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Introduction

� A CPU is decomposed into 
two main parts: data path & 
control unit. 

� Data path consists of 
registers, arithmetic blocks 
and interconnections.

� The flow of data between 
registers & arithmetic 
operations are performed in 
the data path. 
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Introduction

� Data path is controlled by a set of signals to cause 
actions to take place.

� Examples of such signals are 
� strobe signals to load registers

� signals to control the connectivity of outputs to a bus.

� In order to perform an operation on the data path, it is 
required to generate the control signals in the correct 
order to affect the correct data path activity.

� The control unit receives signals that describe the state 
of the data path and the control unit sends control 
signals to the data path.
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Register Transfer

� The process of instruction execution can be described as 
a set of register transfer operations. 

� In each clock, one or more register transfer operations 
are performed.

� Some register transfer operations can’t be implemented 
in one clock cycle and have to be broken into a number 
of register transfer operations that have to be performed 
in a sequence.

� Example: ADD AX, BX
� 1. Y ← AX 

� 2. Z ← Y + BX

� 3. AX ← Z
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Register Transfer

� Register transfer A ← B can be 
implemented by two sets of m flip-
flops.

� The m-bit data is moved (copied) 
from register B into register A 
when the strobe signal is 
activated. 

� Assuming rising-edge triggered 
flip-flops, the transfer operation 
occurs on the rising edge of the 
strobe .

multiplebit_register_transfer.swf
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Register Transfer

� To transfer data between n
registers, interconnect registers 
using n multiplexers.

� Input of each register is connected 
to an (n-1)x1 multiplexer. 

� In the (n-1)x1 multiplexer, 
� other n-1 registers are connected to 

the n-1 inputs of the multiplexer 

� log (n-1) selection lines are used to 
select the required register. 

� Expensive solution with complex 
routing.

RegisterTransferMUXs.swf
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Register Transfer

� A better solution is to use a tri-state 
bus that is shared among all 
registers.

� Registers are connected to the bus 
through tri-state buffers such that 
one tri-state buffer is enabled at a 
time.

� Each tri-state buffer is controlled by 
an output enable signal 
� when set high connects the input of the 

buffer to the output 

� otherwise produces a high-impedance 
value Z. 

Tristate.swf
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Register Transfer

� A strobe signal for each register 
controls register capture

� To allow for propagation delay 
across the bus & FF setup time, 
registers capture on falling 
edge of the clock 

� Tri-state buffer enable signals 
are activated on rising edge of 
clock. 

� This is achieved by Anding the 
strobe signals with the 
complement of the clock. 

RegisterTransfer1.swfregister transfer.swf
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Register Transfer Timing

� In a register transfer operation, information is moved out 
of a register, along a bus, possibly through 
combinational logic, and into another register.

� Tri-state delay: tg
� Bus prob. delay: tbp

� Combinational delay: tcomb

� Setup time & FF prob.: tsu &tff
�Minimum Pulse Width

� tw = tg + tbp + tcomb + tsu

�Minimum Clock Period
� tclk= tg + tbp + tcomb + tsu + tff

register transfer timing.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ١١

Register Transfer Timing

� Example Timing Parameters
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Single Bus CPU

� The data path is 16-bit wide.

� It consists of four general 
purpose registers, R1, R2, 
R3, and R4. 

� It contains Program Counter 
(PC), Instruction Pointer (IP), 
Arithmetic &Logic Unit (ALU). 

� It contains Memory Address 
Register (MAR) and Memory 
Data Register (MDR).

single-bus-cpu.swf
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Fetch Control Sequence

� The fetch-execute process can be summarized as 
follows: 
� 1. Fetch the content of memory location pointed by PC and load 

it into IR; IR ← [PC] 

� 2. Increment the content of PC by 1; PC← PC + 1 

� Instruction size is assume 1 byte for simplicity

� 3. Execute the instruction based on the content of IR.

� Fetch Control Sequence 
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Fetch Control Sequence

� The Wait Memory Function Complete (WMFC) signal is 
activated to inform the control unit to remain in T2 until 
the memory finishes the requested read operation. 

