
١

Introduction to CPU Design

Computer Organization
&

Assembly Language Programming

Dr Adnan Gutub

aagutub ‘at’ uqu.edu.sa
[Adapted from slides of Dr. Kip Irvine: Assembly Language for Intel-Based Computers]

Most Slides contents have been arranged by Dr Muhamed Mudawar & Dr Aiman El-Maleh from Computer Engineering Dept. at KFUPM Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٢

Outline

� Introduction

� Data Path Design
� Register Transfer

� Register Transfer Timing

� Single Bus CPU Design

� Two Bus CPU Design

� Three Bus CPU Design

� Control Unit Design
� Hardwired Control

� Microprogrammed Control

� Simple CPU Design Example

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٣

Introduction

� A CPU is decomposed into
two main parts: data path &
control unit.

� Data path consists of
registers, arithmetic blocks
and interconnections.

� The flow of data between
registers & arithmetic
operations are performed in
the data path.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٤

Introduction

� Data path is controlled by a set of signals to cause
actions to take place.

� Examples of such signals are
� strobe signals to load registers

� signals to control the connectivity of outputs to a bus.

� In order to perform an operation on the data path, it is
required to generate the control signals in the correct
order to affect the correct data path activity.

� The control unit receives signals that describe the state
of the data path and the control unit sends control
signals to the data path.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٥

Register Transfer

� The process of instruction execution can be described as
a set of register transfer operations.

� In each clock, one or more register transfer operations
are performed.

� Some register transfer operations can’t be implemented
in one clock cycle and have to be broken into a number
of register transfer operations that have to be performed
in a sequence.

� Example: ADD AX, BX
� 1. Y ← AX

� 2. Z ← Y + BX

� 3. AX ← Z
Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٦

Register Transfer

� Register transfer A ← B can be
implemented by two sets of m flip-
flops.

� The m-bit data is moved (copied)
from register B into register A
when the strobe signal is
activated.

� Assuming rising-edge triggered
flip-flops, the transfer operation
occurs on the rising edge of the
strobe .

multiplebit_register_transfer.swf

٢

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٧

Register Transfer

� To transfer data between n
registers, interconnect registers
using n multiplexers.

� Input of each register is connected
to an (n-1)x1 multiplexer.

� In the (n-1)x1 multiplexer,
� other n-1 registers are connected to

the n-1 inputs of the multiplexer

� log (n-1) selection lines are used to
select the required register.

� Expensive solution with complex
routing.

RegisterTransferMUXs.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٨

Register Transfer

� A better solution is to use a tri-state
bus that is shared among all
registers.

� Registers are connected to the bus
through tri-state buffers such that
one tri-state buffer is enabled at a
time.

� Each tri-state buffer is controlled by
an output enable signal
� when set high connects the input of the

buffer to the output

� otherwise produces a high-impedance
value Z.

Tristate.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٩

Register Transfer

� A strobe signal for each register
controls register capture

� To allow for propagation delay
across the bus & FF setup time,
registers capture on falling
edge of the clock

� Tri-state buffer enable signals
are activated on rising edge of
clock.

� This is achieved by Anding the
strobe signals with the
complement of the clock.

RegisterTransfer1.swfregister transfer.swf
Introduction to CPU Design Computer Organization & Assembly Language Programming slide ١٠

Register Transfer Timing

� In a register transfer operation, information is moved out
of a register, along a bus, possibly through
combinational logic, and into another register.

� Tri-state delay: tg
� Bus prob. delay: tbp

� Combinational delay: tcomb

� Setup time & FF prob.: tsu &tff
�Minimum Pulse Width

� tw = tg + tbp + tcomb + tsu

�Minimum Clock Period
� tclk= tg + tbp + tcomb + tsu + tff

register transfer timing.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ١١

Register Transfer Timing

� Example Timing Parameters

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ١٢

Single Bus CPU

� The data path is 16-bit wide.

� It consists of four general
purpose registers, R1, R2,
R3, and R4.

� It contains Program Counter
(PC), Instruction Pointer (IP),
Arithmetic &Logic Unit (ALU).

