
Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011 125

Implementation of a pipelined modular multiplier architecture for

GF(p) elliptic curve cryptography computation

ADNAN ABDUL-AZIZ GUTUB
*
, ABDUL-RAHMAN M. EL-SHAFEI

**
 AND MOHAMMED

A. AABED
**

*
Center of Research Excellence in Hajj and Omrah, Umm Al-Qura University, Makkah, Saudi Arabia.

Associate Researcher, Center of Excellence in Information Assurance (CoEIA), King Saud University,

Riyadh, Saudi Arabia.Email: aagutub@uqu.edu.sa

**

Computer Engineering Department, King Fahd University of Petroleum & Minerals (KFUPM),

Dhahran, Saudi Arabia

Abstract

This paper reflects the achievement of improved results in terms of cost for Pipelined

Crypto Modular Multiplier Architecture when compared with its earlier versions of

Parallel Crypto Architecture. The improved pipelined modular multiplier is implemented

on Field Programmable Gate Array (FPGA), designed in four stages to be properly

suitable for elliptic curve crypto computation. To avoid inversion complexity, the elliptic

computations arithmetic utilizes projective coordinates instead of the normal affine

coordinates. We adjusted the elliptic curve crypto addition operation with efficient

scheduling for this pipelining.

The proposed hardware is compared to the previous parallel (non-pipelined)

models that were similarly designed. All considered architectures have been synthesized

for 160-bits operations showing interesting features. Detailed results showed that this

work gave overall efficiency in the cost, which shows a promising direction for further

research.

Keywords: Cryptography hardware (Crypto Hardware); Elliptic curve cryptography

(ECC); Parallel crypto architecture (Parallel Crypto Arch.); Pipelined crypto architecture

(Pipelined Crypto Arch.); Projective coordinate cryptosystems (Proj. Crypto Sys.)

Introduction

Encryption used to be considered a very mysterious subject. It seemed to have no

important practical applications outside the government/military world and was

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 126

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

considered a harmless mathematical diversion if anyone else should pursue it. However,

in today's world where everything we do is recorded on computers and all computers are

linked to the Internet (and thus to each other), we find that encryption is of vital

importance in many areas, such as the protection of privacy and confidentiality,

transmission of secure information (e.g. credit card details), and to provide authentication

of the sender of a message or even authenticate the time that message was sent. At the

same time, law enforcement authorities worry that if everyone routinely kept their

personal records encrypted, evidence held under a search warrant would be unusable. For

this reason, they have tried to limit the ability of the general public to use strong

(unbreakable) encryption. Therefore, the study of information security and cryptosystems

has become an urgent need and a rich field of research and contribution. To cope with

these challenges, one of the key areas has been the focus of research in the last two

decades and is addressed in this work, Elliptic Curve Cryptography (ECC).

The study of elliptic curves by algebraists, algebraic geometers and number

theorists dates back to the middle of the nineteenth century. The existence of an extensive

literature describes the beautiful and elegant properties of these marvelous objects. In

1984, Hendrik Lenstra described an ingenious algorithm for factoring integers that relies

on properties of elliptic curves (ECs). This discovery prompted researchers to investigate

other applications of ECs in cryptography and computational number theory.

Public-key cryptography was conceived in 1976 by Diffie and Hellman. The first

practical realization followed in 1977 when Rivest, Shamir and Adleman proposed their

now well-known RSA cryptosystem, in which security is based on the intractability of the

integer factorization problem. ECC was discovered for crypto usage in 1985 by Neal

Koblitz and Victor Miller. Elliptic curve cryptographic schemes are public-key

mechanisms that provide the same functionality as RSA schemes but with less

computation. Over the years, researchers have developed techniques for designing and

proving the security of RSA, Discrete Logarithm (DL) and EC protocols under

reasonable assumptions. The fundamental security issue that remains is the hardness of

the underlying mathematical problem that is necessary for the security of all protocols in

a public-key family: the integer factorization problem for RSA systems, the discrete

logarithm problem for DL systems, and the elliptic curve discrete logarithm problem for

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 127

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

ECC systems. The perceived difficulty of these problems directly impacts performance,

since it dictates the sizes of the domain and key parameters. That in turn affects the

performance of the underlying arithmetic operations. The security of these schemes is

based on the difficulty of a different problem, namely the elliptic curve discrete logarithm

problem (ECDLP). Currently the best algorithms known to solve the ECDLP have fully

exponential running time, in contrast to the sub-exponential time algorithms known for

the integer factorization problem. This means that a desired security level can be attained

with significantly smaller keys in elliptic curve systems than is possible with their RSA

counterparts. For example, it is generally accepted that a 160-bit elliptic curve key

provides the same level of security as a 1024-bit RSA key. The advantages that can be

gained from smaller key sizes include speed and efficient use of power, bandwidth, and

storage.

ECC computations are performed in hardware as well as software, where

hardware ECC computations have been proved to be faster and more efficient (Gutub

2006). This work proposes improving ECC hardware by pipelining its modular multiplier

that is implemented on FPGA. We tune the used modular multiplier as a 4-stage pipeline

suitable for elliptic curve crypto computation. To avoid inversion complexity, the elliptic

computations arithmetic utilizes projective coordinates instead of the normal affine

coordinates as proved by Gutub (2006), i.e. the proposed architecture considers

representing the elliptic curve points as projective coordinate points in order to reduce the

number of all inversion operations to one. We also adjusted the elliptic curve crypto

addition operation with efficient scheduling for correct pipelining. Our proposed

hardware is compared to parallel (non-pipelined) models designed very similarly to

ensure fair comparisons and conclusions.

