure channel
(Figure 2.1).

Attempting to decrypt encrypted data without knowledge of the key is called crypt-
analysis. A cryptographic system is secure [6], if the plain text “P” can not be obtained
from the cipher text “C” through cryptanalysis.

Based on the type of cryptographic key used, cryptographic systems fall into two
general categories; namely: secret key cryptography and public key cryptography.
While the secret key category depends on using the same key for both encryption
and decryption, public key cryptographic systems adopt a two-key system: one for
encryption and another for decryption.

In the following, a number of traditional secret cryptographic systems will be briefly
described. More detailed information can be found in the literature [4, 5, 8, 19].

2.1.1 Substitution

This type of encryption replaces the actual bits, characters or blocks of characters with
substitutes. For example, one letter replaces another, based on a certain rule. The first
clearly documented substitution, known as Caesar’s cipher [6], simply replaces a given
letter from the plain text by the letter three places beyond it. Another substitution
approach [1] replaces the letters (BWEKQFMVYALUCONPHSIDXTRGZJ) by the
normal alphabet. Using this order of alphabet; say: “A” in the plain text is replaced
by “B”, “B” in the plain text is replaced by “W”, “C” by “E”, etc. Thus, if the plain
text message is:

THE QUEEN HAS GIVEN BIRTH TO A HEALTHY SIX POUND BOY

Then the cipher text [1] will be:

DVQ HXQQO VBI MYTQO WYSDV DN B VQBUDVZ IYG PNXOK WNZ

This type of cryptosystem can be cryptanalyzed by building frequency tables of
letters, letter pairs and letter triples in the transmitted encrypted message and then

comparing that to the well known English letter frequencies.

2.1.2 . Transposition

In this cryptosystem, the letters are permuted according to a certain rule. For example
[1], the message:
THE QUEEN HAS GIVEN BIRTH TO A HEALTHY SIX POUND BOY
is broken into five character groups (including spaces) and the letters in each group
are rearranged according to the permutation :
1 23 45
(25143)

so the third letter in the plain text is written first, the first letter is written second
and the fifth letter is written third, and so on. The cipher text will be:
ETQ HEU NESHG AEI NVRBHTIO A TE LAHYTS H IOPXDUB NXOXXY

While substitution cryptosystems preserve the location of the letter in the message,
but changes the letters themselves, tra.nspositién cryptosystems preserve the letters

but their locations within the message are changed. Transposition can be broken by

seeking permutations and rejoining them until the plain text is reconstructed.

2.2 Public Key Cryptosystems

Based on the type of cryptographic key used, cryptographic systems fall into two gen-
eral categories; namely: secret key cryptography and public key cryptography. While
the secret key category depends on using the same key for both encryption and decryp-
tion, public key cryptographic systems adopt a 2-key system: one for encryption and
another for decryption. This method solves the key management and key distribution
problems discussed before. Public key systems depend on some basic fundamental

operators, two of which are discussed in the following section.

6

2.2.1 Fundamental Operators

The security of public key cryptographic systems depends basically on the computa-
tional complexity of the encryption/decryption operation. With the exception of some
assumptions made about the computational difficulty of the used operators, there is
no concrete mathematical proof for the security of such systems [1]. These operators

are the one-way and the trap-door functions. The existence of these operators is still

considered an open research area [8, 9, 11].

One Way Functions

One way functions are functions that have no inverse function. For example, if M is
a message, and F(M) is a function that generates the cipher text, C. F(M), is called
a one-way function if M can not be regenerated from C by the use of the function F

while F(M) itself, can be easily computed for any message M.

Trap-Door Functions

A trap-door function is a one-way function but with a unique inverse function F -1,
the trap-door. This unique inverse function F~! is the only way to regenerate the
function input M, given its output C. For example, the message M is the input to
the function F(M), which will generate C. The only way to regenerate M back from
C is through the trap-door function F~!. Thus,

e If M and F are known, then C can be generated = F(M) = (C)
o If C and F~! are known, then M can be regenerated => F~}(C) = (M)

Some restrictions on trap-door functions must be taken into consideration [11].

These restrictions are:

e Both F and F~! must be easy to compute for all needed values.

e Computing C from M without F is computationally infeasible.

¢ Computing F~! from F, or F from F~!, is computationally infeasible.
e Computing M from C without F~! is computationally infeasible.

These two operators are the basic building blocks for public key cryptosystems.

2.2.2 Historical Background

Diffie and Hellman in 1976 [12], suggested two solutions for the key distribution prob-
lem. These solutions laid the foundation for what is now known as the public key
distribution system and the concept of public-key cryptosystems.

The first solution depends on the use of one-way functions. In this case, the sender
and receiver exchange some one way function codes through which a secret cipher key
is generated. These exchanged codes should prevent eavesdroppers from knowing or
computing the secret ciphering key. By this method the key is distributed without
a need for secure channels. This method is covered in muie detailed fashion in the
literature [1, 10, 11, 12].

The second proposed solution, was a general conceptual model for general public-
key cryptosystems. This model was given [1], without any practical example or im-
plementation as shown in Figure 2.2. The main contribution was the notion that keys
could come in pairs, one is a private key and the other is a public one. These keys
should not be computable from one another following the trapdoor function. Thus,
if any message is encrypted by one of the two keys, it can only be decrypted by the
other key.

Q| Eavesdroper (aypmnyﬂi,
i el et el e il

| |

Encryption key Decryption key
(publickey) (private key)

Figure 2.2: Public key cryptographic system (general concept)

Numerous public-key ciphering algorithms were, thérea.fter, proposed. However,
many have been proven to be either insecure or impractical due to either the large
size of the keys or the large size of the generated cipher text {10]. Only a few of these
public-key algorithms have so far, been secure and practical. Some are suitable for
encryption or key distribution, while others are more suitable for authentication and
digital signatures. Three algorithms have been used both for encryption and digital
signatures. These are the RSA algorithm, ElGamal algorithm and Rabin algorithm
{10].

From a practical point of view, the major drawback of these three algorithms is their
slow speed as compared to single key systems. A compromise solution for the speed
problem is presented by merging the two methods, the public key cryptosystem for
key distribution and the single key cryptosystems (e.g. DES), for message encryption.
This hybrid approach has greatly improved system security as well as performance
[L1]. Hybrid cryptosystems, however, are not useful for all cryptographic applications,
e.g. digital signature. Thus, speeding up the public key system is still a vital research
area [1, 6, 12].

2.3 The RSA System

In 1978, R. Rivest, A. Shamir and L. Adleman, came up with an algorithm which can
be used for both encryption and digital signature. This algorithm was named RSA
Cryptographic System [2], and is widely considered as the simplest public key algorithm
[10]. This is due to its high security, relative simplicity and good performance. None
of the other public key algorithms is as widely used as RSA (1, 10, 17].

RSA’s security is based on the difficulty of the integer factoring problem, which
is known to be a very hard problem to solve [8, 9]. The popularity of the method
is due to the use of the same basic calculations of modular exponentiation for both

encryption and decryption [11, 13].

2.3.1 RSA Encryption

This system requires each user to have a public encryption key (e,n), and a private
decryption key (d,n). To encrypt a message, it should be represented as a sequence of
integers: m,,ma, M3,, with each m; being an integer in the range [0,n — 1]. Each
message' block m; is encrypted into a cipher text C;, using the public key: (e, n) as
follows:

C; = E(m;) =m;* mod n
In order to retrieve the original message m;, the private decryption key: (d,n), is used

as follows:
m; = D(C;) = C# mod n

2.3.2 Generation of the RSA Keys

Choose p and g as two random large primes [2]. Then, compute n as the product of
p and ¢: n = p x q. Note that n is made public, but its factors p and g are secret.
Hiding p and g, hides the relation between d and e. Next, compute Euler’s function:
#(n) = (p — 1)(g¢ — 1). Then, choose e (the encryption key), such that e and ¢(n)
are relatively prime, i.e. gcd(e,#(n)) = 1. Finally, d (the decryption key), can be
calculated by using the secret number ¢(n), such that:

exd=1mod¢(n)=1mod (p—1)(g—1)

It can be shown that d and n are also relatively prime integers [11].
From these calculations, we can conclude that the public encryption key is: e, n;

and the private decryption key is: d, n.

2.3.3 Example on Encryption Using RSA System

In the following example, sender A, wants to send the message: “HELLO ” to receiver
B. The sender needs to use the receiver’s public key:(e, n), for encryption. To decrypt,

receiver B, is required to use his private key: (d,n).

10

Receiver B, needs first to-make the initial calculations for his public key: (e,n), and
his private key: (d,n), as follows:

Let p=83 and ¢=37 = n=pxg=83x37=3071

&(n)=(p—1)(g—1) =82 x 36 = 2952 d="709 & e = 229

such that: e x d = 229 x 709 = 162361(mod 2952) = 1(mod 2952)

Accordingly, B’s public key is: (229,3071), and his private key is: (709,3071).

Using the convention “A”=00, “B”=01, , “Z"=25, and “(blank space)”=26.
Then, the message “HELLO ” can be represented as: “07, 04, 11, 11, 14, 26”. Taking
the message blocks as: m; = 0704, mo = 1111, m3 = 1426.

After that, the encryption key (229,3071) is used to compute:

C. = E(m;) = m,® mod n = (0704)?° mod 3071 = 2443.

Ca = E(m3) = my® mod n = (1111)?*° mod 3071 = 1629.

C3 = E(m3) = m3°® mod n = (1426)*° mod 3071 = 1556.

Thus, the cipher text to be sent by the sender A, will consist of the following sequence:
“24, 43, 16, 29, 15, 56”.

The receiver’s private key: (709,3071), is the only way to retrieve the message from
the cipher text. So to regenerate the plain text the receiver B needs to compute:
my = D(C,) = C? mod n = (2443)™° mod 3071 = 704.
me = D(C,) = Co® mod n = (1629)™° mod 3071 = 1111.
m3 = D(C3) = C3¢ mod n = (1556)7 mod 3071 = 1426.

As observed, the plain text “07, 04, 11, 11, 14, 26", is regenerated again representing
the message “HELLO ”.

2.3.4 The RSA Digital Signature Scheme

The RSA algorithm can be used as a digital signature scheme as well. For example, if
user A needs to send a signed message to another user B, he (user A) will use his own

private key to compute S as follows:

S = D(m) =m?mod n

11 °

User A will then send S, for B to verify A’s signature. To do this he needs to use A’s
public key; as the following calculation:

E(S) = E(D(m)) = (D(m))® mod n = (m? mod n)* mod n = m* mod n=m

This will generate the message m, only if user A has signed it and the message had
not been tampered with {2, 10, 11, 12].

2.3.5 Security of the RSA Cryptosystem

Decryption of RSA-encrypted messages by cryptanalsis is as difficult as factoring a
large number into its prime factors. An advice by Rivest [2], was to use at least a
100-digit integer for both p and q. This will let n have 200-digits or even more. Large

size keys, however, result in slower encryption and decryption.

2.3.6 RSA Speed

Some techniques are proposed to improve the speed of software RSA systems [12].
However, these techniques are still slower than hardware implementations [21]. Com-
pared to private key systems, e.g. DES, the RSA is much slower. The fastest reported
hardware has a throughput which is 1000 times slower than what has been reported
for the DES system [10]. Hardware speed, however, can be further improved by im-
provement in the technology used for hardware designs. More information regarding

RSA hardware implementations is given in the next chapter.

2.4 Summary

In this chapter, a general review of cryptographic concepts is given. Some examples of
traditional secret key cryptosystems are discussed. The public key RSA cryptosystem

has been covered in more depth because of its simplicity and popularity.

12 -

Chapter 3

| Review of RSA Hardware

Implementations

3.1 Introduction

Efforts to Implement public key systems in hardware began in the late 1970’s. These
early designs, however, were not practical because of their high cost, low speed and
inflexibility. In the past decade, however, implementing public key systems in hard-
ware has changed due to several factors [30, 51]. The most important factor is the
tremendous progress in technology. Millions of transistors can now be fit onto a single
chip. Another important factor is the tremendous increase in the number of computer
communication networks, e.g. the internet. Security of transactions conducted across
a network has become a vital issue to the reliability and success of these networks.
Public key cryptography plays an important role in this regard.