� It contains Memory Address
Register (MAR) and Memory
Data Register (MDR).

single-bus-cpu.swf

٣

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ١٣

Fetch Control Sequence

� The fetch-execute process can be summarized as
follows:
� 1. Fetch the content of memory location pointed by PC and load

it into IR; IR ← [PC]

� 2. Increment the content of PC by 1; PC← PC + 1

� Instruction size is assume 1 byte for simplicity

� 3. Execute the instruction based on the content of IR.

� Fetch Control Sequence

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ١٤

Fetch Control Sequence

� The Wait Memory Function Complete (WMFC) signal is
activated to inform the control unit to remain in T2 until
the memory finishes the requested read operation.

� T2 make take more than one clock cycle depending on
the number of clock cycles needed by the memory to
finish the read operation.

� After the memory finishes its function, it will put the
requested value (in this case the instruction) in the MDR.

Fetch1bus.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ١٥

Synchronous vs. Asynchronous
Memory Transfer

� Data transfer between the CPU and memory can be
either synchronous or asynchronous.

� In the synchronous transfer, it is assumed that a memory
transfer operation (i.e. read or write) can be completed in
a fixed and predetermined number of clock cycles.

� In this case, whenever the CPU requests a memory
operation, it will wait for the required number of cycles
and after that it knows that the operation has been
completed.

� The synchronous transfer leads to simpler
implementation, but can't accommodate devices of
widely varying speeds.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ١٦

Synchronous vs. Asynchronous
Memory Transfer

� In the asynchronus transfer, the CPU after requesting a
memory operation waits until the memory indicates that it
completed the requested operation by setting a memory
function complete signal to 1.

� Fetch control sequence for both asynchronous and
synchronous memory transfer is shown. It is assumed
the memory read operation will take two clock cycles to
complete.

CpuMemInterf.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ١٧

Execution Control Sequence for Add
Instruction

� Consider the instruction ADD R1, [R3] (R1← R1 + [R3])

� Execution of this instruction requires the following:
� 1. Read the content of memory location pointed by R3

� 2. Perform the addition

� 3. Store the result into R1

� The execution control sequence for this instruction using
the single-bus CPU is:

Add1bus.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ١٨

Execution Control Sequence for JMP
Instruction

� Consider the instruction JMP Label (PC← Label)

� In PC-relative addressing, what is stored in the
instruction is Label - PC.

�When the CPU executes the JMP instruction, it will add
the content of PC to the offset stored in the instruction to
get the actual address of Label, i.e. (Label-PC)+PC=
Label.

� The execution control sequence for the JMP Label
instruction for the single-bus CPU is:

Jmp1bus.swf

٤

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ١٩

Execution Control Sequence for
Conditional JMP Instruction

� consider the branch on Negative instruction JMPN Label
(PC← Label if N=1).

� Unlike unconditional Jump instruction, conditional jump
instructions perform the jump if a condition is satisfied.

� The execution control sequence for the JMPN Label
instruction for the single-bus CPU is:

Jmpn1bus.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٢٠

Execution Control Sequence for
Additional Instructions

� ADD R1, 2

� XCHG R1, R2

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٢١

Execution Control Sequence for
Additional Instructions

� INC [R1]

� CMP R1, R2

� It is assumed here that there will be a FLAGS register that will store the
flags and there will be a unit to compute the flags.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٢٢

Execution Control Sequence for
Additional Instructions

� LOOP Next

� it is assumed that the loop counter is stored in register R1

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٢٣

Performance Considerations

� The execution time of a program depends on:
� IC: the instruction count i.e., the number of instructions executed

in the program

� CPI: the number of clocks needed for execution per instruction

� τ: the clock period

� Execution time of a program, T= IC x CPI x τ

� To reduce the execution time of a program:
� 1. Reduce number of instructions in the program.

� 2. Reduce number of clocks required for executing each
instruction.

� 3. Reduce the clock period.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٢٤

Two-Bus CPU Design

� Information travels out of
the registers on the B bus,
and into the registers on
the A bus.

� There is need for a
register on the output of
ALU as it can occupy the
A bus while one of the
operands is on the B bus.