� T2 make take more than one clock cycle depending on 
the number of clock cycles needed by the memory to 
finish the read operation.

� After the memory finishes its function, it will put the 
requested value (in this case the instruction) in the MDR. 

Fetch1bus.swf
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Synchronous vs. Asynchronous 
Memory Transfer

� Data transfer between the CPU and memory can be 
either synchronous or asynchronous. 

� In the synchronous transfer, it is assumed that a memory 
transfer operation (i.e. read or write) can be completed in 
a fixed and predetermined number of clock cycles. 

� In this case, whenever the CPU requests a memory 
operation, it will wait for the required number of cycles 
and after that it knows that the operation has been 
completed. 

� The synchronous transfer leads to simpler 
implementation, but can't accommodate devices of 
widely varying speeds. 
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Synchronous vs. Asynchronous 
Memory Transfer

� In the asynchronus transfer, the CPU after requesting a 
memory operation waits until the memory indicates that it 
completed the requested operation by setting a memory 
function complete signal to 1. 

� Fetch control sequence for both asynchronous and 
synchronous memory transfer is shown. It is assumed 
the memory read operation will take two clock cycles to 
complete.

CpuMemInterf.swf
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Execution Control Sequence for Add 
Instruction

� Consider the instruction ADD R1, [R3] (R1← R1 + [R3]) 

� Execution of this instruction requires the following:
� 1. Read the content of memory location pointed by R3 

� 2. Perform the addition 

� 3. Store the result into R1 

� The execution control sequence for this instruction using 
the single-bus CPU is:

Add1bus.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ١٨

Execution Control Sequence for JMP 
Instruction

� Consider the instruction JMP Label (PC← Label) 

� In PC-relative addressing, what is stored in the 
instruction is Label - PC.

�When the CPU executes the JMP instruction, it will add 
the content of PC to the offset stored in the instruction to 
get the actual address of Label, i.e. (Label-PC)+PC= 
Label.  

� The execution control sequence for the JMP Label 
instruction for the single-bus CPU is:

Jmp1bus.swf
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Execution Control Sequence for 
Conditional JMP Instruction

� consider the branch on Negative instruction JMPN Label 
(PC← Label if N=1).

� Unlike unconditional Jump instruction, conditional jump 
instructions perform the jump if a condition is satisfied.

� The execution control sequence for the JMPN Label 
instruction for the single-bus CPU is: 

Jmpn1bus.swf
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Execution Control Sequence for 
Additional Instructions

� ADD R1, 2

� XCHG R1, R2
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Execution Control Sequence for 
Additional Instructions

� INC [R1]

� CMP R1, R2

� It is assumed here that there will be a FLAGS register that will store the 
flags and there will be a unit to compute the flags.
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Execution Control Sequence for 
Additional Instructions

� LOOP Next

� it is assumed that the loop counter is stored in register R1
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Performance Considerations

� The execution time of a program depends on:
� IC: the instruction count i.e., the number of instructions executed 

in the program 

� CPI: the number of clocks needed for execution per instruction 

� τ: the clock period 

� Execution time of a program, T= IC x CPI x τ

� To reduce the execution time of a program:
� 1. Reduce number of instructions in the program. 

� 2. Reduce number of clocks required for executing each 
instruction. 

� 3. Reduce the clock period. 
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Two-Bus CPU Design

� Information travels out of 
the registers on the B bus, 
and into the registers on 
the A bus.

� There is need for a 
register on the output of 
ALU as it can occupy the 
A bus while one of the 
operands is on the B bus.

2bus cpu.swf
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2-Bus CPU – Fetch Control Sequence

� Fetch control sequence

� Number of clock cycles required to fetch an instruction in 
the two-bus CPU design is the same as the single-bus 
CPU design. 

� So, no reduction in the number of cycles needed for the 
fetch phase between the two designs.

Fetch2bus.swf
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2-Bus CPU: Add R1, [R3]

� Execution control sequence for instruction ADD R1, [R3] 
(R1← R1 + [R3])

� The number of clock cycles for the ADD instruction is 6 
in the two-bus CPU, including the fetch clock cycles, 
while it is 7 in the single-bus CPU.