The RSA encryption algorithm is considered the most practical public key system
in use due to its high security and acceptable complexity compared to other public-
key techniques {1, 2, 10, 17]. Several hardware approaches for implementing the RSA
algorithm have been proposed [21, 23, 25, 29, 31, 42, 43, 44, 46, 47]. One approach uses
available digital signal processors (DSP) (25, 26], for this purpose. Another approach

13

uses several active memory chips programmed to perform the RSA algorithm [22].

An important implementation strategy is the design of custom integrated circuits
that are capable of performing the required modular operations. Since this offers the
best performance, our work will concentrate on this particular approach.

In 1989, E. Brickell [21], published a survey of hardware implementations of the
RSA algorithm. Ten different implementations were covered in this survey and their
encryption speeds were compared. However, such comparison is somewhat misleading
due to the differences in the fabrication technology of the different implementations.

Since the key RSA operation is the modular multiplication or more accurately the
modular exponentiation, different methods were developed to implement these modulo

computations. In the following section, some such methods are discussed.

3.2 General Techniques for Modular Operations

3.2.1 The Repeated Squaring Algorithm

inputs : E, M, N
where E>0 and O<M<N

result : X=MEmodN
n : number of bits in E

i>0 >% END g;:the il bitof E
yes
yes
M := (M.M) mod N e =1 X := (X.M) mod N

no

e I ———

Figure 3.1: The repeated squaring algorithm

Modular exponentiation can be computed through a set of iterative modular multipli-
cations or through a set of repeated squarings [21, 32, 33, 42]. The repeated squaring
algorithm is mainly performed by repeating modular multiplication a number of times
as the number of bits of the exponent. The bits of the exponent should be scanned

14 ~

starting with the MSB (most significant bit). Whenever it is ‘1’ a further modular
multiplication is to be performed, as illustrated in Figure 3.1.

The bits of the exponent if scanned with the LSB (least signiﬁcant bit) first, allows
for about 30% improvement in the average speed through the use of parallelism of the
modular multiplication processes [43, 46, 47]. This improved approach is shown in
Figure 3.2.

BEGIN inputs : E, M, N where E>0 and 0<M<N
result : X = ME mod N
n : number of bits in E

i=0 h
X =1 g:thei™ bitofE

multiplication can be
performed in parallel

Figure 3.2: The improved repeated squaring algorithm

3.2.2 General Modular Multiplication Techniques

Modular multiplication can be implemented in different ways. Residue number sys-
tems, for example, have been recently receiving more attention [34, 41]. Reported
implementations, however, have ignored important hardware implementation issues
particularly the need for conversion between binary and residue numbers. This has
discouraged researchers from using such an approach {35].

The straight-forward approach to compute modular multiplication is by performing
the multiplication and then subtracting the modulus several times until the result is
less than the modulus. This approach is inefficient and suffers from low speed. This
can, however, be improved by merging the mo‘dulo subtraction with the multiplication

add operations [43, 46, 47, as outlined in Figure 3.3.

15

Another approach is based on look-up tables, i.e. ROM-based methods [37]. This
method, however, is quite expensive since the required memory space grows exponen-

tially with the word size [35].

inputs : x,y and n
where X,y <n

result : P =xymodn

k : number of bits in x

x; : the it bit of x

Figure 3.3: The multiplication with reduction modified algorithm

In 1991, G. Alia and E. Martinelli [36], came up with a new method to compute
modulo multiplication. They found that their method is optimal to implement using
few fast VLSI binary-multipliers, compared with ROM-based methods.

An improved look-up table method was proposed by C. Wu and Y. Chon in 1994
[35]. This method depends on the use of look-up tables by specially designed block
multipliers, which are designed as a bit-parallel multiplier and a bit-serial one. It is
partly parallel and partly serial to get the advantages of both techniques. The parallel
multiplier results in high throughput rate and the serial help reduce power consump-
tion. The computing speed and the area of this modular multiplier is dominated by
the used adders [35].

In 1994, C. D. Walter [39], proposed a logarithmic speed modular multiplication al-

16 -

gorithm. This algorithm and its implementation will be covered briefly in the following
section.

In 1985, Peter Montgomery [24], proposed a new method for modular reduction
without regular division. His method was found to be fast [23, 24, 28], and suitable
for hardware designs [27, 29, 30, 31]. Montgomery’s multiplication method has been
widely adopted for use in exponential RSA implementation. Elaboration of Mont-
gomery’s algorithm will be given later this chapter.

3.3 Logarithmic Speed Implementation

A logarithmic speed modular multiplication hardware is proposed by C. D. Walter
[39]. It performs each modular multiplication for n — digit inputs in O(log n) time.

3.3.1 The Algorithm

The algorithm used for this implementation divides the operation of (A x B) mod N

into six computational steps as follows:
1. compute: A x B;
2. compute: 1/N;
3. compute: (A x B) x (1/N)

4. compute: fract((4 x B) x (1/N)); (fract discards the integer part of a real number
and returns the non-negative fractional part.)

5. compute: N x (fract((A x B) x (1/N)));

6. compute: rnd[N x (fract[(A x B) x (1/N)])]; (rnd rounds the real number to the

nearest integer.)

17

3.3.2 The Implementation

The three multiplication processes are computed sequentially on the same hardware,
with one clock cycle per multiplication process. Each multiplication process is per-
formed as repeated additions using the Wallace tree structure [48]. The reported crit-
ical path for a 512-bit multiplication process, contains around 40 XOR-gates. With
three required multiplications (steps: 1, 3 and 5 of the algorithm), a total of 120
XOR-gates delay is required for the three clock cycles needed. Note that step-2 of the
algorithm, computing (1/N), is assumed to be precomputed by software.

The reported area needed to construct such logarithmic time implementation for
512-bit numbers, is equivalent to 3 x 108 XOR gates [39]. In fact, this design stretches
current technology to the limit, but provides a great improvement in speed.

3.4 Implementations of Montgomery’s Algorithm

3.4.1 Montgomery’s Algorithm For Exponentiation

Modular Exponentiation steps
1. Loop: Fori = k-1 down to 0;

2. a'= MP(a’a");
3. lf e = 1 then x'= MP(x.2) Mortg wnm“'“

/ Initialization steps \
1. Choose R=2K ; where k = number of bits of @

accordingly R>N & GCD (R\N) = 1
2. Compute R-1; such that: R"1Rmod N = 1

- & = the ith bi .
8 0<R-1<N . Endet;re.. ej=theibitof e Procedure: MP(x.y)
3. Compute N' ; such that: N'=-N"1 mod R . P 1.P=x.y;
(0<N'<R) 2. U= P+N.(PN'modR) ;

3.8=UMR;

=

4. Compute a' & X’ ; such that a'=aR mod N

& ¥=1.Rmod N 4. MP=S (if S<N);
\ J Final step else:
Compute: x= MP(x',1) MP=S-N

Figure 3.4: Montgomery’s algorithm for modular exponentiation

For the RSA method, the problem to be solved is: z = a® mod N. Montgomery’s
technique will compute z without trial division. Figure 3.4, shows the steps to be
followed to perform this operation. Note that the mod R and division by R operations,
in the Montgomery modular multiplication procedure, can be inexpensively computed

since R = 2F.

18 ~

3.4.2 Montgomery’s Algorithm Hardware Designs

S. E. Eldridge and C. D. Walter [29], studied Montgomery’s modular multiplication
algorithm and proposed a hardware implementation for it. They compared Mont-
gomery’s method with earlier reported techniques and concluded that Montgomery's
algorithm is better suited for implementation. Based on this, they designed a faster
hardware which doubled the overall speed for the same number of clock cycles. Their
design, however, is practical only for moduli up to 1000-bits in length which is consid-
ered as a design limitation. Their implementation is constructed using a tree structure
of repeated units of adders that perform the multiplication process as repeated ad-
dition. This hardware model has a bottleneck of broadcasting the quotient digits
throughout the design [28].

C. D. Walter [28], further improved the previous design. The limitation on the
modulus was completely removed and the critical path was simplified to solve the
problem of broadcasting data all-over the hardware. This design [28], performs each
modular multiplication process for n-digits in O(n + log n) time, which is slower than |
the logarithmic speed implementation [39], proposed by the same author, as briefly
described in the previous section.

A systolic array for modular multiplication using Montgomery’s algorithm was
described by C. D. Walter in 1993 [27]. For n-digit operands, this implementation
requires 2n+ 2 clock cycles for the first output digit to appear after the first input digit
is fed to the systolic array. The implementation is constructed as a two-dimensional
array of n? cells. All cells are identical except for the cells on the rightmost column
which do not generate output digits. Each such cell performs two multiplications and
three additions, which required five XOR-gates, seven AND-gates, and two OR-gates,
assuming binary numbers representation.

For RSA applications, typical inputs have at least 500-bits. The number of cells
required is at least 5002, or about 4 x 108 gates. This large area stretches today’s

technology to the limit.

19

3.5 Full RSA Implementations

Many RSA implementations have beén proposed in the literature [21, 23, 24, 31, 42, 43,
44, 46, 47]. This is mainly due to the difficulty of obtaining high speeds at reasonably
reduced hardware cost. Furthermore, most of the reported implementations do not
provide enough information on the design details, e.g. [21, 27, 28, 35, 39, 44, 45].

H. Orup, E. Svendsen and E. Andreasen [47], presented an efficient RSA hardware
implementation called VICTOR, where they improved some earlier algorithms. The
modular exponentiation technique used is similar to the modified repeated squaring
algorithm shown in Figure 3.2.

The hardware processor proposed by F. al-Twaijry and S. Barton [46], describes
some techniques to speed-up the central computational process in the RSA algorithm.
Assuming that k is the maximum number of bits available for the RSA operations,
the time-consuming modular multiplication operation can be performed by a complete
integer multiplication of two k-bits numbers followed by modulo reduction of the re-
sulting 2k-bit product. In this design [46], however, modulo reduction is performed
at each step of the multiplication process as shown in Figure 3.3, such that the result
never grows beyond k + 1 bits. This design modification resulted in a reported 56%
increase in speed. The area of this high speed design [46], is the major drawback of
such an approach.

Another RSA implementation, proposed by Jorg Sauerbrey [31], uses a systolic
hardware for modular exponentiation using Montgomery’s algorithm. Since our work
targeted the design of an expandable RSA processor, the work of Sauerbrey seemed to
be a logical starting model for such a desiga. Modeling the implementation reported
by Sauerbrey has revealed that his design had a major flaw which makes it incorrect.
Details of that are clarified in the following section.

20

3.6 Systolic Arrays for Modular Exponentiation

In 1992, Jorg Sauerbrey [31], reported a systolic array hardware design that performs
modular exponentiation. This design uses two identical systolic arrays to build the
basic multiplier which can handle multi-bits operands.

3.6.1 Systolic Array for Multiplication

The systolic array consists of a set of identical cells that can process numbers in base
26 where b is the number of bits per word. The message M, is divided into I-words,
each representing a digit of b-bits. The minimum number of cells required to process
the I-digits is = [1/2] + 1.

The I-digits of the message M requires 2I-clock cycles to complete the multiplication
process. During the first I-clock cycles, digits of the two operands are fed serially to
the systolic array with the least significant digit being fed first.

The 2I-digits of the product will be produced serially one digit per clock cycle start-
ing with the least significant digit. Accordingly, each multiplication process requires
2l-clock cycles. Whereas the [-digits of the two input operands are fed during the first
[clock cycles, zeros are fed in the second l-clock cycles.