2bus cpu.swf

٥

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٢٥

2-Bus CPU – Fetch Control Sequence

� Fetch control sequence

� Number of clock cycles required to fetch an instruction in
the two-bus CPU design is the same as the single-bus
CPU design.

� So, no reduction in the number of cycles needed for the
fetch phase between the two designs.

Fetch2bus.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٢٦

2-Bus CPU: Add R1, [R3]

� Execution control sequence for instruction ADD R1, [R3]
(R1← R1 + [R3])

� The number of clock cycles for the ADD instruction is 6
in the two-bus CPU, including the fetch clock cycles,
while it is 7 in the single-bus CPU.

� There is a speedup gain of one clock cycle for the
execution of the add instruction.

Add2bus.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٢٧

Speedup Calculation

� Performance = 1 / execution time

� The percentage speedup can be computed as follows:

%Speedup = (P2-bus - P1-bus)/P1-bus x 100

=(1/T2-bus-1/T1-bus)/1/T1-busx100=(T1-bus-T2-bus)/T2-busx100

� For example, let us assume the following:
� 1. Instruction count is the same in both single-bus and two-bus

CPU designs.

� 2. All instructions execute in the two-bus CPU in 7 cycles
instead of 8 in the single-bus CPU.

� 3. Clock period is the same for both designs.

�%Speedup = (IC x 8 x τ - IC x 7 x τ)/IC x 7 x τ x 100 =
14%

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٢٨

Speedup Calculation

� Two-bus CPU design requires two-bus propagation
delays instead of one.

� Clock period on the two-bus design is larger than that in
the single-bus CPU design.

� Assume 10% increase in the clock period.

�%Speedup=(IC x 8 x τ 1 - IC x 7 x 1.1 τ 1)/IC x 7x 1.1 τ 1

x 100 = 3.9%

� Thus, the performance advantage gained by decreasing
CPI may be lost due to increase in clock period.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٢٩

2-Bus CPU: Unconditional JMP

� Execution control sequence for the JMP Label
instruction:

� Number of execution control sequences for the JMP
instruction is two for the two-bus CPU design while it is
three in the single-bus CPU.

Jmp2bus.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٣٠

2-Bus CPU: Conditional JMP

� Execution control sequence for JMPN instruction:

� There is a saving of one clock cycle in the execution
control sequence for the JMPN instruction in the two-bus
CPU compared to the single-bus CPU.

٦

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٣١

Three-Bus CPU Design

� Each register, R1-R4, is
connected to bus A and bus B.

� No temporary registers are
connected to ALU.

� Input of all registers is
connected to the C bus.

� IR is connected only to the A
bus, while PC and MDR are
connected only to the B bus.

� Input of the MAR register is
also connected to the B bus.

3bus cpu.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٣٢

3-Bus CPU: Fetch Control Sequence

� Fetch control sequence:

� Number of clock cycles required to fetch an instruction in
the three-bus CPU design is less than both two-bus and
single-bus designs by one clock cycle.

� Note that the control signal for capturing in the PC
register should be modified as shown below:

� RUN signal will be 0 when we are in a waiting state.
Fetch3bus.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٣٣

3-Bus CPU: Add R1, [R3]

� Execution control sequence for ADD R1, [R3] (R1← R1
+ [R3]):

� The number of clock cycles for the ADD instruction is 4
in the three-bus CPU, including the fetch clock cycles,
while it is 7 in the single-bus CPU, and 6 in the two-bus
CPU.

� Thus, there is a significant speedup gain in the number
of clock cycles required to execute the ADD instruction.

Add3bus.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٣٤

3-Bus Speedup

� Clock period in 3-bus CPU equal to that in 2-Bus CPU as
signals propagate through A and B buses in parallel.

� It requires two-bus propagation delays like the 2-Bus
CPU.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٣٥

3-Bus: Unconditional & Cond. JMP

� Execution control sequence for the JMP Label instruction

� Execution control sequence for the JMPN Label
instruction:

� Signal PCin becomes 1 conditionally based on the sign
flag (N).

� PCin becomes 1 if N=1 and we are in T3 of the JMPN
instruction.

Jmp3bus.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٣٦

Control Unit Design

� The control unit generates the control signals required to
perform an operation in the proper sequence.