The flow of the paper will be as follows: first we provide some background

behind the security of ECC and elliptic curve crypto computations. This section will also

provide an example of simple procedure for using ECC for encryption and decryption.

Several available techniques for implementing ECC at high-speed are explored in the

section to follow. All ECC design schemes are to sustain the high throughput required by

applications, where hardware-based designs are shown as the solution reaching

acceptable performance-cost ratio. Section 4 describes the ECC scalar multiplication

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 128

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

concept and algorithm, which is detailed and reconsidered within this work as coordinate

systems (Section 5). Section 6 covers designing the hardware components used with the

modules data flow that is improved for this architecture. The proposed pipelined design is

detailed in Section 7. Section 8 elaborates in the pipelining stages derivation proofing the

accuracy of the proposed design. The hardware implementation and simulation results are

given in Section 9 followed by the comparison and analysis remarks (Section 10).

Finally, Section 11 concludes the work.

Way to ECC

This section provides background behind the security of elliptic curve crypto

computations. It also provides an example of a simple procedure for using ECC for

encryption and decryption.

The cryptographic protocols generally serve very similar objectives and are based

on almost same principles (Blake et al., 1999). They contain a function which, by means

of a parameter called the encryption key, can be easily computed. The inverse of this

function is hard to compute unless a trapdoor function (a second key corresponding to the

former one) is known. A general assumption made during the analysis of the security of a

system is that all information about the system except the trapdoor key are known by the

adversary. The previously mentioned group of public and private key systems is based on

the way these keys are generated and kept.

In a private key system, encryption and decryption are performed using the same

key which should be kept secret, otherwise the system is broken. In public key

cryptosystems, encryption and decryption are done using two different keys. One of the

keys is published and the other is kept secret. When one party is going to sign a message,

the encryption key is kept secret but the key to verify the signature will be published. On

the other hand, when a secret message is to be sent, the encryption key will be published

while the key to open the message will be kept secret by the owner. For example, when

messages sent to a user are encrypted by his public key, he is the only person who has

access to the corresponding private key and can decrypt the message. There are several

types of public key cryptosystems. A major group of these systems is based on the

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 129

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

difficulty of solving the discrete logarithm problem, which is the basic security feature

behind Elliptic Curve Cryptography (ECC).

ECC bases its security on the difficulty in solving the discrete logarithm problem

(DLP). ECC’s main operation can be simplified to the sum of elliptic curve points, i.e.

the ECC operation is to compute point Q given point P, where Q=kP and this kP is

interpreted as the sum of points P+P+…..+P+P (k-times). Here, the points P and Q

should satisfy an elliptic curve equation defined on a finite field (a finite set of elements

that satisfies some axioms). The logarithm discrete problem is now defined: Given the

points P and Q, find the integer k such that Q=kP. This point summation operation (kP)

is called scalar multiplication. The difficulty in solving this conjectured problem

increases as the number of elements (valid points) increase.

There are many ways to apply elliptic curves for encryption/decryption purposes.

In its most basic form, users randomly chose a base point (x,y) lying on the elliptic curve

E. The plaintext (the original message to be encrypted) is coded into an elliptic curve

point (xm,ym). Each user selects a private key 'n' and computes his public key P=n(x,y).

For example, user A’s private key is nA and his public key is PA=nA(x,y). For anyone to

encrypt and send the message point (xm,ym) to user A, he/she needs to choose a random

integer k and generate the ciphertext Cm={k(x,y),(xm,ym)+kPA}. The ciphertext pair of

points uses A’s public key, wherein only user A can decrypt the plaintext using his private

key. To decrypt the ciphertext Cm, the first point in the pair Cm, k(x,y) is multiplied by A’s

private key to get the point: nA(k(x,y)). When this point is subtracted from the second

point of Cm, the result will be the plaintext point (xm,ym). The complete decryption

operations are [(xm,ym)+kPA]-A[k(x,y)]= (xm,ym)+k[nA(x,y)]- nA[k(x,y)]= (xm,ym).

The most time consuming operation in the encryption and decryption procedure is

finding the multiples of the base point (x,y). The approach used to implement this is

discussed in the Section 4, after covering the literature review of Section 3.

Literature review

Elliptic Curve Cryptography (ECC) is gaining increased research acceptance and has

lately been the subject of several standards (Tawalbeh et al., 2010). This interest is

mainly due to the high level of security with relatively small keys provided by ECC. To

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 130

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

sustain the high throughput required by applications such as network servers, high speed

implementations of public-key cryptosystems are needed. For that purpose, hardware-

based processors or accelerators are often the optimum solution for reaching an

acceptable performance-cost ratio. The fundamental question that arises is how to choose

the appropriate efficiency–flexibility tradeoff. In this section, techniques for

implementing ECC at a high speed are explored.

Some studies deal with architectures using only one field size and one hardwired

irreducible polynomial (or modulo). This polynomial is of course inconsistent through

reconfiguration of reconfigurable platforms. A fully hardwired asynchronous Applicaion-

Specific Integrated Circuit (ASIC) design is presented by K. Ja'rvinen et al. (2004). It is

based on a special Optimal Normal Basis (ONB) multiplier. Another similar ASIC

implementation, based on synchronous polynomial basis multiplier, can be found in

(Sozzani et al., 2005). Designs for curves defined over GF(p) finite fields are explained

in Batina et al., (2004), McIvor et al. (2004), Orlando & Paar, (2001) and Ors et

al.(2003), where all use Montgomery multiplications. Three architectures (Bantina et al.,