Figure 3.5 shows the interconnection and the input of the array when performing
the operation: p = z.y + ¢. The control input z signals the start of the multiplication
process. The behavior of each cell is described by the algorithm shown in Figure 3.6.

clock clock
operandsinbaseab l l l °
representation z . Y

0,eeeens 0,1—-—“)‘ 3 — 3 EE; z _i)
Ouens X e XX ™| — > o Sng | @ve | ot
0,..., YI-1»--V1-Y0__——>y"" coll |_gp| B2 [y, g [72¢1 Yin | xoyo| Yout
0.9/ 11-+ 1,90l ™ |l |- —> ol | BTty
g T - e - < €| | feutl P et

Figure 3.5: The systolic array

21

BEGIN LOOP

ﬂtateoftheceﬂ} Km;paﬁon of registers } ﬁuﬂdﬂgofintem\ecﬂate products }
CASEZ, Z, OF CASE Z, Z;, OF CASE Z, Z;, OF
0,0:2=0;Zyy=0 0,1:x8 =Xy ;Y@ =Yipy ; 0.1:Qgut=0:8=Xin * ¥in ;
0,1:2=1.Z54=0 1,0 OR 1,1: x0 =X, ; YO= Yins 1,0: Qout= Xin* Vi S = Xjp* Y@ + X8 o Y ;

100R1,1:Z=2;Z,4=0
200R2,1:2Z=3;Zyy=0
300R3,1:2Z=0; Zyy=1
ENDCASE

ELSE xt=Xin iVt =VYin:
ENDCASE
Xout = Xt; Yout =Yt:

ELSE Qquut=Xjn *¥O + X0 +¥jp:
S=XpeYye+X@«Yi;
ENDCASE

Pout = s mod 2b;

u=sdiv2’; 25 is the base in which
P=Pin: the numbers are
END LOOP represented

Figure 3.6: The algorithm for a cell behavior

3.6.2 Montgomery Reduction by the Systolic Multiplier

Montgomery’s reduction algorithm for the modular multiplication is:
MP(z,y,n,7) = z.yr ! modn

The algorithm can be rewritten to allow digit-wise processing of large operands as
follows:

(Note that z,y < n < r, 7 = 2" and ged(r,n) = 1)
1. nf) «— —n~! mod 2*
2.p — zy
3. fori = 0tol—-1do
4. begin

5. v; «— p;.nf mod 2° (p; is the i*® digit of the resulting product p)

22

6. p ~— p+v.-.n.2”"
7. end

8. return p/r; (if p/r < n) else return p/r —n

clock
operands in base 2 l l l
representation 7 Y
0,.....,0,1 110y, — N SS—
x.
0,..,0,nL4,..;Ng ——f 105 —_— —_ . —>
0,..0,@0’_)? Ying | celt 1 ol cel2 |5 .5l callk
Fumes
qo
0,poL1s-----sP1:P0Q Ele —> —3 oo s P
Pout 0
0,...,0,tq,t1,...,t Ceee
2 Otot ety 1 N - - - <
Himes

Figure 3.7: The systolic Montgomery reduction

The systolic multiplier performs steps 3 to 7, of the above Montgomery-reduction algo-
rithm. The rest of the algorithm is computed only once, and can thus be computed by a
software program. It is assumed that the product digits p; are available serially, and that the
factor ng has already been calculated. In this case, v; is computed by a single multiplier as
shown in Figure 3.7. The systolic multiplier receives this product (v;) and computes step-6,
of the Montgomery-reduction algorithm.

According to the algorithm (step-6), p is modified [-times throughout the for — Loop
(steps 3 to 7). The implementation proposed by Sauerbrey (31], which is shown in Figure
3.7, does not allow p to be updated as required by the algorithm, and accordingly does not
produce correct results. This has been confirmed by VHDL model simulation.

In conclusion, the output of the systolic hardware as shown in Figure 3.7, does not
match the MP-algorithm stated above. Sauerbrey [31], has proposed a complete Montgomery
modular multiplier based on the hardware described in Figure 3.7. This design is built from
two systolic multipliers as shown in Figure 3.8. The first systolic multiplier computes the
product .y (step 2 of the Montgomery-reduction algorithm). The computed product is
delayed by one clock cycle and is used as p in steps 5 and 6 in the Montgomery algorithm.

23

To get the correct result, the p; used in step 5 must be the one computed by step-6 of the

previous loop iteration.

clock 3
operands in base 2b ,
'represao o: F:),..;.;O)% N : systolic muttiplier
01---1yF1 ..-.y1 ,yo Y ’
0 =
0,...0,0L1,..Ng D systolic muitiplier
0,....0,n4"....ng" —10]
L
QePrtoty sty 1t
Kimes
clock —_:
z systolic -
[detay fiip-fiop x :; muitiplier =X.y+q
Y z:control
q <

Figure 3.8: Sauerbrey’s implementation of Montgomery modular multiplication

3.7 Summary

Several reported implementations of RSA-related hardware have been reviewed. Some are
for modular exponentiation, e.g.[31, 46, 47|, while others are for modular multiplication,
e.g.[27, 39], which is the most time consuming process in the RSA algorithm.

The major operation in the RSA method is the modulo exponentiation which is computed
by the repeated squaring algorithm. This repeated squaring algorithm can be improved
(46, 47], to perform the required two multiplications in parallel.

Different techniques have been used to calculate modular multiplication. One such tech-
nique uses standard integer multiplication followed by a modulo reduction, which is a time
consuming process [43]. Merging the modulo reduction with the multiplication can speed-up
the process, e.g.[43, 46, 47].

24

Another modular multiplication method has a logarithmic speed [39], but it uses a very
costly hardware. The algorithm used for the computation of zxy (mod n), is: rnd (fract((z x
y) x (1/n)) x n). Assuming that (1/n) is precomputed, this implementation must perform
three multiplications in sequence; first, (z x y), then (x xy) x (1/n), and finally (fract(z x
y) x (1/n)) x n. Note that the function: fract discards the integer part of a real number
and returns the non-negative fractional part; and the function: rnd rounds the real number
to the nearest integer.

A third modular multiplication technique is developed by P. Montgomery (24]. This
technique has been widely used for RSA bardware [23, 27, 28, 29, 30, 31|, because of its
practical speed and relative simplicity for VLSI implementation [24]. The hardware using
Montgomery’s modular multiplication [27, 31], is required to perform two multiplications
and one addition.

Several reported full RSA designs have been introduced. Detailed investigation of the
systolic hardware implementation proposed by J. Sauerbrey has found it to be incorrect. Our
thesis work is concentrated on finding a way to make an expandable hardware. This seemed to
be feasible using systolic arrays, such as the systolic hardware proposed by J. Sauerbrey [31]
(using Montgomery’s algorithm for modular multiplication). However, Sauerbrey’s systolic

implementation needs to be corrected and modified for expandability.

25

Chapter 4

A Hardware Model of an
Expandable RSA Cryptographic
System

4.1 Introduction

The security of the RSA cryptographic system depends on the encryption and decryption key
size. As the key size increases the security of the system is improved [2]. All RSA hardware
implementations, as reported in the previous chapter, are designed to accommodate fixed
key sizes. If larger key sizes are needed the hardware must be redesigned.

One of the goals of this work, is to develop an expandable RSA implementation where
duplication of well defined bit-sliced hardware will adapt the system to larger key sizes. To
incorporate such flexibility, hardware and performance overheads are expected. The proposed
expandable RSA system depends mainly on the systolic multiplier used by Sauerbrey [31].
This model has been redesigned and modified for expandability.

In the following, the basic systolic multiplier is described and the Montgomery product
algorithm with its implementation as well as modifications for expandability are detailed.
Next, modular exponentiation hardware is described and the architecture of the expandable
chip is given.

26

4.2 The Systolic Multiplier

clock
operands in base ab l l l
representation .

T 00,1 — — — > Zout o
0,...,X[_1 ,...X1 ,XO xin) e = o Xout >
0,...,yl_1,...Y1 ,yo___yﬂ’ cefl 1 —_ cell 2 —_— — 11241 Yout -
0,411+ q1’qo_—J>:' — —. —> Sout o
PP seeseeee P2/ <€ out ¢ — . <€— < Pin

Figure 4.1: The word-serial multiplier (systolic array)

The systolic multiplier is made of a set of cascaded identical cells connected as shown in
Figure 4.1. This systolic multiplier can perform the operation: p=z.y +¢,ina word-serial
manner. If z,y and g have l-words, where each word represents a digit in base 26 the time
required for a complete operation is 2l clock cycles [31]. Note that the base can be any power
of 2 number, and b is the number of bits in each word. The input z of the systolic multiplier
is a control signal which indicates the beginning of the operation. To multiply two operands
of I-words, the number of cells required by the systolic multiplier is [1/2] + 1 [31].

This systolic multiplier is chosen because of its expandable capability. Figure 4.1, shows
a multiplier for [-digit numbers. If the numbers to be multiplied are increased in size to
2l-digits, the only required modification on the design is to add another identical systolic
multiplier in cascade, as shown in Figure 4.2. Clarification and modeling of each cell in the

B o A e — ~.

2, AN
s clocd N
! 3
: Y :
‘ > — —. —> > > [—>. —»] !
[} '
: s e e ol oql P~ . > cat :
: Vln' cot1 | loms2 | o _)tre > calt | lcel2 |)26 :
' B —> —>. —> > — . —] H
! Pout | ’ > > : '
R - | — - - — -] PR '
: Systolic multiplier for /-words Systolic multiplier for /-words '
A ’

N Expanded systolic multiplier for 2l-words e

. e e " > - - = - - > > " > = > S P S T T e e N e Ee - wnm———-=

Figure 4.2: Expandability of the systolic multiplier

27

systolic multiplier is given in the following subsection.

4.2.1 The Basic Cell of The Systolic Multiplier

— 2ot P

— Xout 3

e Y 0t I

== q out I~

& Pin —

Zout:==22 AND Z1 = Zin >
Z2=7Z1 XOR 22 -—z 2 Yo xep{
— dock 31> — dock 3> ZZL=ZIAND(ZaOR Z2) | Zou 3~ —Z1 You
eaz="'l" e X @ =3~
Yo =P Xo P
-— 20 e 2 2 — X iy P S
> -—nz)@—zz-» > o>
— 2 =P —Yin P Yi=p Xt o p=—Xo
-— Yinn e ¥ 0 <P
— X i S =z <D 21 en_g = 22" AND Z1° AND Zin
-—adx-)>u.-22’ANDZl Xout = Xt
—— e
—] -
CIAND Yin ’ C3AND Yo
— Xin €3 ANDO Xin
—an B =i 3t YO Doz C3AND Xs u?:-lvh = Pas
—zn - O - (8_out mod 2)
J czf C4 AND Xo gn=P>
—T 2 =P i Adder pee §_onst
—Z1-» C4 AND Yin .
—Xa =P P=3m w
EP = e o o X X (S_out div 2D
— X0 "
—voap| L A00ER | ADDER
=1
=S — qout pin 0 Edge Trig. Register
“€qoust ={ C1:s22° AND Z1° AND Zin C3:= NOT C1 enabie function
C2:= Z2 AND Z1 AND Zin’ C4:= C3 AND NOT C2

Figure 4.3: Hardware design of the cell

The basic cell of the systolic multiplier is designed to perform the algorithm shown in Figure
3.6. This design is mainly built up from the following:

e Four b-bit parallel multipliers.

Three adders.
Ten different registers.

Two multiplexers.

Some simple gates: ten AND gates, two OR gates and an XOR gate.

The b-bit parallel multipliers are needed to compute the intermediate products required

at each cell. More information about the b-bit parallel multiplier is given in the following

subsection.

28

The registers used in the cell are enable-high positive edge triggered, i.e. if the enable
function (en) is high, the register will load data at the rising edge of the clock. The registers
in the cell (Figure 4.3) are classified into three types according to their size. The first type
is single bit registers, e.g. Z2 and Z1, which control the state of the cell. The second type is
b-bit registers, where b is the number of bits in each word. There are seven registers of this
type: xe, ye, xo, yo, xt, yt and p. The last type of registers has (b + 2)-bits, e.g. u. The
extra 2-bits are added to account for the carry after addition, e.g. S-out:=S+qin-+u-+p.

4.2.2 The b-bit Parallel Multiplier

Each cell of the systolic multiplier has four parallel multipliers that perform the required
multiplications for that specific cell. Each parallel multiplier is designed to multiply two
words, of b-bits each, in parallel. Figure 4.4, shows an example of such parallel multiplier
for 4-bit words.

The complexity of the parallel multiplier varies depending on the size of the word (b). In
general, the required multiplier hardware can be stated as function of the word size (b), as

follows:
1. 5% 2-input AND gates.

2. b Half-adders.
each half-adder is constructed using an XOR gate and an AND gate.

3. b2 — 2b Full-adders.
each full-adder is constructed using two XOR gates, two AND gates and an OR gate.