� There is a speedup gain of one clock cycle for the 
execution of the add instruction.

Add2bus.swf
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Speedup Calculation

� Performance = 1 / execution time

� The percentage speedup can be computed as follows: 

%Speedup = (P2-bus - P1-bus)/P1-bus x 100

=(1/T2-bus-1/T1-bus)/1/T1-busx100=(T1-bus-T2-bus)/T2-busx100 

� For example, let us assume the following: 
� 1. Instruction count is the same in both single-bus and two-bus 

CPU designs. 

� 2. All instructions execute in the two-bus CPU in 7 cycles 
instead of 8 in the single-bus CPU. 

� 3. Clock period is the same for both designs. 

�%Speedup = (IC x 8 x τ - IC x 7 x τ)/IC x 7 x τ x 100 = 
14%
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Speedup Calculation

� Two-bus CPU design requires two-bus propagation 
delays instead of one.

� Clock period on the two-bus design is larger than that in 
the single-bus CPU design. 

� Assume 10% increase in the clock period. 

�%Speedup=(IC x 8 x τ 1 - IC x 7 x 1.1 τ 1)/IC x 7x 1.1 τ 1

x 100 = 3.9% 

� Thus, the performance advantage gained by decreasing 
CPI may be lost due to increase in clock period. 
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2-Bus CPU: Unconditional JMP 

� Execution control sequence for the JMP Label 
instruction: 

� Number of execution control sequences for the JMP 
instruction is two for the two-bus CPU design while it is 
three in the single-bus CPU. 

Jmp2bus.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٣٠

2-Bus CPU: Conditional JMP

� Execution control sequence for JMPN instruction:

� There is a saving of one clock cycle in the execution 
control sequence for the JMPN instruction in the two-bus 
CPU compared to the single-bus CPU. 
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Three-Bus CPU Design

� Each register, R1-R4, is 
connected to bus A and bus B.

� No temporary registers are 
connected to ALU.

� Input of all registers is 
connected to the C bus.

� IR is connected only to the A 
bus, while PC and MDR are 
connected only to the B bus.

� Input of the MAR register is 
also connected to the B bus.

3bus cpu.swf
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3-Bus CPU: Fetch Control Sequence

� Fetch control sequence:

� Number of clock cycles required to fetch an instruction in 
the three-bus CPU design is less than both two-bus and 
single-bus designs by one clock cycle.

� Note that the control signal for capturing in the PC 
register should be modified as shown below:

� RUN signal will be 0 when we are in a waiting state. 
Fetch3bus.swf
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3-Bus CPU: Add R1, [R3]

� Execution control sequence for ADD R1, [R3] (R1← R1 
+ [R3]):

� The number of clock cycles for the ADD instruction is 4 
in the three-bus CPU, including the fetch clock cycles, 
while it is 7 in the single-bus CPU, and 6 in the two-bus 
CPU. 

� Thus, there is a significant speedup gain in the number 
of clock cycles required to execute the ADD instruction. 

Add3bus.swf
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3-Bus Speedup

� Clock period in 3-bus CPU equal to that in 2-Bus CPU as 
signals propagate through A and B buses in parallel.

� It requires two-bus propagation delays like the 2-Bus 
CPU.
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3-Bus: Unconditional & Cond. JMP

� Execution control sequence for the JMP Label instruction

� Execution control sequence for the JMPN Label 
instruction:

� Signal PCin becomes 1 conditionally based on the sign 
flag (N). 

� PCin becomes 1 if N=1 and we are in T3 of the JMPN 
instruction.

Jmp3bus.swf
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Control Unit Design

� The control unit generates the control signals required to 
perform an operation in the proper sequence. 

� All the signals that control the operation of the data path 
are generated by the control unit. 

� Signals generated by the control unit are uniquely 
determined by: 
� Contents of control step counter: each state, or count, 

corresponds to one of the time steps required in the sequence.

� Contents of the instruction register: specifies the type of the 
instruction to be executed as specified by the opcode. 