2004; Orlando & Paar, 2001; Ors et al., 2003) use systolic array Montgomery modular

multipliers while the design in McIvor et al., (2004) uses Montgomery multiplication

based on parallel schoolbook multipliers. A systolic array Montgomery modular

multiplier is also modeled by N. Mentens et al. (2004) but for GF(2
m

) curves. Other

research work using reconfigurable hardware can be found in Bajracharya et al. (2004)

and Nguyen et al., (2003). They focus on an efficient hardware/software partition for the

scalar multiplication. Reconfigurable architectures based on digit-serial polynomial basis

multiplier can be found in Ansari & Hasan (2006), Lutz & Hasan (2004), Orlando & Paar

(2000) and Shu et al., (2005). The research by Ansari & Hasan (2006) also mentions

ASIC results performing the fastest implementation. Saqib (2004) presented utilizing

Hessian elliptic curves from Smart (2001) but they were used in order to extract more

parallelism. The same design using the DLP is presented by Saqib et al. (2004).

Nevertheless, the low frequency of this design shows that large multipliers must be

handled with special care. More about Karatsuba multipliers can be found in Dyka &

Langendoerfer (2005), Gathen et al., (2005) and Rodríguez-Henríquez & Koç (2003).

Considering several designs, the hardware shown by Ansari & Hasan (2006) seems to be

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 131

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

the best representative of a high-speed architecture using a hardwired irreducible

polynomial, a single field size, and an unknown base point P. It is a pipelined and parallel

structure based on a large Most Significant Digit (MSD)-first multiplier and an accurate

scheduling of the DLP algorithm.

The Sakiyama et al. (2007) work presents a reconfigurable curve-based crypto-

processor that accelerates scalar multiplication of ECC and Hyper Elliptic Curve

Cryptography (HECC) of genus 2 over GF(2
m

). By allocating several copies (say x) of

processing cores that embed reconfigurable Modular Arithmetic Logic Units (MALUs)

over GF(2
m

), scalar multiplication of ECC/HECC can be accelerated by exploiting

Instruction-Level Parallelism (ILP). The supported field size can be arbitrary up to a limit

related to the number of cores, i.e. up to x(n+1)-1 . The super-scaling feature is facilitated

by defining a single instruction that can be used for all field operations and point/divisor

operations. Chen et al. (2007) presented a high-performance elliptic curve cryptographic

processor for GF(p) general curves which featured a systolic arithmetic unit. The work

proposed a new unified systolic array that efficiently implements addition, subtraction,

multiplication and division. At the system level, the control dependencies in the operation

sequence and the mismatched communication between the systolic array and the separate

storage would stall the pipeline in the systolic array. The design avoided these pipeline

stalls successfully using optimization methods. The processor is synthesized in 0.13-

micron standard-cell technology. It required 1.01-ms to compute a 256-bit scalar

multiplication for general curves over GF(p).

Kumar et al. (2006) showed different architectural enhancements in a Least

Significant Digit (LSD) multiplier for binary fields GF(2
m

). They proposed two different

architectures: the Double Accumulator Multiplier (DAM), and N-Accumulator Multiplier

(NAM), which are faster than traditional LSD multipliers. The evaluation of the

multipliers for different digit sizes gave best choices and showed that currently used digit

sizes are not efficient. The paper suggested that one should always use the NAM

architecture to get the best timings. Considering the time area product, DAM or NAM

gave the best performance depending on the digit size.

A GF(p) processor suitable for RSA, DSA and ECDSA is presented by K. Itoh et

al. (1999). It is based on a Montgomery multiplier with a 16-bit digit size, implemented

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 132

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

in a TMS320C6201 DSP (digital signal processor) hardware. Another processor using

MAC2424 (24x24-bit) for GF(p
10

) OEF is presented by Chung et al. (2000). It includes

an interesting analysis of the pre-computation needed by the signed window scalar

multiplication method. More about GF(p
m

) arithmetic can be found in Bertoni et al.

(2003) and Bajard et al. (2003). Two 64-bit dual-field processors can be found in Eberle

et al. (2004) and Satoh & Takano (2003). They also use Montgomery multipliers and are

both able to compute integer and binary polynomial arithmetic (for GF(p) and GF(2
m

)).

In particular, RSA, DSA, ECDSA and DH are supported. The architecture proposed in

Satoh & Takano (2003) is an ASIC, while Eberle et al. (2004) is implemented on FPGA

with ASIC extrapolations. The work in Eberle et al. described an architecture based on a

64-bit datapath with its core based on a 64x64-bit multiplier able to process both integer

and binary polynomial arithmetic. The processor currently implements the main public-

key protocols like RSA, DSA, ECDSA and DH with arbitrary key sizes and curves.

Scalar multiplication

The ECC algorithm used for calculating nP from P is based on the binary method. The

algorithm used for scalar multiplication is based on the binary method (Gutub, 2006;

Gutub & Ibrahim, 2003), since it is efficient for hardware implementation. The binary

method algorithm is shown below:

Inputs: k: a constant , P: point on the elliptic curve

Output: Q: another point on the elliptic curve, Q=k . P

Define: w: number of bits in k, where ki is the i
th

 bit in k

If kw-1:=1 then Q := P else Q := 0;

for i:= w-2 down to 0 do

 Q := Q + Q; Point Doubling

 If kw-1=1 then Q := Q + P; Point Addition

Return Q;

Basically, the binary method algorithm scans the bits of n and doubles the point Q k-

times. Whenever a particular bit of n is found to be one, an extra operation is needed.