4.3 Montgomery Product Design

Peter Montgomery [24] in 1985, came up with a smart method to compute modular multi-
plication without trial division. His method to compute:z = z.y mod N, can be summarized -

in the following:

1. Choose R > N such that R = 2%, where k is the number of bits in N,
accordingly R is relatively prime to N.

29

Owo [Hatrcter [7] Futactir /a-aa-m_,.-"amm

% a2 a4 L]

Figure 4.4: Hardware design of 4-bits parallel multiplier

2. Transform z and y to =’ and ¢ (Montgomery’s-representation),

where 2 = tRmod N and y = yRmod N.
3. Calculate Montgomery-product : 2 = MP(z',y) = 7'y R ! mod N.
4. Transform 2’ to the normal representaticn z, i.e. z = ZR™! mod N.

Steps 1, 2 and 4 can be calculated through a software program since they need to be
computed only once. However, step 3, i.e. MP(x’,y’) is repeated to perform exponentiation

and it can be calculated as follows:
1. P=2'x¢;

2. U=P+ N x (P x N' mod R);

w

. S=U/R;
4. MP=S({EfS<N) or MP=S5-N (if S>N);

By choosing R to be a power of 2 number (R = 2%}, mod R and division by R operations
can be computed inexpensively. This method to compute MP(x',y’) can be organized in a
serial manner, as shown in Figure 4.5. This algorithm is well-suited for a systolic multiplier

implementation similar to the one described in the previous section.

30

BEGIN —> i:=0; inputs : x,y N &Ny’ ;
Y R=2" ;gcd R, N)=0;
0 { : number of words in N;
P():—X Yy, 20 : base of numbers: x , y & N;
output : MP(x, y) ;
N0, MP(x,y) :=P® /R ;}>t END
yes

V; := PO N’y mod 2b;

P(HT) = P(i) + Vi .N. 2bi;

Y

i=i+1;

Figure 4.5: The MP-algorithm (Montgomery Product)

4.3.1

Montgomery Product Implementation

To implement the Montgomery product algorithm (Figure 4.5) using the systolic multiplier

shown in Figure 4.1, a signal flow graph is developed to describe the fow of data. The signal

flow graph for a 4-word number is shown in Figure 4.6.

Note that two types of processors are required, one is a parallel multiplier, and the other

is a systolic multiplier. The output starts coming out after 2! clock cycles. However, the first

I-digits of the output will be discarded to account for the division by R, and accordingly the
MP result will be serially computed after 3! clock cycles.

The hardware implementation derived from the signal flow graph (for [= 4 words) is
shown in Figure 4.7. The full MP result will be available after 4! clock cycles. Two types

000000Ny’
N3N, Ny Ny

POBORORD

Pgt) #4)%4)

X

y

X
v—pé—»::'ymodzb
: base of numbers X & ¥

2b

Figure 4.6: The signal flow graph

31

of registers are used for proper data synchronization: T and 2T, which delay data by one
and two clock cycles respectively. The overall number of registers required for an [-words
design is (6] — 3). The number of parallel muitipliers used is [, while the number of systolic
multipliers used is ! + 1. The extra systolic multiplier is not shown in Figure 4.7, but it is

necessary to compute p(o).

p(i+1) .= p(i)4p(i) N7 mod 2b].N.2bi;/, TN

Delay of a clock cycles

X

Y—»é—»xwmodz"
2b:b¢.t¢ofnumb¢rxx&y

Figure 4.7: The signal flow graph MP implementation (parallel hardware)

p(M p@ p®

4.3.2 Expandability of the parallel MP Implementation

To expand the design shown in Figure 4.7, not only should the number of systolic multipliers
be increased, but also the size of each systolic multiplier must increase. This is due to the
fact that the number of cascaded stages of the systolic multipliers depends on the number
of words (I). Thus, such design does not allow regular linear expandability.

For example, if the design needs to be expanded to handle 2I-words, the expansion is
performed in both horizontal and vertical directions. The horizontal expansion is to let the
number of systolic multipliers increase to 2!, while the vertical expansion is to add hardware
to each systclic multiplier to accommodate 2/-words instead of I. Thus, expandability for
such architecture is not linear (Figure 4.8). This makes developing a standard expandable
chip, using this approach, unachievable.

32

- - - oy
-

=TTl

-------‘

Figure 4.8: Expandability of the parallel 1molementa.t10n

4.3.3 The Expandable MP Design

For linear regular expandability of the MP implementation, the design must be reorganized
for serial instead of parallel processing. This can be achieved by projecting all systolic
multipliers into one and projecting all parallel multipliers into one, i.e. using only one
parallel multiplier and one systolic multiplier for the whole process as shown in Figure 4.9.

L 4 >
P o 71 o177l Izl =y
N) LTJ ‘| 'Lzﬁ 'LEJ 'Lzl.l
000 Ng— . o 1}
t
" "
' t
1 '
' '
' '
' '
' '
' '
' '
©0) —1—4)
P . s pY p@
- ' d

Figure 4.9: Projecting all parallel and systolic multipliers into one

The following example clarifies this idea. Assuming that [= 4-words, and p(® is pre-
computed, let the words of p(?) be fed in a word-serial manner to the projected processor
and the outputs be saved in an output register, as shown in Figure 4.10. After 2[clock
cycles all words of p{!) will be available in the output register. Then, pV) is serially fed to
the processor with the other inputs N and Ny, properly synchronized. After additional 2!
clock cycles, all digits of p‘?) will be available in the output register. Likewise, p® and p¥)
are computed using the same procedure allowing 2l clock cycles for each.

The time required for each p{i+!) to be available at the output register is 2/+1 clock cycles,
including an extra cycle for proper synchronization. The digits of N must be synchronized
to those of p() and delayed by two more clock cycles. The single word V; (Figure 4.5)
is calculated using a parallel multiplier to multiply Ny with p(9 and discarding the most

33

‘y+
q y+q

I'_'l::q s 1 i '
N » T —IReg:sterholdingNﬁ 2%)‘

C
. | h-hi . O
000N, — » b-bits register holding Nﬁ N
T
. R —{t}—>
Registers o Delay of a cock cycies
L
X
e 2dply ———> L |
p Theoutop::tregistar E y x*y mod 20
sl R \Zb:ba.nofmtbﬂ:xy

Figure 4.10: The expandable serial MP implementation

significant word.

Figure 4.10, assumes that p(® is already computed. However, to compute p(? with the
same hardware, additional multiplexors should be added in the controller and more time is
required to complete the process.

To allow for expandability, the controller is organized using shift registers and multiplex-
ors, to make the registers expandable, as shown in Figure 4.11. The systolic multiplier is
made expandable by passing its cascading signals as external interface signals as shown in
Figure 4.2.

- e o wr W —» — — w a wr ms En e e wn e En o w way,

—ZP%t 5, I" Shift Register for Fwords

I
]
output Mux : E

- P]
Orignal Texpand{ texpanded

registar control g i not expanded ‘« .

- e e e - -

e an e e . e e e W eh wn W o e W =

Figure 4.11: Expandable shift registers design

Note that the basic processor chip differs from its expansion. In the expansion chip, the
b-bit parallel multiplier and some registers are not needed. Thus, the complete design can
be organized as the basic MP-processor and any number of expanded processors depending
on the required key size, as shown in Figure 4.12. The basic MP-processor for a key size of

l-digits, consists of the following:

e A systolic multiplier

Ten multiplexers in the data processor

Three registers of b-bits in the data processor

A parallel multiplier

e Seven multiplexers in the controller

e Six registers of b-bits in the controller

The expanded MP-hardware for an added I-digits consists of the following:
e A systolic multiplier

e nine multiplexers

e nine registers of b-bits

For a key size of [-digits, the overall time required for completing the MP-process and
start getting MP output is: (2/ + 1)(I + 1) = 212 + 31 + 1 clock cycles.

Basic
inputs MP

Proc-
essor

MP-result «—4

Figure 4.12: The expandable MP system

4.4 The Modular Exponentiation System

The modular exponentiation system uses the improved repeated squaring algorithm shown
in Figure 3.2. This algorithm can perform the two required modular multiplications in par-
allel. It is also applicable for the Montgomery modular multiplication with some additional
pre-computations. These pre-computations transform the numbers from its ordinary rep-
resentation to Montgomery’s representation. The algorithm used for Montgomery modular
exponentiation is shown in Figure 4.13. Note that the initial computation of X is to be
computed in software. The rest of the algorithm is more efficiently performed in hardware

because of the excessive number of required repetitions.

35

BEGIN inputs :E,M,N,R
where E>0 , 0<M<N<R and gcd(N,R)=1

o resutt : X = ME mod N
X :=R mod N k:numtzrofbiblns
o : the i bitof E

0 no X:=MP(X1) |—3f END |
yes

0 yes X=MP(X, M) |
no

[M:=MP(M, M) |<._
Y
=il]

Figure 4.13: The Montgomery modular exponentiation algorithm

4.4.1 The Basic Exponentiation Processor

For highest speed, the algorithm shown in Figure 4.13, is implemented using two MP-
processors to compute: X and M in parallel. A controller is built up of eleven multiplexers
and a register to hold the bits of the exponent E. One multiplexer is used to control the MP-
processor updating the X-value, depending on the values of the exponent bits. Nine other
multiplexors are used for the reason of loading and processing data. One more multiplexer
is needed for allowing expansion of the register holding the exponent E.

The basic blocks of the exponentiation processor are shown in Figure 4.14. If the basic
processor is to be expanded, an expansion unit is designed to be connected to it. Note that

the controller, of the basic processor, is expanded by only expanding the exponent register.

Exponent Register)
inputs comr;ué allc;:)vring
t[(M)MP-procmor > e:tl)’:l’in;‘
oSt~ [OMP-processor)

Figure 4.14: The basic exponentiation processor

36

4.4.2 The Expansion hardware

Figure 4.15, shows the proposed expansion chip when the number of digits is to be doubled.
For example, if the basic chip can handle I-words, adding this expansion hardware will allow
processing of 2l-words; i.e. each added expanded chip will let the design accommodate an
additional l-words.

f Expanded A
t Regist .
input) Exponent Register allowing
for Expanded for more
expand— (M)MP-processor expand-
ability Expanded ability
9 (XO)MP-processor)

Figure 4.15: The expansion hardware

Each expansion hardware incorporates two expandable MP processors and a register to
accommodate the expandability of the exponent, as shown in Figure 4.15. The two expand-
able MP modules are completely identical and will be clarified in the following subsection.

4.4.3 The Expandable MP Module

The idea of expandability is mainly that of expanding the systolic multiplier and expanding
the registers. Expanding the systolic multiplier is performed by adding another systolic
multiplier with [I/2] cells to accommodate the multiplication of numbers with 2/-words, as
shown in Figure 4.2. Expanding the registers is performed by adding more shift registers as
shown in Figure 4.11.

For the expandable MP module, four additional registers are required for the data path
and five are needed for the controller. These nine registers require nine multiplexors to allow

for further expandability, as shown in Figure 4.16.

4.5 Summary

In this chapter, a new hardware model of an expandable RSA cryptographic system is pro-
posed. The new hardware corrects the problem in the design reported by Sauerbrey [31],

37

Figure 4.16: The expanded MP module

in addition to allowing for its expandability. Targeting the maximum possible speed, the
used exponentiation algorithm allows parallel computation of two Montgomery product at
the expense of added hardware.

38

Chapter 5

Other Implementations

5.1 Introduction

The hardware model of the expandable RSA cryptographic system, as proposed in this
Thesis, has been described in the previous chapter. For comparison purposes, two other
RSA designs have been modeled. They differ mainly in the techniques used for implementing
modular multiplication. In both cases, the modular exponentiation algorithm is the same.
These two implementations are the merged exponentiation hardware and the add/subtract

exponentiation design {24, 43].

5.2 The Merged Exponentiation Hardware

The merged exponentiation hardware depends on Montgomery’s technique for modular mul-
tiplication. However, Montgomery’s multiplication algorithm is reorganized to merge the
multiplication with reduction for each digit. This algorithm was found to be the best among
several other merged algorithms compared for both speed and hardware complexity, as out-
lined by C. K. Koc in 1996 [24]. It deals with large numbers by dividing them into [-words
(digits) with each word having b-bits.