� Contents of the condition code and other status flags: signals 
from data path like Sign Flag, Zero Flag, ... etc., and other 
signals like MFC, interrupts, ... etc. 
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Control Unit Design

� Control unit can be designed using any of the following 
approaches: 
� Hardwired Controller: uses combinational logic to produce 

control signal outputs.

� Microprogrammed Controller: control signals are generated by a 
program similar to machine language programs. 

� The two approaches have tradeoffs in terms of area, 
speed, and flexibility.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٣٨

Hardwired Control Unit Design

� The general hardwired control unit organization is shown 
below: 
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Hardwired Control Unit Design

� Control step counter: used to keep track of the control 
step we are currently in. 
� Let n be the maximum number of control steps required for 

implementing any instruction in the CPU. 

� Size of control step counter is k=log2 n bits. 

� Step Counter Decoder: step counter feeds an n x 2n

Decoder to generate n control step signals T1, T2, ...,Tn. 

� Instruction decoder: used to decode opcode of IR to 
generate a signal for each instruction. 

� Encoder: combinational logic that implements the 
equation for each control signal based on the control 
step signals, the instruction signals, and the flags. 
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Hardwired Control Unit Design

� END signal is connected to a synchronous reset input of 
the control step counter. 
� When END=1 in a control step, on the next rising-edge of the 

clock the counter resets to 0 and hence T1 becomes 1, i.e. the 
control unit goes to T1 to start the fetch process.

� Run signal is ANDED with the clock to control the step 
counter clock. 
� When Run=0, the clock feeding the step counter will be 0 and 

the counter will not increment. 

� When Run=1, the counter increments on the rising-edge of the 
clock.

� Run signal controls waiting until the memory finishes its 
operation and not go to the next control step. 
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Generation of Control Signals

� For each signal, we need to find all the conditions that 
make it 1 by considering all the control steps that require 
the signal to be 1 and derive the equation for it. 

� Let us derive the equation for the Zin signal considering 
only the instructions ADD R1, [R3], JMP Label, and 
JMPN Label for the single-bus CPU. 

� Zin = T1 + T6 . ADD + T5 . JMP + T5 . JMPN 
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Generation of Control Signals

� The equation for the END signal can be derived as: 

END = T7 . ADD + T6 . JMP + T4 . N’ . JMPN +                      
T6 . N . JMPN 

= T7 . ADD + T6 . JMP + T4 . N’ . JMPN + T6 . JMPN 
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Deriving Rout & Rin Signals for 
Registers

� The designer needs to write execution control sequence 
in general such that the source and destination operands 
can be any register. 

� Rout and Rin signals are derived by the control unit after 
the instruction is fetched and the operands are known.

� The general execution control sequence for the 
instruction ADD R0, R1 on the 1-bus CPU:
� T4 Rsrc,out, Yin 

� T5 Rdst,out, ALU (C=A+B), Zin 

� T6 Zout, Rdst,in, END 
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Deriving Rout & Rin Signals for 
Registers

� Control unit will generate three general signals Rsrc,out, 
Rdst,out, and Rdst,in.
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CPU-Memory Interface Circuit

� CPU-Memory interface includes data bus, address bus 
and some control signals including Read, Write, and 
Memory-Function-Complete (MFC). 

� The CPU is interfaced to the data bus and address bus 
through the MDR and MAR registers, respectively.

� In addition to this interface, there is a need for a CPU-
Memory interface circuitry to manage their interaction.

� It is required that the CPU keeps the Read or Write 
signal set until the memory finishes the requested 
operation.

� One the MFC is set to 1, then the Read or Write signal 
can be set to 0. 

CpuMemInterf.swf
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CPU-Memory Interface Circuit

� A versatile CPU can communicate with main memory 
modules of different speeds 
� A fast memory can be accessed within a single clock cycle 

� Slower memory may require several clock cycles

� The CPU-memory interface circuit should handle both 
fast and slow memories.

� Recall that internal signals generated by the control unit 
are active for one clock cycle during a given control step.

� Slow memory has to see those signals for more than one 
clock cycle. 