This extra operation is Q+P. As a result, adding and doubling elliptic curve points are the

most basic operations in each iteration. The point addition and doubling requires

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 133

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

performing inversion operations. It is known that these inversion operations are the most

expensive operations since their cost is equivalent to 9~30 modular multiplications

(Gutub & Ibrahim, 2003); i.e., inversion is extremely slow, which made researchers

generally try to avoid it if possible. The use of coordinate systems other than the Affine

coordinate system (which will be illustrated later) greatly reduces the number of

inversions required in the operations of the scalar multiplication on the expense of extra

multiplications.

ECC effectively uses point doubling and addition operations in the arithmetic

execution. The optimized formulae available for these operations eliminate the costly

field inversion from the main loop of the scalar multiplication; i.e. fast operations are

achieved by using projective coordinates (Gutub, 2006). However, the operation in

projective coordinates involves more scalar multiplication than in affine coordinate and

ECC on projective coordinates, and will be efficient only when the implementation of

scalar multiplication is much faster than a multiplicative inverse operation. Therefore,

transfer is needed from one coordinate to another for avoiding the inversion process cost.

The following section is dedicated to illustration of the coordinate systems structure used

for these purposes.

Coordinate systems

An elliptic curve can be represented by different coordinate systems. Following are

descriptions of two coordinates, i.e. affine coordinate and standard projective coordinate

procedures (Miyaji, 1992). This standard projective coordinate system is found

appropriate for parallel implementation, as detailed in Gutub & Ibrahim (2003), which

led to our choice for this proposed pipelined hardware.

Affine coordinate:

Let E be an elliptic curve over GF(p), has the following equation:

E: y
2
=x

3
+ax+b (mod p),

where a and b are constants satisfying 4a
3
+27b

2
≠0 (mod p).

Let P=(x1,y1), Q=(x2,y2), and P+Q=(x3,y3), be points of E(GF(p)) ,

1 Addition formula: x3=
2
-x1-x2, y3=(x1-x3)-y1, where =(y2-y1)/(x1-x2)

2 Doubling formula: x3=
2
-2x1, y3=(x1-x3)-y1, where =(3x1

2
+a)/(2y1)

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 134

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

Addition time = 1 Inversion + 1 Squarings + 2 Multiplications + 6 Subtractions

Doubling time = 1 Inversion + 2 Squarings + 2 Multiplications + 1 Addition +

3 Subtractions

Standard projective coordinate:

For standard projective coordinates, we set x=X/Y and y=Y/Z, giving the equation:

E: Y
2
Z=X

3
+aXZ

2
+bZ

3
(mod p) ,

Let P=(X1,Y1,Z1), Q=(X2,Y2,Z2) and P+Q=(X3,Y3,Z3) be points of E(GF(p)) ,

1 Addition formula: X3= vA , Y3= u(v
2
X1Z2 – A) – v

3
Y1Z2 , Z3=v

3
Z1Z2

where, u = Y2Z1 – Y1Z2 , v = X2Z1 – X1Z2 , A = u
2
Z1Z2 – v

3
 – 2v

2
Y1Z2

2 Doubling formula: X3= 2hs , Y3= w(4B-h) – 8s
2
Y1

2
 , Z3=8s

3

where, w = aZ1
2
+3X1

2
, s = Y1Z1, B = X1Y1s , h = w

2
-8B

Addition time = 12 Multiplications + 4 Subtractions

Doubling time = 7 Multiplications + 1 Addition + 1 Subtraction

The work in Gutub & Ibrahim (2003) proposed running these ECC point

operations with projective coordinates on hardware with parallel multipliers. It was found

that four parallel multipliers would give the maximum parallelization with the least

number of multiplication steps as proven in Tawalbeh et al. (2010). We, in this work, are

concentrating on the implementation of the ECC point addition operation for comparison

purposes. Figure 1 shows a rearranged ECC point addition data flow graph assuming 4

parallel multipliers. The computation through this data flow graph (Figure 1) requires 4

steps of modular multipliers and 4 steps of modular adders.

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 135

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

Fig. 1: Projecting (X,Y) to (X/Z,Y/Z) adding two points data flow.

Related hardware components

This section introduces the designs and algorithms considered for studying our pipelined

hardware. We give a brief idea about modular addition first, followed by modular

multiplication. Figure 2 shows the design implemented for modular addition operations in

this model, extracted from the previous work by Gutub (2006).

Fig. 2: Non-pipelined modular adder.

Ripple Carry

Adder

Ripple Carry

Adder

Carry-save

adder

MUX

YX-M

(X+Y) mod M

X Y

carry

C S

0 1

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 136

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

To obtain a pipelined implementation of this adder, it has been divided into two

stages, as shown in Figure 3. The Ripple Carry Adders (RCAs) are split into two

modules, each of which is a separate stage. The two RCAs in Figure 3 are divided into

two stages using latches as shown in Figure 4. Note that this block diagram is a

simplified example of a 6-bit operation.

Fig. 3: Modular adder pipelined into two stages

Fig. 4: 6-bit Ripple Carry Adder divided into two stages

As was mentioned earlier, the multiplication process is the most sophisticated and

time consuming process in the ECC systems. Thus, optimizing the multiplier design and

delay is a fundamental requirement for system efficiency. The straightforward approach

to compute modular multiplication is by performing multiplication followed by reduction

(Gutub, 2007). The multiplication can be computed through several addition operations.

Then, the reduction is performed through several subtractions, by subtracting the

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 137

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

modulus several times, until the result is less than the modulus. This approach is

inefficient and suffers from very low speed. It can, however, be improved by merging

modulo subtraction with the multiplication-add operations (Gutub, 2007), as in the

algorithm below.