39

5.2.1 The Merged Montgomery Product Algorithm

The merged Montgomery product (MP) algorithm is shown in Figure 5.1 [24]. The algorithm
computes: MP(z,y) = zyr~! mod n, where: r > n > z,y and gcd(r,n) = 1.

1 t:=0;
F 2 fori=0 toHl
3 c:=0;
g 4 forj=0to F1
5 (tzj)s)-—t(nu(i)-ymm;
e e 6 t@i)=s;
Mulnphcanon< '
7 end for ;
L ’
P 8 (cS):=th+c;
9 H):=s;
- |10 t(&1) :=c ;
Outer
Loop r 11 c¢:=0;

12 m:=t(0).n"(0) mod 2P ;
13 (c.s):=t(0)+mn{0) ;

14 for j=1to F1
Reduction < 15 (cs):=tG) +mn() +c
Loop 16 t(j’1) =S5 ,
17 endfor ;
18 (cs)=th+c ;
k |19 HF):=s
20 tHh=tH1)+c ;
21 endfor ;

Figure 5.1: The MP merged algorithm

It can be observed (Figure 5.1) that the MP algorithm consists of an outer loop and
two inner loops. The outer loop controls the loop-index ‘i’ which fixes the multiplication
operand ‘y(i)’ for the inner first loop. The two inner loops represent the multiplication
and the reduction operations. The multiplication loop performs a digit-wise multiplication
of ‘y(i)’ by ‘x’. The MP-algorithm of Figure 5.1 assumes that all digits of ‘¢’ will be first
computed by the multiplication loop, then these digits are processed by the reduction loop.

Careful study of the above algorithm shows that the reduction process does not need to
wait until all digits of the multiplication process are computed. Accordingly, the two inner
loops can be merged into one inner loop in such a way that each digit of ¢ computed by the
multiplication process is passed to the reduction process in a digit-wise manner. It can also
be observed that the multiplication loop runs I times (0 to I-1), while the reduction loop runs
[-1 times (1 to I-1). To accommodate this, several conditionals are used within the body of

40

the merged loop whose index is made to vary from 0 to I. The reorganized MP-algorithm is
shown in Figure 5.2.

1 t:=0;
(2 for i=0 toFt
3 c:=0;
4 forj=0to/
Multiplication 5 If j < Ithen: {(c,s) :=t () + x (f).y {i) +c;
process unit 6 t@)=s}:
7 if j = Ithen: {(c,s) :=t(j) +C ;
8 tG) :=s;
9 t(+1) =c}.
Outer . . AL
Loop - 10 [Ifj=0then: {c,:=0}
11 m:=t(0).n'(0) mod 2b ;
12 Ifj</then: {(cnsp) :=1() + m n@)
Reduction 13 If j > 0 then:{(c,,S,) := (CSy) + Cp ;
process unit 14 tG-1):=s; }}:
15 Ifj=/then: {(c.s;) == t(i) +¢p
16 tG-1) :=s,
L - 17 tG) :=tG+1) +c; }:
18 endforn;
19 endfor _;

Figure 5.2: The reorganized MP merged algorithm

In the MP-algorithm shown in Figure 5.1, the same sum and carry (c,s) variables are used
for both the multiplication and the reduction loops since both loops are disjoint. However,
in the reorganized algorithm (Figure 5.2), different sum and carry variables are used for the
multiplication and the reduction processes.

It is to be noted that, the reorganized MP-algorithm shown in Figure 5.2 is more efficient
in terms of hardware cost. It does not require registers to hold the intermediate values of ¢,
computed by the multiplication process. A general implementation model of the reorganized

MP-algorithm (Figure 5.2) is shown in Figure 5.3.

5.2.2 The Merged MP Implementation

Considering Figure 5.3, the implementations of the multiplication and the reduction units

are described in the following subsections. The controller and the data path are shown in

41

inputs

result<«—t

Figure 5.3: The MP merged algorithm implementation model

Figure 5.4 with their connections to the multiplication and reduction units.

The controller consists of a shift register and two OR gates. The data path is mainly
made of data registers and multiplexers. Mux-1 and Mux-2 are for loading new values of
inputs. Mux-3 resets the register to zero at the beginning of the process. Mux-4 is to perform
step 1 of the MP-algorithm (Figure 5.2). The size of the shift register following Mux-4, is one
stage less than the shift registers following Mux-1 and Mux-2. This is done to accommodate
the loading required in steps 14, 16, and 17, of the MP-algorithm (Figure 5.2).

The signal ‘start’ triggers the complete MP-process. Loading the values of z,y, is con-
trolled by signal ‘load’. Another data loading signal is ‘nload’, which is responsible of
loading the modulus n. Although the number of clock cycles required to load the input data
z,y and n is the same, two different loading signals are used, namely ‘Ioa.d; and ‘nload’.
This is due to the fact that data values of z and y change depending on the message be-
ing encrypted/decrypted, while the value of the modulus n is fixed depending only on the
encryption/decryption key.

The multiplication process requires multiplying each digit of y by all the digits of z, as
shown in Figure 5.2. Fixing a digit of y (y(3)) for each multiplication process is performed
with the use of an enable-shift-register, i.e. shifting the digits of y is enabled only once for
each outer loop iteration. The digits of z are fed and rotated through the use of a shift
register and Mux-1. The signal ‘z;’ indicates that the output of the multiplication process
(tout1) is computed for this y-digit. The bus toue1 is passed to the reduction unit as ‘tin2’.
The reduction unit will process the data values of t;x2 as well as the fixed digit of ng. The
signal ‘zp’ indicates that the result of the reduction process using this digit of y is available
on ‘toue’. This data value (£ou2) is then fed back to the multiplication process as the bus
‘tin1’ to update the value of ‘t’, as required by the MP-algorithm shown in Figure 5.2. The

42

signal ‘zoy:’ indicates that the final result value is found at ‘t_out’ and that will end the MP

process.

Data Path

ck s CK Pt .
v 5 '. z_start —» Multlp-
PR —’,uu-n——i T I-I —>! lication

unit

Figure 5.4: The merged MP multiplier implementation

5.2.3 The Multiplication Loop Implerhentation

Result-«—

Figure 5.5: The multiplication process implementation outline

Steps 3 to 9 of the MP-algorithm shown in Figure 5.2, form the multiplication process. The
function of this process is to cumulatively compute the product digits of zy into t. The
implementation for this multiplication process is constructed using a controller and a data

path as outlined in Figure 5.5.

43 -

Figure 5.6 shows the components and connections of the controller and the data path
in a detailed manner. The multiplication process computes the product values of ¢, by
multiplying the y-digit by all the digits of z.

...
- .

tln

»{1 -
= AT

Adder [€cint —0

y b |- c_outl
—pt! t4-xy—<<——l
: : 0
t“m_v}’_,.g | 4 Mux-1 ——P—eathertortq-xy—-—->>7’
. -—»—CT
: b+1
: P _r-b{ \ 4
: €~ c_in2 ——
: 0 4
ow 5[] 4 p er 07y 1=
- 7 2 Ol <
Mux-2
I &+ (c.s) 1le
S
g 1| .. B P pyreo

Figure 5.6: The multiplication process implementation

The controller is mainly a shift register that has a control signal ‘start’ to trigger the
process. The output of this shift register controls the hardware to perform step-7 and step-8
of the MP-algorithm (Figure 5.2). The flip-flop following the shift register controls step-9
of the MP-algorithm. The required number of iterations is (I + 2), where [is the number
of words (digits). The first l-iterations allow the hardware to perform steps 3 through 6,
followed by an iteration to perform steps 7 and 8. The iteration number (I + 2) performs

step-9. The signal ‘z,y,,’ is an indicator that the result is ready.

5.2.4 The Reduction Loop Implementation

The reduction process hardware performs steps 10 to 17, of the MP-algorithm shown in
Figure 5.2. The hardware is made of two main parts, a controller and a data path. The

44 -

controller consists of a shift register and a simple OR gate. The data path is constructed
of two parallel multipliers, three multiplexers and two adders. The connections between the

controller and the data path are detailed in Figure 5.7.

Data Path > }‘ LI

T F[’:b/ m ! >> J }4-0

load > "‘T_b Mux-1 0 b o
n m)
t - , o ' b load 2b

Parallel
Multiplier

b

No

’ Parallel b+l
n
=L 4 L Multiplier >

b 2b F
n I
—_— b

b l—c_in-—0] 4

Adder

~— c_out1
N mn+t —b»————r
_out _ ") 5 ;—"
Mux-3 _»7;—
t>f1

Controller :
> . cout2 | ‘
L_._)D

I -
. (I [fe——Iload - 4
°. shift register -

Figure 5.7: The reduction process implementation

The two parallel multipliers compute ng (step 11 in the algorithm) and mn (step 12).
The value of ‘m’ is the first b-bits of (tng) because of the mod 2% operation (step-11). Fixing
‘m’ during the rest of the loop, is achieved by Mux-1 which is controlled with signal ‘load’.
The signal ‘load’ is ‘1’ only at the first iteration indicating the start of the reduction loop
process.

The output of the shift register is ‘0’ for the first (I — 1) iterations, allowing the design.
to perform steps 10 to 14, of the MP-algorithm (Figure 5.2). Then, when the output of the
shift register is ‘1’, step-18 is performed, followed by step-17. The signal ‘zoy:’ indicates that

the result is ready.

5.2.5 The Merged Exponentiation Implementation

The merged Montgomery exponentiation algorithm is similar to the repeated squaring al-
gorithm shown in Figure 4.13. The modular exponentiation hardware is constructed of two
MP-multipliers, a controller and a shift register that stores the exponent, as shown in Figure
5.8. The components required for the controller are seven multiplexers, seven shift registers
and four simple gates.

The time required to load the data is [+2 clock cycles. The time required for the first
result digit to be computed is 13 4+412+41-2 clock cycles. The complete result needs additional

I clock cycles to be performed.

Montgomery

Modular
inputs e Multiplier
ponent “ Controller MP

Register

Montgomery

Modular
Multiplier

Figure 5.8: The merged modular exponentiation hardware

5.3 The Add/Subtract Exponentiation Design

The add/subtract design deals with the input data as a single number rather than a multi-
precision one. Accordingly, the hardware is designed to process all the bits, without dividing
them into smaller size words (digits). The multiplication and reduction are performed as
addition and subtraction, as shown Figure 5.10. This algorithm has been compared with
other add/subtract algorithms, in terms of the required number of clock cycles and it has
been reported as the best one [43].

The algorithm is used mainly to perform: z.y mod n, which is modeled in hardware, as
shown in Figure 5.9. In the following section, the modular add/subtract reduction unit is
described.

46

5.3.1 The Add/Subtract Reduction Unit Implementation

The add/subtract reduction unit implements the algorithm shown in Figure 5.10. This
algorithm has three comparisons which are modeled in hardware using the multiplexers:
Mux-1, Mux-2 and Mux-3.

The imultiplication of ‘p’ by 2 is performed by simply left-shifting the bits of ‘p’, and
adding a zero-bit as the LSB (least significant bit), as clarified in Figure 5.11. This shifting
process causes the result ‘2p’ to be (b + 1)-bits, which requires (b + 1)-bits subtractor to
perform the (p — n) operation. An extra zero-bit is appended to ‘n’ as the MSB (most
significant bit). The result is the b-bits coming out of Mux-3, ignoring the MSB, as shown
in Figure 5.11.

5.3.2 The Add/Subtract Multiplication Implementation

The modular add/subtract multiplication implementation is outlined in Figure 5.9. The
reduction unit is modeled as explained in the previous subsection. The register shown in
Figure 5.9, is to hold the input ‘x’ and process its bits serially starting with the MSB. The
controller is built of a multiplexer, a data register and a shift register. Figure 5.12 shows the
reduction unit as a block and clarifies the controller and the register with their connections
to the reduction unit. The signal ‘load’ indicates the loading state for the input data values.

For example, the number ‘x’ is loaded at one clock cycle to the parallel load shift register.
Then, it is processed bit by bit with the MSB first, as required by the reduction unit. The
values of ‘y’ and ‘n’ are fixed during the loop. ’fhe signal ‘zou’ if ‘1’, indicates that the
output of the modular multiplier is completely computed.