� CPU-memory interface circuit has to keep Read or Write 
signals set to 1 until the MFC signal becomes 1.
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CPU-Memory Interface Circuit

�MFC signal assumed to change value on falling-edge of 
clock. 

� Control unit is rising-edge triggered and changes values 
of control signals on rising edge of clock. 

� CPU-Memory Interface Circuit:

CPU MEM interaction dynamic_new.swf
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CPU-Memory Interface Circuit

� Read signal is connected to a 2-input AND gate, a JK-
flip-flop, and a 2-input OR gate. 

� This circuitry is designed to keep the Read signal 1 
when set until the MFC is set to 1. 

� Once the MFC signal becomes 1 on the falling-edge of 
the clock, Read signal goes to 0 on the next rising-edge 
of clock. 

� Negative edge-triggered D-flip-flop used to make Read 
signal change value on negative edge of clock. 

� Note that MAR loads the value on the negative-edge of 
the clock. Thus, Read signal and address seen by 
memory at same time.
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CPU-Memory Interface Circuit

� A similar circuit is implemented for the Write signal to 
achieve the same functionality. 

� Additional functionality of CPU-Memory interface circuit 
is to make control unit remain in same control step when 
a Read or Write operation were requested and memory 
did not finish its function (i.e. MFC did not become 1) 
and WMFC signal is 1. 

� This is achieved by adding a 2-input OR gate that Ores 
the R and W signal to indicate that a Read or Write 
signal is requested. This is connected to a 3-input Nand 
gate generating the RUN signal. 
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CPU-Memory Interface Circuit

� The RUN signal is ANDED with the clock and controls 
the clock of the step counter. 

� If RUN is 0, step counter is not clocked and will remain in 
the same control step. 

� RUN becomes 0 if there is a Read or Write operation 
and the memory did not finish its operation (MFC=0) and 
the WMFC=1. 

�When MFC becomes 1 on falling-edge of clock, RUN 
becomes 1, so on next rising-edge of clock, control step 
counter increments and goes to the next control step. 
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CPU-Memory Interface Circuit

� Consider following 
sequence of control 
steps: 
� T1 Read, WMFC 

� T2 Write 

� T3 WMFC 

� T4 ....

�Write request in T2 
is not seen in T2 
since T1 has a 
WMFC signal.

Timing Diagram for Control Sequence

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٥٢

CPU-Memory Interface Circuit

� Read or Write request will not be seen in a cycle 
following a cycle that has a WMFC signal. The request is 
delayed by one clock cycle. 

� To make sure that whenever we have a Read or Write in 
a cycle that MR or MW will be set to 1 in the same cycle, 
do not have a Read or Write signal in a cycle directly 
following a cycle that has WMFC signal. 

�WMFC signal can not be in the same cycle with END 
signal. This is because the next cycle, T1, has a Read 
signal. 
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Microprogrammed Control Unit

� In microprogrammed control unit design, control signals 
are generated by a program similar to machine language 
programs. 

� Control unit stores the values of signals in memory 
instead of computing them. 

� Every control signal is allocated a bit in memory, and if 
the signal is to be 1, the bit will store a 1; otherwise it will 
store a 0. 

� Suppose that the control unit needs to generate 20 
control signals. Then, 20 bits are allocated for each 
memory address. 
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Microprogrammed Control Unit

� Each memory address will store the signal values for a 
particular clock cycle. For example, memory address 0 
will store the signal values for clock cycle T1.

� The word whose bits represent the various control 
signals required is called Control Word (CW). 

� An individual control word is also called Microinstruction. 

� A Microroutine is sequence of control words 
corresponding to control sequence of machine 
instruction. 

� The Control Store stores microroutines for all instructions 
in instruction set of a computer. 



١٠

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٥٥

Microprogrammed Control Unit

� Consider the control sequence for instruction ADD R1, 
[R3] (R1← R1 + [R3]) for the single-bus CPU:

�We can store the required control signals for this control 
sequence in memory as follows: 
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General Microprogrammed Control 
Unit Organization

� uPC: holds the address of 
next contol word to be 
fetched from the control 
store. 