Define k: number of bits in x; xi: the i
th

bit of x

Input: x,y, and n; where x,y < n;

Output: P = xy mod n

1. P := 0;

2. For i = k-1 down to 0;

3. {

4. P:= 2P;

5. If P n Then P:= P – n ;

6. If xi = 1 Then

7. {P := P + y;

8. If P n Then P:= P – n};

9. }

10. End;

The algorithm above is for GF(p) modulo multiplication and found to be very appropriate

for hardware implementation (Gutub, 2007). It has a bounding ‘for’ loop, which includes

iterative modulo multiplication reduction operations. The bounding loop can be designed

in hardware as a controller that will control the number and processes of the iterations.

The modulo multiplication reduction is implemented in hardware with three adders and

three multiplexers connected, as shown in Figure 5. There are no registers in the

hardware design; the small boxes shown are symbols to clarify the mapping of bit-flow.

The adder can function as a subtractor by inverting one of its inputs. The complete

process of x.y mod n will need k clock cycles, if each modulo reduction iteration is

performed in one clock cycle. The multiplication of P by two (as in step 4 of the

algorithm above) is performed by a shift to the bits of P toward the left. The multiplexers

Mux-1 and Mux-3 are controlled by the subtractor’s output-carry-bit. Therefore, the

complete subtractions are to be made for the Mux to give the output. The reader is

referred to Gutub (2007) for more details.

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 138

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

Fig. 5: Modular non-pipelined multiplier.

 Proposed pipelined multiplier design

We propose improving the previous ECC design in Figure 6, detailed by Gutub &

Ibrahim (2003), into a new 4-stage pipelined modular multiplication approach as shown

in Figure 7. The design is similar in principle to our previous pipelined design in Gutub

(2006); however, its architecture components are designed based on pipelining the

standard projective coordinates which makes it an improved hardware with multipliers of

four new stages. Each stage contains a different modular multiplication operation. Each

multiplication operation loops through all stages k-times.

Fig. 6: Previous parallel architecture.

P

n

y

xi

result

k

k

k

k

MSB 0

k

y

Adder

LSB 0

k

P

0 MSB

k

n

Subtractor-1

Mux-1 0

1

Mux-20

1

Subtractor-2

Mux-3 0

1
(ignored)MSB

k+1

xi

k+1

k+1

k+1

k+1

k+1

k+1 k+1

2P

2P-n

2P

Carry-out-bit

Carry-out-bit

2P n

y

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 139

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

Fig. 7: Proposed pipelined architecture.

The modular adder consists of four k/2 digit carry-propagate adder and three

(k/2+1) digits carry-propagate adder. The modular multiplication can accommodate a

maximum of 4 different multiplication stages (Figure 8), where each multiplication can

be processed independently from other multiplications timings. However, new modular

multiplication does not start looping through the pipeline until stage 1 is free. The output

is delivered from stage 4 after 4k cycles, as shows in Figure 8.

Fig. 8: Pipelined modular multiplier staged cycle

It should be noted that the control box is used to select when a new modular

multiplication operation will be inserted. It also controls the looping of existing

operations to complete 4k cycles. The control box will allow a new multiplication

operation if no current multiplication operation occupies this stage. If all stages are busy,

Stage 1

S
ta

g
e
 2

S
ta

g
e
 4

Stage 3

Cycle

k-times

Input Operands

A, B

Output

Z

If stage1 is busy,

stall the inputs

until this stage is

free.

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 140

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

the inputs will be stalled. Figure 9 shows the design implemented for the pipelined

modular multiplication operations in our proposed model.

Fig. 9: Modular pipelined multiplier.

Figure 9 shows the four stages and where each stage needs to finalize its outputs for the

next stage to start its operation accurately. Stage 1 processes the inputs at the first cycle;

it contains two adders connected through multiplexers to direct the data correctly, i.e.

either from as new inputs or as fed back from Stage 4 as an intermediate result. Note that

Stages 2, 3, and 4 are also made up of adders that work together as a pipeline; they are

following the k-times cycle shown in Figure 8 until the output is ready and to be taken

from connection Z at Stage 4.

Derivation of pipelined point addition framework

The procedure for standard projective coordinates point addition can be defined

corresponding to the registers as detailed in the following register sequence:

R1=Y1Z2 R2=Y2Z1 R3=X1Z2 R4=Z1X2 R5=R2-R1 R6=R3+R4

R7=R4-R3 R8=R7Z2 R9=R5R5 R10=R7R7 R11=Z1Z2 R12=R4R10

R13=R8R10 R14=R11R9 R15=R6R10 R16=R14-R15 R17=R12-R16 R18=Y1R13

R19= Z3 =Z1R13 R20=R5R17 R21= X3 =R16R7 R22= Y3 =R20-R18

K/2

Adder
C

o

S

x Y

C
i

K/2

Adder
C

o

S

x Y

C
i

K/2+1

Adder
C

o

S

x Y

C
i

K/2

Adder
C

o

S

x Y

C
i

K/2+1

Adder
C

o

S

x Y

C
i

K/2

Adder
C

o

S

x Y

C
i

K/2+1

Adder
C

o

S

x Y

C
i

-N
L

control

0

x
i
Y

L

a
i
B

L

2P

a
i
B

Ha
i
B

L

-N
H

-N
L

-N
H

Z

Inputs

A, B

Stage 1 Stage 2 Stage 3 Stage 4

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 141

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

The above procedure is rescheduled to avoid any dependency. It considers proper

arrangement for trying to fully utilize all of the 4-stage modular pipelined multiplier

(Figure 9). This rescheduling is shown in Table 1, which notes the number of clock

cycles in an accumulation manner.

Table 1. ECC point addition scheduling for 4-stage pipelining.