- X
inputs el e I8
ey
result «s—

Figure 5.9: The add/subtract modular multiplication hardware

47

inputs : x,y and n
where x,y <n
resulft: P=x.y modn

k : number of bits in x
x; : the ith bit of x

"°yes END |

Ms8

' 1

Mux-ZO
1
fxi
- J 1 N
Result 2 1 bel - t o ‘

- / ignored

Figure 5.11: The modular add/subtract reduction implementation

48

ck—> | A
- load~> X =l
X b ang) parallel load shift reg. MSB-first egls: : '.Reduction
v | el e :x‘ unit
b ‘. >
nln |---TTETEEIIIIIooniooiiiiopeesmoo oo .
p<.7z E‘—p— Mux1:_0—|ﬁ:4_

Zout -t

&
A
LI_\
o
s
g
&
0
Q
2
X
S:i_--

Figure 5.12: The modular add/subtract multiplication implementation

5.3.3 The Modular Add/Subtract Exponentiation Implemen-
tation

The modular exponentiation: X = MZ% mod n, is performed by the modified repeated
squaring algorithm shown in Figure 3.2. To implement this algorithm, the requirements are:
two modular multipliers, a shift register (to hold the exponent), and a controller, as outlined

in Figure 5.13.
Exponent Register
inputs Controller
_(I\TD%-Multiplier
result <e—— (X)Modular-Multiplier

Figure 5.13: The modular exponentiation outline

The exponent parallel load shift register is to load the exponent ‘E’ at the first clock
cycle. Then, the exponent is processed bit by bit, with the LSB first.

The controller is structured from: two delay registers, four simple gates, and four mul-
tiplexers used for the loading purpose. Figure 5.14, shows the connections of the controller
and the two modular multipliers.

49

The signal ‘loading’ is to enable the shift register. It indicates that the complete modular
multiplication process is completed, and a new e; value is required.

The flip-flop enabled with the signal ‘load-x’ is to store the result of ‘zoy:’, if the exponent
bit e; is ‘1’. While the other flip-flop enabled with the signal ‘loading’, is to store the new

M when ever it is ready.

z_load := load OR loader
loading := z OR load v
load_x := loading AND (e; OR load)
ck—»t z_load —>»
I X b
Mux-2p—»t FF ——>¢
oad - M—g(—b M—> Mux-1 YT Modular
oa
b ﬁoad loading ﬁoad y | Multiplier
Z.
b 7 n 74.)
X A E .
| =
M 7 load=>{parallel load shift reg. LSB-first]
b (0] —-)ei P
N 5 enable z_load-;)
c 72; loading . Min4 Modular
 Mux-4}——»1 FF [——>r "
X X Mux-3r—7— Xin _b, Multiplier
5 Poad toali x Noad >
result-<e—~ Xout —
-—

Figure 5.14: The modular add/subtract exponentiation implementation

5.4 Summary

Two modular exponentiation implementations are described in this chapter. Both of them
use the repeated squaring algorithm for modulo-exponentiation. However, the techniques
used to compute modular multiplication are different. One implementation is based on Mont-
gomery’s method for modulo multiplication but by merging the multiplication and reduction
processes together. The other modulo-multiplication method is basically transforming the

multiplication into addition and the reduction into subtraction.

50

Chapter 6

Modeling and Analysis

6.1 Introduction

The expandable RSA hardware is modeled using VHADL (Very high speed integrated circuits
Hardware Description Language), to be verified and simulated. The developed VHDL model
is parameterizable in terms of the number of words (digits) and the size of each word in the
encryption/decryption key. In addition to the expandable design, two other implementations
are modeled using VHDL. Both models are also parameterizable.

The algorithm used for modular exponentiation in all designs is the modified repeated
squaring technique, shown in Figure 3.2. The methods used to compute modular multi-
plications are, however, different. One modular multiplication approach uses Montgomery’s
method, as in the expandable hardware, but with merged multiplication and reduction steps.
The other design merges multiplication and division through a repeated addition and sub-
traction process, performing the algorithm shown in Figure 5.10.

In the following sections, estimates of the area, speed and total cost of each of the three

designs will be developed and compared.

6.2 Implementation Area

The exact area of any design depends on the minimum feature of the used technology.

However, for technology independence, the number of transistors is chosen as an area measure

51 -

[50].

Gate Type

Number of Transistors

NOT (Inverter)
NAND
NOR
AND
OR
XOR

0 O D W s N

Table 6.1: The number of transistors building the basic gates

Basic Components The Building Logic Number of Transistors
Half Adder (HA) XOR + AND 14
Full Adder (FA) 2 XOR + 2 AND +OR 34
D Flip-Flop (DFF) 6 NAND 24
ADDER HA+ (b—-1) FA 34 b-20
ADDER (cin) b FA 34
Subtracter b NOT + b FA 36 b
1-bit Multiplexer (Bit Mux) 2 AND + OR + NOT 20
b-bit Multiplexer (Bus Mux) 2bAND + b OR + 3 NOT 18 b +6
1-bit Register (Bit Reg.) DFF 24
b-bit Register (Bus Reg.) b DFF 24 b
b-bit Parallel Multiplier b2 AND + b HA + (b2 —2b) FA 40 b2 - 54 b
b-bit Parallel Load Shift Reg. b DFF + b Bit Mux 44 b

Table 6.2: The number of transistors building the basic components used

In using the number of transistors as an area measure, a CMOS technology is as-

sumed, where the PMOS and NMOS transistors are used equivalently [50, 51]. In Table

6.1, the number of transistors required for several logic gates is given [55, 56]. Other

logic modules are constructed from these basic gates. Some such modules are listed

52

in Table 6.2. The construction of these logic modules is performed in a standardized
manner as found in the literature [48, 52, 53].

All components are parametrized in terms of the number of bits used (b). For
example, the ‘ADDER’ in Table 6.2, is assumed to add two b-bits number with no
carry-in; i.e. a HA is used instead of a FA in the first stage. The ‘ADDER’ with
‘cin’ is a similar adder but with a carry-in input. The ‘subtracter’ is considered as an
‘ADDER’ with one input complemented [52, 33]. The &-bit ‘Bus Mux’ is a multiplexor
that selects a one of two input b-bit buses. The b-bit ‘parallel multiplier’ is the fast
parallel multiplier shown in Figure 4.4. The ‘Parallel Load Shift Reg.’ is a shift register
that can load the data in parallel [51, 57].

Components ~ The Building Logic Number of Transistors
The basic cell i 4-Parallel Multiplier + 2-Bit Reg.
building the + 8-Bus Reg.+ 3-ADDER + 2-Bus Mux 160 42
systolic multiplier + (2 b + 10)-AND+ (b + 2)-OR + 166 b + 66
(basic cell) + 2 NOT + XOR
The Systolic (/2 + 1)-basic cell 80521+ 83b1
Multiplier + 33 1 + 160 b2
+ 166 b + 66
The Montgomery Systolic Multiplier + 7-Bit Mux 80 b2 1 + 299 b !
Product (MP) + 10-Bus Mux + (9 b + 14! -1)-DFF + 369 I + 200 b%
+ (5b+ 612+ 22 b)-DFF + 412 b + 242
+ Parallel Multiplier + 1442 + 48012
The Complete 2-MP + 6-Bit Mux 486 + 502 b + 393 {
Implementation + 5-Bus Mux + ({+3)-DFF +805b2142995b1
+ 200 6% + 144 I?
+48b12

Table 6.3: Area (number of transistors) of the expandable RSA implementation

6.2.1 Area of The RSA Implementations

The number of transistors of the expandable RSA implementation is listed in Table
6.3. In this design, the input message to be encrypted or decrypted is divided into
l-words, with each word having b-bits. Accordingly, the number of transistors is given
in terms of the number of bits ‘b’ and the number of words ‘I’. Likewise, the number
of transistors used in the merged exponentiation hardware is listed in Table 6.4. The
number of transistors of the add/subtract exponentiation design is listed in Table 6.5.
In this design, the input message is not divided into words, but is completely processed
in (b-bits).

1.E+8 -

1.E+7 -}°
Area

(# transistors)
1.E+6 -

b T T R LR G R LR LR PR TR R LR
L
8 16 32 64 128 256 512 1024 # Bits (b)

512 265 128 64 32 16 8 4 2 1 #Words ()

Figure 6.1: The area of the designs for key size of 1024-bits

Figure 6.1 shows an example of area estimation of the three designs for a key size
of 1024-bits. It is observed that for the expandable and merged designs, the area is
larger than the add/subtract one. Note that the expandable and the merged designs
have different areas for the same key size.

It can be observed from the example (Figure 6.1) that the area decreases for both
designs until b equals I. After which, the area increases back again. The reason behind
this decreasing and increasing in the sizes is that the area of the models are dominated
by the sizes of the multipliers and registers. The size of a multiplier depends on b, while

it depends on [for the registers. Because of that, the area of the registers dominates

54

when b is smaller than [, while the area of the multipliers is dominating when [is

smaller than b. Therefore, the best area is found when b equals [.

6.3 Speed and Cost

The speed of each implementation is represented by the number of clock cycles requifed
to complete the exponentiation process. The clock period is estimated as the longest
path delay. Thus, the overall time is computed with the multiplication of the longest
path delay by the number of required clock cycles.

Since area and delay are two conflicting cost measures, we use the AT?(Area *

T'ime?) measure [51], as an overall cost measure.

Components The Building Logic Number of Transistors
Multiplication loop (1+2)-Bit Reg. + Parallel Multiplier 40 b% + 210 b
design + 2-[2-ADDER (cin)] + 2-[2-Bus Mux] 72 + 241
+2-Bus Reg.

Reduction loop 2-Parallel Multiplier + 5-Bus Mux 80 b2 + 198 b
design 2-[2-ADDER (cin)] + Bit Reg. + [-DFF 30 + 241

+ 3 Bus Reg. + OR-gate
Modular Multiplication loop + 4-Bus Mux 120 b2 + 672 b
multiplier Reduction loop + (3! + 8) -DFF 192 + 241
design (MP*) (I-1)-Bit Reg. + DFF + 3-OR 72b1
The complete 2-MP* + 6-Bus Mux 240 b2 + 1644 b
modular + (12 + 51 + 8)-Bus Reg. 604 + 144!
exponentiation + 2-Bit Mux + (4l +5)-Bit Reg. + 2641
hardware + 3-OR + AND-gate 24 12 b

Table 6.4: Area (number of transistors) of the merged exponentiation hardware

6.3.1 The Expandable Hardware Cost

The time required to complete the modular multiplication process is 2 {2 + 4 [cycles.
The time required to complete the exponentiation process is 2 I3 + 4 2 cycles.

The longest path estimated in gates is 13 b — 4 gates.

Assume that each gate delay is ¢ ns.

The overall time is (26 b I® + 52 b 12 — 8 I3 — 16 [%) t nsec.

The AT? cost of the design (Area * Time?) is (486 +502 b+393 1 +80 6% 1 +299 b 1 +
200 62 + 144 12 +48 b 12) (26 b B +52 b 12 —8 3 — 16 12)? « £?)

Components The Building Logic Number of Transistors
Reduction 2-Subtracter + 3-Bus Mux 160 b + 18

Unit ADDER (cin)

Modular Parallel Load Shift Reg. MSB-first 270 b
Multiplier (6-1)-DFF + Reduction Unit

+ Bus Mux + Bus Reg.

Modular Parallel Load Shift Reg. LSB-first 704 b + 48
Exponentiation | + 2-Modular Multiplier + 4-Bus Mux
Implementation | + 2-Bus Reg. + 3-OR + AND-gate

Table 6.5: Area (number of transistors) of the add/subtract exponentiation design

6.3.2 The Merged Exponentiation Design Cost

The time required to complete the modular multiplication process is [2+4 1+ 3 cycles.
The time needed to complete the modular exponentiation process is B+alP+31
cycles.

The longest path estimated is 31 b — 13 gates.

The overall time is (31 b 3 + 124 b2+ 931 b—13 3 —521* — 39 I) ¢ nsec.

The AT? cost is (240 52+ 1644 b+ 604 +1441+264 1 b+24 12 b)* (3L b B +124 b 2 +
9316 —-131 —5212-391))2«¢2

56

6.3.3 The Add/Subtract Exponentiation Design Cost

The time required to complete the modular multiplication is b+ 1 cycles.
The time needed to complete the exponentiation process is b2 + b cycles.
The longest path delay in gates is 6 b + 5 gates.