� Incrementer: to increment 
the uPC.

� Control Store: to store the 
microroutines for all 
instructions. 

�Microinstruction register 
(uIR): to hold the fetched 
microinstruction.
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General Microprogrammed Control 
Unit Organization

� Programmable logic array (PLA): mapping opcode filed 
of IR to starting address of microroutine of instruction.

� 4x1 Multiplexer: The uPC can be loaded from:
� The incremented uPC. 

� The output of the PLA. 

� An external source. This allows the uPC to be initialized to a 
starting value to begin instruction fetch, interrupt service, or 
reset. 

� Branch address field from the current microinstruction. This 
allows unconditional and conditional microbranches.

� Sequencer: combinational circuit to control 4x1 MUX 
select lines based on microbranch control signals from 
microinstruction and flags. 
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Control Word Format

� The control store contains three 
kinds of fields in each control 
word: 
� Control signal field, C bits: used to 

store the control signals such as 
PCin, MARout, etc., with 1 bit for 
each control signal.

� Branch address field, n bits: used to 
store the microbranch address, 
where n is the number of bits in the 
uPC. 

� Branch control field, k bits: contains 
various signals to control branching 
in microcoded control unit. 
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Branching Controls
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Microcode Branching Example

� Control word at address 200: Since the Mux Select bits are 00, the uPC
incrementer is selected. 

� Control word at address 201: Mux setting of 01 selects PLA output address 
and unconditionally since BrUn=1. 

� Control word at address 202: Has Mux setting of 10 and BrZ bit set. So the 
branch will be taken to address on external lines provided the Z signal is 
set. 

� Control word at address 203: Branch to microaddress 300 if the N bit is set. 

� Control words at address 204 and 205: Implement a while loop. 
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Hardwired vs. Microprogrammed 
Control Unit

� Each approach has advantages and disadvantages 
when performance and cost are compared. 

� Speed: Hardwired is the best approach when speed of 
operation is most important. 

� Flexibility of use: Microcoding provides considerable 
flexibility in implementing instruction sets and facilitates 
adding new instructions to existing machines. 

� Ease of prototyping: Microprogramming can be used for 
rapid prototyping of new designs or emulating several 
instruction sets. 
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Hardwired vs. Microprogrammed 
Control Unit

� Complex Instruction Set Computers (CISC), e.g. Intel 
family of processors (i.e. 8086, Pentium, etc.), use 
microprogrammed control unit design approach. 

� Reduced Instruction Set Computers (RISC), e.g. SUN 
SPARC processors, use hardwired control unit design 
approach. 

� Improving Performance of Microprogrammed Control 
Unit: 
� Use very fast memory for control store 

� Use prefetching: fetch the next microinstruction while the current 
one is being executed. 
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Simple CPU Design Example

� Design a CPU with the following specifications: 
� The CPU has four instructions with a fixed size format; each 

instruction is 8-bits long. 

� The instructions are listed below where AX is a 6-bit register and 
C is a 6-bit constant. 

� The instruction format is as shown below:
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Simple CPU Design Example

� It has one programmer accessible register, AX. 

� It is a 6-bit machine with 8-bit data bus and 6-bit address 
bus. 

� It has an adder/subtractor with two inputs: 
� Cin: If 1 the carry-in is 1, otherwise it is 0.

� OP: If 0 addition is performed, otherwise subtraction is 
performed. 
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Data Path Design & Control Sequence
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Hardwired Control Unit



١٢
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Microprogrammed Control Unit 

� For this design, we do not need branching in the 
microinstructions. So, there is no need for the uBranch 
address and the uBranch control signals. 

� It is sufficient to use a 2x1 multiplexer with one input 
selected from uPC incrementer and other input selected 
from PLA. So, one mux select signal is needed. 

� This design has 16 control signals to be generated. So, 
the number of bits in the CW is 17 bits. The format of the 
control word is shown below: 
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Content of Control Store
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PLA Design

� we need to design the PLA to provide the mapping 
between the opcode and the address bits:

� Using K-map simplification, the following equations for 
the PLA output can be found: 
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Microprogrammed Control Unit 