Clock Cycle
Accumulation

Modular Multiplication Modular Adder

Stage 1 Stage 2 Stage 3 Stage 4 Stage 1 Stage 2 Comments

0 R1

1N R2 R1

2N R3 R2 R1

3N R4 R3 R2 R1

4N R11 R4 R3 R2

4N+1 R11 R4 R3 R5

4N+2 R11 R4 R5

4N+3 R9 R11 R7

4N+4 R11 R9 R6 R7

4N+5 R10 R11 R9 R6

4N+6 R9 R10 R11 R9

8N R9 R9 R10

8N+3 R14 R9 R10

8N+5 R15 R14 R9

8N+6 R12 R15 R14

8N+7 R14 R12 R15 R13 is stalled

8N+8 R13 R14 R12 R15

12N+3 R12 R15 R13

12N+5 R13 R12 R16

12N+6 R13 R16

12N+7 R21 R17

12N+8 R19 R21 R17

12N+9 R20 R19 R21

12N+10 R19 R20 R19 R21 Output X3

16N+7 R19 R20 R19

16N+8 R19 R20

16N+9 R19 R22 Output Z3

16N+10 R22 Output Y3

In fact, this gives the clear estimation of the total number of clock cycles needed for an

ECC point addition operation as 16N+10, where N is the size of the modulus in bits.

Hardware implementations and simulations

The purpose of the hardware implementation is to give some common platform and fair

comparison between our proposed pipelined architecture and similar previous designs.

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 142

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

The focus in this study is not targeted toward industrial purposes. It does not give the

details of the architecture implementation; instead, the aim is to extract the hardware time

and area parameters of the main blocks to build a fair comparison study between the

designs. Therefore, our implementation exploration here is going to be limited to the

level needed to serve this comparison goal. We will implement the basic blocks of

hardware that are commonly used to build all studied designs, i.e. our model here as well

as similar previous architectures. The major common components needed by all designs

are the modular multiplier and modular adder.

 For simulation, we have used Silos Compiler (free Verilog compiler) to generate the

results. A sample of the output results are shown for each design implemented in the

project. For synthesis, we used the Virtex-4 XC4VSX35 FPGA library of Xilinx IES

software. Unfortunately, this available FPGA platform does not create an Area report,

unlike synthesis using ASIC libraries. Note that the ASIC area report advantage gives an

accurate estimate of the space requirements in micrometer
2
 and number of gates needed.

However, as mentioned before, this FPGA implementation cannot be precise for

industrial usages; it is mainly a practical tool for fair comparison and academic study. We

used it for comparing pipelined and non-pipelined versions of the ECC operations

hardware. In this section, we have included a brief summary of the synthesis results

(Table 2) followed by some output report-briefing subsections for each design.

Table 2. FPGA synthesis summary.

 Modular Adder Modular Multiplier

Parallel Pipelined Parallel Pipelined

Time Path delay 8.36ns 7.4ns 6.05ns 3.2ns

Frequency 119.6Mhz 135.2MHz 165.24MHz 312.4MHz

FPGA

Hardware

Slices 18 29 59 105

Flip Flops - 28 33 139

LUTs 32 48 105 141

IOBs 32 36 36 36

This study Hardware

Area Estimation Figure
82 141 233 421

Parallel Design (Non-pipelined) Modular Adder

 Synthesis Results

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 143

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

(a) Time:

The maximum combinational path delay is 8.359ns. This is equivalent to having a

maximum frequency of 119.6MHz.

(b) FPGA Hardware:

- Number of Slices: 18 out of 15360 (0%).

- Number of 4 input LUTs: 32 out of 30720 (0%).

- Number of bonded IOBs: 32 out of 448 (7%).

Fig. 10: Non-Pipelined Modular Adder Block Diagram.

 Macro Statistics

- Adders/Subtractors: 2

- 8-bit adder: 1

- 9-bit adder: 1

- XORs: 8

- 1-bit XOR3: 8

Pipelined Modular Adder

 Synthesis Results

(a) Time:

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 144

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

The minimum input arrival time before clock is 4.190ns. The maximum output

required time after clock is 7.399ns. The maximum combinational path delay was

not found. This is equivalent to having a maximum frequency of 135.2MHz.

(b) FPGA Hardware:

- Number of Slices: 29 out of 15360 (0%)

- Number of Slice Flip Flops: 28 out of 30720 (0%)

- Number of 4 input LUTs: 48 out of 30720 (0%)

- Number of bonded IOBs: 36 out of 448 (8%)

Fig. 11: Pipelined Modular Adder Block Diagram.

 Macro Statistics

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 145

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

- Adders/Subtractors: 4

- 4-bit adder carry in: 1

- 4-bit adder carry out: 2

- 5-bit adder carry in: 1

- Registers: 29

- Flip-Flops: 29

- XORs: 8

- 1-bit XOR3: 8

Parallel Design (Non-pipelined) Modular Multiplier

Fig. 12: Non-Pipelined Modular Multiplier Block Diagram.

 Synthesis Results

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 146

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

(a) Time:

The minimum period is 6.052ns (Maximum Frequency: 165.238MHz). The

minimum input arrival time before clock is 6.633ns. The maximum output

required time after clock is 9.784ns. The maximum combinational path delay is

10.365ns.