The overall time is 6% + 115 + 5b ¢ nsec.

The AT? cost is (704 b+ 48) * (65 + 11b% + 3b)% * ¢2

6.4 VHDL Modeling

VHDL is an IEEE standard hardware description language [54]. It can describe hard-
ware models at various levels of abstraction such as, behavioral, structural and data
flow levels. The structural level can be described as register transfer level or as logic
gate level or a combination of both [49].

The three modular exponentiation implementations are VHDL modeled at the
structural level. The design entities are modeled to be parameterizable in terms of
the number of words (!), and the word size (b). Note that the expandable design and
the merged one divide the input data into [-words, each is b-bits. The add/subtract
hardware, however, does not. It deals with the data as complete numbers represented
in b-bits. All designs have been simulated and verified to be functionally correct.

Figure 6.2 shows an example for the VHDL code. This code models a bn-bit parallel
multiplier, where bn is a parameter which determines the size of the multiplier. This
model has been used throughout all designs to define multiplication of different sizes,
as shown for 4-bits in Figure 4.4.

57

ENTITY bit_muitiplier IS
GENERIC (bn : INTEGERY); - undefind number of bits
PORT (a, b : IN BIT_VECTOR (bn-1 DOWNTO 0);

pout : OUT BIT_VECTOR (2*bn-1 DOWNTO 0));

END bit_muiltiplier;

ARCHITECTURE nomal OF bit_multiplier IS
COMPONENT and2 PORT (I1, 12 : IN BIT ; o1 : OUT BIT); END COMPONENT;
COMPONENT fa PORT (11, 12, I3 : IN BIT ; sum, carry : OUT BIT); END COMPONENT;
COMPONENT ha PORT (I1, I2 : IN BIT ; sum, carry : OUT BIT); END COMPONENT;

FOR ALL : and2 USE ENTITY WORK.and2 (normal);
FOR ALL : fa USE ENTITY WORK full_adder (normal);
FOR ALL : ha USE ENTITY WORK half_adder (normal);
SIGNAL outand : BIT_VECTOR (0 to bn"bn-1); — all the signals coming out of and2
SIGNAL outsum, outcarry : BIT_VECTOR (0 to bn*(bn-1)-1); — all adders outputs
BEGIN
and_all : FOR rin 0 TO bn-1 GENERATE
c1:FORcIN 0 TO bn-1 GENERATE
c2 : and2 PORT MAP (a(c) , b(r) , outand(bn’r + c));END GENERATE;
END GENERATE;

half_adders : FOR ¢ IN 0 TO bn-2 GENERATE
¢3 : ha PORT MAP (outand(bn+c) , outand(c+1) , outsum(c) , outcarry(c)); END GENERATE;

adders : FOR rIN 1 TO bn-1 GENERATE
c4 : FOR ¢ IN 0 TO bn-2 GENERATE

c5:IFc =0 AND r=bn-1 GENERATE
¢6 : ha PORT MAP (outcarry((bn-1)*(bn-1)-bn+1), outsum((bn-1)*(bn-1)-bn+2),
outsum((bn-1)*"2), outcarry((bn-1)""2));END GENERATE ;

c7 :IF ¢ = (bn-2) AND r < bn-1 GENERATE
¢8 : fa PORT MAP (outcarry((bn-1)*(r-1)+c), outand(bn*(r+1)+c), outand(bn*r+c+1),

outsum((bn-1)"r+c), outcarry((bn-1)°r+c));END GENERATE ;

c9:IF ¢ = (bn-2) AND r =bn-1 AND ¢ > 0 GENERATE
¢10 : fa PORT MAP (outcarry((bn-1)*(r-1)+c), outcarry((bn-1)"r+c-1),
outand(bn*r+c+1), outsum((bn-1)"r+c), outcarry({bn-1)"r+c));END GENERATE ;

cit:IF ¢ < (bn-2) AND r = bn-1 AND ¢ > 0 GENERATE
¢12 : fa PORT MAP (outcarry((bn-1)*(r-1)+c), outcarry((bn-1)"r+c-1),
outsum((bn-1)*(r-1)+c+1), outsum((bn-1)"r+c), outcarry((bn-1)*r+c));END GENERATE ;

c13: [F c < (bn-2) AND r < bn-1 AND r> 0 GENERATE
c14 : fa PORT MAP (outcarry((bn-1)*(r-1)+c), outand(bn*(r+1)+c),
outsum((bn-1)*(r-1)+c+1), outsum(({bn-1)"r+c), outcarry((bn-1)*r+c));END GENERATE ;

END GENERATE;

END GENERATE;
all_products : FOR r IN 0 TO bn-1 GENERATE

c15: IF r=0 GENERATE
¢16 : pout(r) <= outand(r) ;END GENERATE ;

¢17 : pout(r+1) <= outsum(r*(bn-1));END GENERATE ;

c18 : FOR ¢ IN 1 TO bn-2 GENERATE
¢19 : pout(bn-+c) <= outsum(c+(bn-1)"(bn-1)};END GENERATE;
c20 : pout(2°dn-1) <= outcamry((bn-1)*(bn-1)+bn-2);
END normal;

Figure 6.2: The VHDL code of the parallel multiplier model

6.5 Analysis

6.5.1 Area and Delay

The three implementations are analyzed assuming a 1024-bit key. The expandable

design and the merged one have a freedom in choosing ! (the number of words), and

b (the number of bits per word), while the add/subtract hardware does not. The

add/subtract design is analyzed for a key size of 1024-bits processed as one word, as

listed in Table 6.6. The merged hardware analysis is listed in Table 6.7, while the

expandable design analysis is listed in Table 6.8.

bits | # digits | # clock | longest path overall time Area Cost
b (bits) { { words | cycles delay (t nsec.) | (t msec.) | # transistors AT?
1024 1 1049600 | 6149 6453.99 720944 3 E+13

Table 6.6: Analysis of the add/subtract modular exponentiation design

Comparing the speeds of all designs, it can be observed that the speed of the

merged design is fairly close to that of the expandable one, with the expandable speed
slightly better. The add/subtract hardware, however, suffers from a very low speed as

shown in Figure 6.3.

4 8

16 32 64
512 265 128 64 32 16

8 4 2

128 256 512 1024 # Bits (b)
1 #Words ()

Figure 6.3: The time vs. number of bits analysis

39

For the same speed, the expandable hardware is larger in area than the merged
one (Figure 6.1), which is expected due to the added expandability feature. On the
other hand, the add/subtract design has a feasible area, but its overall speed is very

low.

bits | # digits | # clock longest path overall time Area Cost

b (bits) | | words | cycles delay (t nsec_._) (t msec.) | # transistors | AT?

2 512 135,267,840 4T 6628.124 12,931,828 | 6 E+14
4 256 17,040,128 111 1891.45 6,609,676 2 E+13
8 128 2,163,072 235 | 508.322 3,463,612 9 E+11
16 64 278,720 483 134.622 1,940,764 3 E+10
32 32 36,960 979 36.184 1,360,348 2 E+9
64 16 5,168 1,971 10.1862 1,754,716 2 E+8
128 8 792 3,955 3.1324 4,611,292 4 E+7
256 4 140 7,923 1.10922 16,519,324 1 E+7
512 2 30 15,859 0.47577 64,076,668 6 E+6
1024 1 8 31,731 0.2539 253,637,356 | 4 E+6

Table 6.7: Analysis of the merged Montgomery modular exponentiation design

6.5.2 The Implementations Cost

The overall AT? cost for each design, with key size assumed to be 1024-bits, is listed
as the last column in the Tables: 6.6, 6.7, and 6.8.

The cost graph is shown in Figure 6.4, for the purpose of comparison. It can be
seen that the cost of the expandable hardware is higher than the merged one, except
when the number of bits chosen is very high, such as 256-bits or more. The reason
behind this is that the cost function is dominated by the time and the difference in
time between the two designs is not constant. As shown in Figure 6.3, the time of the

60

bits | # digits | # clock longest path overall time Area Cost

b (bits) | words | cycles delay (¢t nsec.) | (t msec.) | # transistors | AT?

2 | 512 269,484,032 | 22 B 5,928.649 | 63,588,082 | 2 E+15
4 256 33,816,576 | 48 1,623.196 22,760,254 | 6 E+13
8 128 4,259,840 100 425.984 9,679,894 2 BE+12
16 64 540,672 204 110.297 5,437,318 7 E+10
32 32 69,632 412 28.688 4,881,862 4 E+9
64 16 9,216 828 7.6308 87,230,454 4 E+8
128 8 1,280 1,660 2.1248 14,539,054 7T E+7
256 4 192 3,324 0.6382 34,714,378 1 E+7
512 2 32 6,652 0.2129 95,035,192 4 E+6
1024 1 6 13,308 0.0799 294,471,679 | 2 E+6

Table 6.8: Analysis of the expandable modular exponentiation design

1.0 E+154

N\
1.0E+13 |
Cost 10E+11]
Area * 'I'ime2 .
1.0 E+9
1.0 E+7

1

IR

The add/subtract

d«igncou"’\

. -
o /‘* Expandable design
.\
.\
.\.

L 1] 3

°an o mm o

] 1] 1

L]

2

4

g8 18

32 64 128 256 51

] L T

512 265 128 64 32 16 8 4 2 1

2 10‘24 # Bits (b)

Words ()

Figure 6.4: The Cost (Area * Time?) analysis for key size of 1024-bits

61

expandable hardware at large number of bits is much better than it for small number
o of bits. However, implementing the expandable design with large number of bits is
unpractical due to the requirement of a very large area, as shown in Figure 6.1.
Figure 6.5 shows a comparison between the merged design and the expandable one
for three different key sizes: 512-bits, 1024-bits and 2048 bits. It can be seen that the
cost of the expandable hardware is better only when the number of bits used is very
large. The cost of the merged design is mostly lower than the expandable hardware,
which is expected due to the overhead required for expandability.

1.0 E+17 4

Expandable design for key size of 2048 bits

1.0 E+15-3 Merged design for key size of 2048 bits

Expandable design
1.0 E+13 | gn forkey

size of 1048 bits

Merged design for key
size of 1024 bits

10E+11

Cost 1~
AT? 10es0)
1.0 E+7 4
\.
-+ Merged design for key O
1.0 E+5 size of 512 bits B

-

1.0 E+3.} Expandable design for key size of 512 bits

|] | |] | | | i | .
2 4 8 16 32 64 128 258 512 1024 #Bits(d)

Figure 6.5: The expandable and merged designs costs for different key sizes

6.6 Summary

In this chapter, The expandable hardware is compared with two other designs on the
basis of time, area and AT? cost. The three designs are then analyzed for 1024-bit
numbers. The expandable design had the best speed while its area is the worst. The

add/subtract hardware had the smallest area but the time required to complete the

62

process is the largest, therefore its speed is very low. The size of the merged design is
better than the expandable one but not as good as the add/subtract hardware. The
merged design had a slightly lower speed than the expandable one. The cost of the
merged design is found to be better than the expandable one, except when the number
of bits chosen is very high. While the cost of the add/subtract design is found to be

the worst.

63

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have developed a hardware model for an expandable RSA cryp-
tographic system. The thesis begins by an introductory description of cryptographic
systems theory covering both secret key cryptosystems as well as public key cryptosys-
tems. Public key systems are covered with some depth particularly the. RSA technique
which is the most popular public key method.

Several hardware approaches for implementing the RSA method have been sur-
veyed and compared. One implementation was chosen to be modified for expandabil-
ity [31]. However, a design flaw was discovered in that system. This implementation
has been correctly redesigned and then modified for expandability.

The developed expandable design is based on Montgomery’s algorithm for modular
multiplication. The expandability is achieved using an expandable systolic multiplier.

Two other hardware designs: the merged Montgomery hardware and the add/subtract
hardware, have been implemented for comparison purposes. All three designs have
been modeled structurally using VHDL. The developed models are designed to allow
changing major hardware size parameters. These designs have been simulated and
verified to be functionally correct.