� All the signals that control the operation of the data path
are generated by the control unit.

� Signals generated by the control unit are uniquely
determined by:
� Contents of control step counter: each state, or count,

corresponds to one of the time steps required in the sequence.

� Contents of the instruction register: specifies the type of the
instruction to be executed as specified by the opcode.

� Contents of the condition code and other status flags: signals
from data path like Sign Flag, Zero Flag, ... etc., and other
signals like MFC, interrupts, ... etc.

٧

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٣٧

Control Unit Design

� Control unit can be designed using any of the following
approaches:
� Hardwired Controller: uses combinational logic to produce

control signal outputs.

� Microprogrammed Controller: control signals are generated by a
program similar to machine language programs.

� The two approaches have tradeoffs in terms of area,
speed, and flexibility.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٣٨

Hardwired Control Unit Design

� The general hardwired control unit organization is shown
below:

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٣٩

Hardwired Control Unit Design

� Control step counter: used to keep track of the control
step we are currently in.
� Let n be the maximum number of control steps required for

implementing any instruction in the CPU.

� Size of control step counter is k=log2 n bits.

� Step Counter Decoder: step counter feeds an n x 2n

Decoder to generate n control step signals T1, T2, ...,Tn.

� Instruction decoder: used to decode opcode of IR to
generate a signal for each instruction.

� Encoder: combinational logic that implements the
equation for each control signal based on the control
step signals, the instruction signals, and the flags.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٤٠

Hardwired Control Unit Design

� END signal is connected to a synchronous reset input of
the control step counter.
� When END=1 in a control step, on the next rising-edge of the

clock the counter resets to 0 and hence T1 becomes 1, i.e. the
control unit goes to T1 to start the fetch process.

� Run signal is ANDED with the clock to control the step
counter clock.
� When Run=0, the clock feeding the step counter will be 0 and

the counter will not increment.

� When Run=1, the counter increments on the rising-edge of the
clock.

� Run signal controls waiting until the memory finishes its
operation and not go to the next control step.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٤١

Generation of Control Signals

� For each signal, we need to find all the conditions that
make it 1 by considering all the control steps that require
the signal to be 1 and derive the equation for it.

� Let us derive the equation for the Zin signal considering
only the instructions ADD R1, [R3], JMP Label, and
JMPN Label for the single-bus CPU.

� Zin = T1 + T6 . ADD + T5 . JMP + T5 . JMPN

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٤٢

Generation of Control Signals

� The equation for the END signal can be derived as:

END = T7 . ADD + T6 . JMP + T4 . N’ . JMPN +
T6 . N . JMPN

= T7 . ADD + T6 . JMP + T4 . N’ . JMPN + T6 . JMPN

٨

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٤٣

Deriving Rout & Rin Signals for
Registers

� The designer needs to write execution control sequence
in general such that the source and destination operands
can be any register.

� Rout and Rin signals are derived by the control unit after
the instruction is fetched and the operands are known.

� The general execution control sequence for the
instruction ADD R0, R1 on the 1-bus CPU:
� T4 Rsrc,out, Yin

� T5 Rdst,out, ALU (C=A+B), Zin

� T6 Zout, Rdst,in, END

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٤٤

Deriving Rout & Rin Signals for
Registers

� Control unit will generate three general signals Rsrc,out,
Rdst,out, and Rdst,in.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٤٥

CPU-Memory Interface Circuit

� CPU-Memory interface includes data bus, address bus
and some control signals including Read, Write, and
Memory-Function-Complete (MFC).

� The CPU is interfaced to the data bus and address bus
through the MDR and MAR registers, respectively.

� In addition to this interface, there is a need for a CPU-
Memory interface circuitry to manage their interaction.

� It is required that the CPU keeps the Read or Write
signal set until the memory finishes the requested
operation.

� One the MFC is set to 1, then the Read or Write signal
can be set to 0.

CpuMemInterf.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٤٦

CPU-Memory Interface Circuit

� A versatile CPU can communicate with main memory
modules of different speeds
� A fast memory can be accessed within a single clock cycle

� Slower memory may require several clock cycles

� The CPU-memory interface circuit should handle both
fast and slow memories.