(b) FPGA Hardware:

- Number of Slices: 59 out of 15360 (0%)

- Number of Slice Flip Flops: 33 out of 30720 (0%)

- Number of 4 input LUTs: 105 out of 30720 (0%)

- Number of bonded IOBs: 36 out of 448 (8%)

 Macro Statistics

- Adders/Subtractors: 4

- 5-bit subtractor: 1

- 8-bit adder: 1

- 9-bit adder: 2

- Counters : 1

- 5-bit up counter: 1

- Registers: 28

- Flip-Flops: 28

- Comparators: 1

- 5-bit comparator equal: 1

- Multiplexers: 1

- 8-bit 4-to-1 multiplexer: 1

- XORs: 8

- 1-bit XOR3: 8

Pipelined Modular Multiplier

 Synthesis Results

(a) Time:

The minimum period: 3.201ns (Maximum Frequency is 312.402MHz). The

minimum input arrival time before clock is 3.904ns. The maximum output

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 147

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

required time after clock is 6.909ns. The maximum combinational path delay is

7.629ns

(b) FPGA Hardware:

- Number of Slices: 105 out of 15360 (0%)

- Number of Slice Flip Flops: 139 out of 30720 (0%)

- Number of 4 input LUTs: 141 out of 30720 (0%)

- Number of bonded IOBs: 36 out of 448 (8%)

Fig. 13. Pipelined Modular Multiplier Block Diagram.

 Macro Statistics

- Adders/Subtractors: 8

- 4-bit adder carry out: 4

- 5-bit adder carry in/out: 3

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 148

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

- 5-bit subtractor: 1

- Counters: 1

- 5-bit up counter: 1

- Registers: 134

- Flip-Flops: 134

- Comparators: 1

- 5-bit comparator equal: 1

Comparisons and analysis remarks

Based on the results obtained from the 160-bit synthesis, the pipelined Homogenous ECC

point addition and the parallel Homogenous ECC point addition have been compared. For

pipelined point–addition, the longest path in the implementation will be the path of a

modular addition. This is because modular addition operations are given their own

designated clock cycles separate than the multiplications. Note that the critical path of the

modular multiplication is less than the modular addition. Therefore, the period used for

pipelined point addition will depend on the longer path, i.e. the modular addition. The

reason that modular addition takes a longer period is that the critical path depends on the

full-adder of the carry-save adder along with the k/2+1 carry-propagate adder.

In contrast, the critical path of the modular multiplication depends only on 2-to-1

Mux along with a k/2 carry-propagate adder. Therefore, the implementation total period

is 7.399ns with total number of clock cycles: 16N+10, as discussed earlier. Hence, the

total time needed for a point addition using 160-bit operands is

T=7.399n*(16*160 + 10)=19.01microsecond.

 For a parallel implementation of the point-addition, the longest period includes a

modular multiplication and 2 modular additions. This is because the modular additions

are implemented in combinational logic.

The total period is: 6.052n + 2*8.359n = 22.77ns.

 The total number of clock cycles is 4N. Therefore, the total time needed for a point

addition using 160-bit operands is

T=(4*160)* 22.77n= 14.57microseconds.

 Using the implemented multiplication and addition units, we compared the proposed

design (Figure 7) with previous parallel design shown in Figure 6, both studied in relation

to their area and time. Since the basic components are the same implemented in FPGA,

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 149

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

the comparison is believed to be fair and very practical. The study considered the area

and timing estimations. To make our study consistent with the previous study in Gutub &

Ibrahim (2003), we assume the basic hardware unit as the multiplier. All other units are

quantified relative to this multiplier unit, as summarized in Table 3.

Conclusion

In this paper, we redesigned multiplier hardware as pipelined for Elliptic Curve

Cryptography (ECC) computations. The design adopted projective coordinates ECC

arithmetic to reduce the inversion complexity. The pipelined architecture is implemented

and synthesized through a Xilinx Virtex-4 FPGA platform for 160-bits. Based on the

synthesis results provided, we concluded that the parallel implementation of the point

addition is faster than our pipelined approach; however, the pipelined approach is more

advanced in term of chip area. Combing the speed and area as a figure of merit cost-

values showed that this work gave overall efficiency in its area time cost which made it

very attractive showing a promising research direction for researchers to work on.

Table 3. Cost comparison.

Total Time (microsecond)

(for 160-bits ECC point addition

operation)

Pipelined Parallel Percentage

19.01 14.57 ~30% more delay

Cost

approximation

based on

similar Area

estimate

considered in

previous

designs [33]

Area (figure

relating to size

of hardware)

2 4 ~50% efficient area

AT (Area

Time)
38 58 ~34% efficient cost

AT
2
 (Area

Time Time)
 722 845 ~15% efficient cost

A
2
T (Area

Area Time)
76 232 ~67% efficient cost

Cost

approximation

based on this

work

implementation

Area estimate

Area (figure

relating to size

of hardware)

141+421=562 82+4*233=1014 ~45% efficient area

AT (Area

Time)
10,678 14,804 ~28% efficient cost

AT
2
 (Area

Time Time)
 202,882 216,144 ~6% efficient cost

A
2
T (Area

Area Time)
6,001,036 15,011,256 ~60% efficient cost

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 150

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

ACKNOWLEDGEMENT

We would like to thank King Fahd University of Petroleum and Minerals (KFUPM) for

partially hosting this research. Special appreciation to the students of the course COE

509, Applied Cryptosystems - Techniques & Architectures, for their valuable initiatives

and positive cooperation. Thanks to both research centers: The Center of Excellence in

Information Assurance (CoEIA), King Saud University, Riyadh, and The Center of

Research Excellence in Hajj and Omrah, Umm Al-Qura University (UQU), Makkah, for

collaborative moral support toward the achievements in this work.

REFERENCES

Akishita, T. 2001. Fast simultaneous scalar multiplication on elliptic curve with Montgomery form.

Selected Areas in Cryptography (SAC). LNCS 2259: 255-267.

Ansari, B. & Hasan, M.A. 2006. High performance architecture of elliptic curve scalar multiplication.

Technical Report CACR 2006-01.