Analytical expressions for delay, area and AT? cost were derived in terms of / and b,

64

which are the number of words in the encryption key and the number of bits per word
respectively. It has been found that the add/subtract design is the best in terms of
area, while its delay and cost are unacceptably large. The other two implementations -
strike a compromise between time and area at various values of b and [. The cost of
both designs decreases with the decrease of delay which is inversely proportional to
the number of bits per word, b.

It has also been observed that the cost of the expandable hardware is slightly
higher than that of the merged hardware for the same b and [, except when the
number of bits chosen is very high. The reason behind this is that, the cost function
is dominated by the time, and the difference in time between the two designs is not
constant. Implementing the designs that have a very high number of bits requires a

very large area, which is not feasible using todays technology.

7.2 Future Work

o Investigate asynchronous design methodology to improve the speed and aver-
age cost. This has the potential of improving the overall performance since
asynchronous designs follow the average case speed, unlike synchronous systems

which follow the worst case speed.

e Study the use of faster adder and serial multiplier architectures. For example,
tree adder implementations may have an O(log n) delay, while typical adder

architectures have linear delay.

¢ Investigate other approaches for modular multiplications such as, residue number
systems (RNS). However, RNS needs conversion between binary and residue

numbers which may be time consuming (34, 41].

¢ Investigate expandability of the add/subtract hardware. The add/subtract hard-
ware is mainly structured of adders. If the adders are made expandable, the

complete add/subtract hardware can be made expandable.

65

Bibliography

[1]

[2]

[3]
[4]
[5]
[6]
[7]
(8]
(9]
[10]

[11]

[12]

[13]

Diffie W. and Hellman, “Privacy and Authentication: An Introduction to
Cryptography,” Proceedings of the IEEE, vol. 67, no. 3, pp. 397-427, March
1979. '

R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Communications of ACM, vol.
21, no. 2, pp. 120-126, February 1978.

C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst.
Tech. J., vol. 28, pp. 636-715, Oct. 1949.

H. F. Gaines, Cryptanalysis: A Study of Ciphers and their Solution. New
York: Dover Publications, 1956.

W. F. Friedman, Military Cryptanalysis. Washington DC: US Government
Printing Office, 1944.

Lance J. Hoffman, Building in Big Brother: The Cryptographic Policy
Debate, Springer-Verlag New York, Inc. 1995.

Andrew S. and Tanenbaum, Computer Networks, Prentice-Hall Interna-
tional, Inc. Second edition, 1989.

Marshall C. Yovits, Advances in Computers, vol. 22, Academic Press, Inc.
1983.

J. van Leeuwen, Handbook of Theoretical Computer Science, Elsevier Sci-
ence Publishers B.V., 1990.

Bruce Schneier, Applied Cryptography: Protocols, Algorithms and Source
Code in C, John Wiley & Sons, New York, 2nd edition, 1996.

Marijke De Soete, “Public Key Cryptography,” Computer Security and
Industrial Cryptography: State of the Art and Evolution, Springer-Verlag
Inc., Leuven, Belgium, May 21-23, 1991.

W. Diffie, “The First Ten Years of Public-Key Cryptography,” Proceedings
of the IEEE, vol. 76, no. 3, pp. 560-577, May 1988.

D. Coppersmith, “Cryptography,” IBM J. RES. Develop., vol. 31, no. 2,
March 1987.

66

[14] Gerd E. Keiser, Local Area Network, McGraw-Hill, New York, 1989.

[15] Burt Kaliski, “A Survay of Encryption Standards,” IEEE Micro.,pp 74-81,
December 1993.

[16] Ivan Niven, Herbert S. Zuckerman, and Hugh Montgomery, An Introduc-
tion to the Theory of Numbers, John Wiley & Sons, New York, 1991.

[17] Lein Harn and Shoubao Yang, “Public key Cryptosystems Based on the
Discrete Logarithm Problem,” Adwances in Cryptology-A USCRYPT’92,
Australia, December 1992, pp. 469-476.

[18] D. Kahn, The Codebreakers, The Story of Secret Writing., New
York:Macmillan, 1967.

[19] A. Sinkov, Elementary Cryptanalysis, A Mathematical Approach. New
York: Random House, New Mathematical Library, no. 22, 1968.

[20] Tuckerman, “A study of the Vigenere-Vernam single and multiple loop
enciphering systems,” IBM T. J. Waston Research Center, Yorktown
Heights, NY, RC 2879, May 14, 1970.

[21] Ernest F. Brickell, “A Survey of Hardware Implementations of RSA,” Ad-
vances in Cryptology-CRYPTOQ’89 Proceedings, New York, Springer Verlog,
1990, pp. 368-370

[22] P. Bertin, D. Roncin and J. Vuillemin, Introduction to programmable active
memories. Internal Report, Digital Equipment Coporation, 1989.

[23] Po-Song Chen, Shih-Arn Hwang, and Cheng-Wen Wu, “A Systolic RSA
Public Key Cryptosystem,” IEEE International Symposium on Circuits
and Systems, ISCAS’96 , NewYork, 1996, pp. 408-411.

[24] Cetin Kaya Koc, Tolga Acar, and Burton S. Kaliski, Jr. “Analyzing and
Comparing Montgomery Multiplication Algorithms,” IEEE Micro, June
1996, pp. 26-33.

[25] M H Er, D J Wong, A. Sethu, and K S Ngeow, “Design and Implementaion
of RSA Cryptosystem Using Multiple DSP Chips,” IEEE International
Symposium on Circuits and Systems, NewYork, 1991, pp. 49-52.

[26] Dana Taipale, “Implementing the Rivest, Shamir, Adleman Cryptographic
Algorithm on the Motorola 56300 Family of Digital Signal Processors,”
Proceedings of the 1996 Southcon Conference, Orlando, 1996, pp. 10-17.

[27] C. D. Walter, “Systolic Modular Multiplication,” IEEE Transactions on
Computers, vol. 42, no. 3, March 1993, pp. 376-378.

[28] C. D. Walter, “Still Faster Modular Multiplication,” Electronics Letters,
vol. 31, no. 4, February 1995, pp. 263-264.

67

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

S. E. Eldridge and C. D. Walter, “Hardware Implementation of Mont-
gomery’s Modular Multiplication Algorithm,” IEEE Transactions on Com-
puters, vol. 42, no. 6, June 1993, pp. 693-699.

B. S. Kaliski Jr. “The Montgomery Inverse and Its Applications,” JEEE
Transactions on Computers, vol. 44, no. 8, pp. 1064-1063, August 1995.

Jorg Sauerbrey, “A Modular Exponentiation Unit Based on Systolic Ar-
rays,” Advances in Cryptology, AUSCRYPT’92, Gold Coast, Queensland,
Australia, December 1992, pp. 505-516.

S. Yen and C. Laih, “The Fast Cascade Exponentiation Algorithm and its
Applications on Cryptography,” Advances in Cryptology, AUSCRYPT’92,
Gold Coast, Queensland, Australia, December 1992, pp. 447-456.

K. Lam, K. Sung and L. Hui, “A Cardinalised Binary Representation for
Exponentiation,” Computers & Mathematics with Applications, vol. 30, no.
8, October 1995, pp.33-39.

E. F. Brickell, “A Fast Modular Multiplication Algorithm with Applica-
tion to Two Key Cryptography,” Advances in Cryptology: Proceeding of
CRYPTO’82, Plenum Press, 1983, pp. 51-60.

C. Wu and Y. Chou, “General Modular Multiplication by Block Multi-
plication and Table Lookup,” IEEE International Symposium on Circuits
and Systems, ISCAS’94 , London, UK: IEEE, 1994, pp. 295-298.

G. Alia and E. Martinelli, “A VLSI Modulo Multiplier,” IEEE Transac-
tions on Computers, vol. 40, no. 7, July 1991, pp. 873-878.

E. LU, L. Harn, J. Lee and W. Hwang, “A Programmable VLSI Archi-
tecture for Computing Multiplication and Polynomial Evaluation Modulo
a Positive Integer,” IEEE Journal of Solid-State Circuits, vol. 23, no. 1,
February 1988, pp. 204-207.

B. Arazi, “Double-Precision Modular Multiplication Based on a Single-
Precision Modular Multiplier and a Standard CPU,” IEEE Journal on
Selected Areas in Communications, vol. 11, no. 5, June 1993, pp. 761-769.

C. D. Walter, “Logarithmic Speed Modular Multiplication,” FElectronics
Letters, 18th August 1994, vol.30, no.17, pp.1397-1398.

C. D. Walter, “Space/Time Trade-Offs for Higher Radix Modular Mul-
tiplication Using Repeated Addition,” IEEE Transactions on Computers,
Vol. 46, no. 2, February 1997, pp. 139-141.

N. Takagi and S. Yajima, “Modular Multiplication Hardware Algorithms
with a Redundant Representation and Their Application to RSA Cryp-
tosystem,” IEEE Transactions on Computers, vol. 41, no. 7, July 1992,
pp. 887-891.

68

[42] C. N. Zhang, “An Improved Binary Algorithm for RSA,” Computers &
Mathematics with Applications, March 1993, pp. 15-24.

[43] G. Orton, M. Roy, P. Scott, L. Peppard and S. Tavares, “VLSI Implemen-
tation of Public-Key Encryption Algorithms,” in Advances in Cryptology:
CRYPTO’86 Proceedings, A. M. Odlyzko, Ed. 1987, pp. 277-301.

[44] Holger Sedlak, “The RSA Cryptography Processor,” Aduances in Cryp-
tology: EUROCRYPT'87 Proceedings, C. Pomerance, Ed. NewYork 1988,
pp- 95-105.

[45] F. Hoornaert, M. Decroos, J. Vandewalle and R. Govaerts, “Fast RSA-
Hardware: Dream or Reality ?,” Advances in Cryptology : FEURO-
CRYPT’88 Proceedings, 1988, pp. 257-264.

[46] F. Al-Tuwaijry & S. Barton, “A High Speed RSA Processor,” Sizth Inter-
national Conference on Digital Processing of Signals in Communications,
September 2-6 1991, Longhborough, UK, IEE 1991, pp. 210-214.

[47] H. Orup, E. Svendsen and E. Andreasen, “VICTOR An Efficient RSA
Hardware Implementation,” Advances in Cryptology-EUROCRYPT’90 :
Workshop on The Theory and Application of Cryptographic Techniques,
May 21-24 1990, pp. 243-252.

[48] N. R. Scott, Computer Number Systems & Arithmetic, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1985.

[49] D.R.Coelho, The VHDL handbook, Kluwer Academic Publishers, 1989.

[50} Sait S. and Youssef H., VLSI Physical Design Automation : Theory and
Practice, McGraw Hill, UK, 1995.

[51] Mukherjee A., Introduction to NMOS and CMOS VLSI Systems Design,
Prentice Hall,1986.

[52] Mano M., Digital Design, Prentice Hall, 2nd edition, 1984.
[53] Mano M., Computer System Architechure, Prentice Hall, 2nd edition, 1982.
[54] Ashenden P. J., The VHDL Cookbook, 1st edition, July 1990.

[55] Sedra A. and Smith K., Microelectronic Circuits, Saunders College, 3rd
edition, 1991.

[56] Millman J. and Grabel A., Microelectronics, McGraw Hill, 2nd edition,
1987.

[57] Hill F. and Peterson G. to Swiching Theory and Logic Design, John Willy
& Sons, 3rd edition, 1987.

69

Vita
Adnan Abdul-Aziz M. S. Gutub

#* Re.ceived Bachelor of Science in Electrical Engineering from King
Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi
Arabia, in January 1995.

Working as a Graduate Assistant in Computer Engineering Department
at KFUPM since May 1995.

Started Computer Engineering graduate program in January 1996.

Completed the Master of Science in Computer Engineering from

KFUPM in December 1998.

EUl oo 488 805

el Gidee das o e oy OLAs e

Agh AU dealor s 27 S Auidl @ pole o) IS B> o Jua o
& 1415 Olad (3 @ yandl G ol BSU) (O glall 05Uy J g 2l

Oalally J g2l ugd S dmalor 3 Y el Bdin ooy dmaS Joms
—a1415 dmdl g3 g3 5,8 Jis

—ata19 oy 3 Y el dia pgle 3 ool i s ollaze JoST e

70

IMAGE EVALUATION
TEST TARGET (QA-3)

1.6

1.4

150mm

© 1993, Applied Image, Inc.. All Rights Reserved

.25