� Recall that internal signals generated by the control unit
are active for one clock cycle during a given control step.

� Slow memory has to see those signals for more than one
clock cycle.

� CPU-memory interface circuit has to keep Read or Write
signals set to 1 until the MFC signal becomes 1.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٤٧

CPU-Memory Interface Circuit

�MFC signal assumed to change value on falling-edge of
clock.

� Control unit is rising-edge triggered and changes values
of control signals on rising edge of clock.

� CPU-Memory Interface Circuit:

CPU MEM interaction dynamic_new.swf

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٤٨

CPU-Memory Interface Circuit

� Read signal is connected to a 2-input AND gate, a JK-
flip-flop, and a 2-input OR gate.

� This circuitry is designed to keep the Read signal 1
when set until the MFC is set to 1.

� Once the MFC signal becomes 1 on the falling-edge of
the clock, Read signal goes to 0 on the next rising-edge
of clock.

� Negative edge-triggered D-flip-flop used to make Read
signal change value on negative edge of clock.

� Note that MAR loads the value on the negative-edge of
the clock. Thus, Read signal and address seen by
memory at same time.

٩

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٤٩

CPU-Memory Interface Circuit

� A similar circuit is implemented for the Write signal to
achieve the same functionality.

� Additional functionality of CPU-Memory interface circuit
is to make control unit remain in same control step when
a Read or Write operation were requested and memory
did not finish its function (i.e. MFC did not become 1)
and WMFC signal is 1.

� This is achieved by adding a 2-input OR gate that Ores
the R and W signal to indicate that a Read or Write
signal is requested. This is connected to a 3-input Nand
gate generating the RUN signal.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٥٠

CPU-Memory Interface Circuit

� The RUN signal is ANDED with the clock and controls
the clock of the step counter.

� If RUN is 0, step counter is not clocked and will remain in
the same control step.

� RUN becomes 0 if there is a Read or Write operation
and the memory did not finish its operation (MFC=0) and
the WMFC=1.

�When MFC becomes 1 on falling-edge of clock, RUN
becomes 1, so on next rising-edge of clock, control step
counter increments and goes to the next control step.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٥١

CPU-Memory Interface Circuit

� Consider following
sequence of control
steps:
� T1 Read, WMFC

� T2 Write

� T3 WMFC

� T4

�Write request in T2
is not seen in T2
since T1 has a
WMFC signal.

Timing Diagram for Control Sequence

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٥٢

CPU-Memory Interface Circuit

� Read or Write request will not be seen in a cycle
following a cycle that has a WMFC signal. The request is
delayed by one clock cycle.

� To make sure that whenever we have a Read or Write in
a cycle that MR or MW will be set to 1 in the same cycle,
do not have a Read or Write signal in a cycle directly
following a cycle that has WMFC signal.

�WMFC signal can not be in the same cycle with END
signal. This is because the next cycle, T1, has a Read
signal.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٥٣

Microprogrammed Control Unit

� In microprogrammed control unit design, control signals
are generated by a program similar to machine language
programs.

� Control unit stores the values of signals in memory
instead of computing them.

� Every control signal is allocated a bit in memory, and if
the signal is to be 1, the bit will store a 1; otherwise it will
store a 0.

� Suppose that the control unit needs to generate 20
control signals. Then, 20 bits are allocated for each
memory address.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٥٤

Microprogrammed Control Unit

� Each memory address will store the signal values for a
particular clock cycle. For example, memory address 0
will store the signal values for clock cycle T1.

� The word whose bits represent the various control
signals required is called Control Word (CW).

� An individual control word is also called Microinstruction.

� A Microroutine is sequence of control words
corresponding to control sequence of machine
instruction.

� The Control Store stores microroutines for all instructions
in instruction set of a computer.

١٠

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٥٥

Microprogrammed Control Unit

� Consider the control sequence for instruction ADD R1,
[R3] (R1← R1 + [R3]) for the single-bus CPU:

�We can store the required control signals for this control
sequence in memory as follows:

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٥٦

General Microprogrammed Control
Unit Organization

� uPC: holds the address of
next contol word to be
fetched from the control
store.

� Incrementer: to increment
the uPC.

� Control Store: to store the
microroutines for all
instructions.

�Microinstruction register
(uIR): to hold the fetched
microinstruction.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٥٧

General Microprogrammed Control
Unit Organization

� Programmable logic array (PLA): mapping opcode filed
of IR to starting address of microroutine of instruction.

� 4x1 Multiplexer: The uPC can be loaded from:
� The incremented uPC.

� The output of the PLA.

� An external source. This allows the uPC to be initialized to a
starting value to begin instruction fetch, interrupt service, or
reset.

� Branch address field from the current microinstruction. This
allows unconditional and conditional microbranches.

� Sequencer: combinational circuit to control 4x1 MUX
select lines based on microbranch control signals from
microinstruction and flags.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٥٨

Control Word Format

� The control store contains three
kinds of fields in each control
word:
� Control signal field, C bits: used to

store the control signals such as
PCin, MARout, etc., with 1 bit for
each control signal.

� Branch address field, n bits: used to
store the microbranch address,
where n is the number of bits in the
uPC.

� Branch control field, k bits: contains
various signals to control branching
in microcoded control unit.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٥٩

Branching Controls

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٦٠

Microcode Branching Example

� Control word at address 200: Since the Mux Select bits are 00, the uPC
incrementer is selected.

� Control word at address 201: Mux setting of 01 selects PLA output address
and unconditionally since BrUn=1.

� Control word at address 202: Has Mux setting of 10 and BrZ bit set. So the
branch will be taken to address on external lines provided the Z signal is
set.

� Control word at address 203: Branch to microaddress 300 if the N bit is set.

� Control words at address 204 and 205: Implement a while loop.

١١

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٦١

Hardwired vs. Microprogrammed
Control Unit

� Each approach has advantages and disadvantages
when performance and cost are compared.

� Speed: Hardwired is the best approach when speed of
operation is most important.

� Flexibility of use: Microcoding provides considerable
flexibility in implementing instruction sets and facilitates
adding new instructions to existing machines.

� Ease of prototyping: Microprogramming can be used for
rapid prototyping of new designs or emulating several
instruction sets.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٦٢

Hardwired vs. Microprogrammed
Control Unit

� Complex Instruction Set Computers (CISC), e.g. Intel
family of processors (i.e. 8086, Pentium, etc.), use
microprogrammed control unit design approach.

� Reduced Instruction Set Computers (RISC), e.g. SUN
SPARC processors, use hardwired control unit design
approach.

� Improving Performance of Microprogrammed Control
Unit:
� Use very fast memory for control store

� Use prefetching: fetch the next microinstruction while the current
one is being executed.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٦٣

Simple CPU Design Example

� Design a CPU with the following specifications:
� The CPU has four instructions with a fixed size format; each

instruction is 8-bits long.

� The instructions are listed below where AX is a 6-bit register and
C is a 6-bit constant.

� The instruction format is as shown below:

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٦٤

Simple CPU Design Example

� It has one programmer accessible register, AX.

� It is a 6-bit machine with 8-bit data bus and 6-bit address
bus.

� It has an adder/subtractor with two inputs:
� Cin: If 1 the carry-in is 1, otherwise it is 0.

� OP: If 0 addition is performed, otherwise subtraction is
performed.

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٦٥

Data Path Design & Control Sequence

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٦٦

Hardwired Control Unit

١٢

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٦٧

Microprogrammed Control Unit

� For this design, we do not need branching in the
microinstructions. So, there is no need for the uBranch
address and the uBranch control signals.

� It is sufficient to use a 2x1 multiplexer with one input
selected from uPC incrementer and other input selected
from PLA. So, one mux select signal is needed.

� This design has 16 control signals to be generated. So,
the number of bits in the CW is 17 bits. The format of the
control word is shown below:

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٦٨

Content of Control Store

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٦٩

PLA Design

� we need to design the PLA to provide the mapping
between the opcode and the address bits:

� Using K-map simplification, the following equations for
the PLA output can be found:

Introduction to CPU Design Computer Organization & Assembly Language Programming slide ٧٠

Microprogrammed Control Unit