Bajracharya, S., Shu, C., Gaj, K. & El-Ghazawi, T. 2004. Implementation of elliptic curve cryptosystems

over GF(2n) in optimal normal basis on a reconfigurable computer. Field-

 Programmable Logic and Applications (FPL), LNCS 3203: 1001-1005.

Batina, L., Bruin-Muurling, G. & Örs, S.B. 2004. Flexible hardware design for RSA and elliptic

 curve cryptosystems. The Cryptographer's Track at RSA Conference (CT-RSA), LNCS

 2964:250-263, San Francisco,CA, USA, February 23-27, 2004, Springer_verlag.

Bai, G., Chen, G. & Chen, H. 2005. Fast scalar multiplications of elliptic curve cryptosystems

 over binary fields. SKLOIS Information Security and Cryptology (CISC): 315-323.

Bajard, J.-C., Imbert, L., Negre, C. & Plantard, T. 2003. Efficient multiplication in GF(pk) for

 elliptic curve cryptography. IEEE Symposium on Computer Arithmetic (ARITH-16):

 181-187.

Bednara, M., Daldrup, M., Teich, J., Gathen, J. von zur & Shokrollahi, J. 2002. Tradeoff

 analysis of FPGA-based elliptic curve cryptography. IEEE Symposium on Circuits and

 Systems (ISCAS) 5:797-800.

Bednara, M., Daldrup, M., Gathen, J. von zur, Shokrollahi, J. & Teich, J. 2002.

 Reconfigurable implementation of elliptic curve crypto algorithms. IEEE Parallel and

 Distributed Processing Symposium (IPDPS): 157 – 164.

Bertoni, G., Guajardo, J., Kumar, S., Orlando, G., Paar, C. & Wollinger, T., 2003. Efficient

GF(pm) arithmetic architectures for cryptographic applications. The Cryptographer’s Track at RSA

Conference (CT-RSA), LNCS 2612: 158- 175. San Francisco, CA. USA, April 2003,

Springer_verlag.

Blake, I., Seroussi, G. & Smart, N. 1999. Elliptic Curves in Cryptography. Cambridge University Press,

New York.

Certicom Research, 2000. SEC 2: Recommended elliptic curve domain parameters, v1.0.

 Available online from: <http://www.secg.org/>.

Chen, G., Bai, G. & Chen, H. 2007. A high-performance Elliptic Curve Cryptographic processor

 for general curves over GF(p) based on a systolic arithmetic unit. IEEE Transactions on

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 151

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

 Circuits and Systems II, 54(5): 412-416.

Cheung, R.C.C., Luk, W. & Cheung, P.Y.K. 2005. Reconfigurable elliptic curve cryptosystems

 on a chip. Design, Automation and Test in Europe (DATE) 1:24-29.

Chung, J.W., Sim, S.G. & Lee, P.J. 2000. Fast implementation of elliptic curve defined over

 GF(pm) on CalmRISC with MAC2424 coprocessor. Cryptographic Hardware and

 Embedded Systems (CHES), LNCS 1965: 57-70.

Daneshbeh, A. K. & Hasan, M.A. 2004. Area efficient high speed elliptic curve cryptoprocessor

 for random curves. IEEE Symposium on Information Technology: Coding and Computing

 (ITCC) 2:588-592.

Digital Signature Standard (DSS) 2000. U.S. Department of Commerce/National Institute of

 Standards and Technology (NIST). FIPS PUB 182-2 change1.

Dyka, Z. & Langendoerfer, P. 2005. Area efficient hardware implementation of elliptic curve

 cryptography by iteratively applying Karatsuba's method. Design, Automation and Test in

 Europe (DATE) 3: 70-75.

Ernst, M., Klupsch, S., Hauck, O. & Huss, S.A. 2001. Rapid prototyping for hardware

 accelerated elliptic curve public-key cryptosystems. IEEE Rapid System Prototyping

(RSP), Pp. 24-31.

 Eberle, H., Gura, N. & Chang-Shantz, S. 2003. A cryptographic processor for arbitrary elliptic

 curves over GF(2m). Application-Specific Systems, Architectures, and Processors

 (ASAP), Pp. 444-454.

Eberle, H., Gura, N., Shantz, S.C., Gupta, V., Rarick, L. & Sundaram, S. 2004. A public-key

 cryptographic processor for RSA and ECC. Application-Specific Systems, Architectures,

 and Processors (ASAP), Pp. 98-110.

Ernst, M., Jung, M., Madlener, F., Huss, S. & Blumel, R. 2002. A reconfigurable system on

 chip implementation for elliptic curve cryptography over GF(2m). Cryptographic

 Hardware and Embedded Systems (CHES), LNCS 2523: 381-399.

Grabbe, C., Bednara, M., Gathen, J. von zur, Shokrollahi, J. & Teich, J. 2003. A high

 Performance VLIW processor for finite field arithmetic. IEEE Parallel and Distributed

Processing Symposium (IPDPS): 189, Nice, France.

Gura, N., Shantz, S.C., Eberle, H., Finchelstein, D., Gupta, S., Gupta, V. & Stebila, D. 2002.

 An end-to-end systems approach to elliptic curve cryptography. Cryptographic Hardware

 and Embedded Systems (CHES), LNCS 2523: 349-365.

Gutub, A. & Ibrahim, M.K. 2003. High Radix Parallel Architecture For GF(p) Elliptic Curve

 Processor. IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP) Pp.

 625- 628, Hong Kong.

Gutub, A. 2006. Merging GF(p) Elliptic curve point adding and doubling on pipelined VLSI

 cryptographic ASIC architecture. International Journal of Computer Science and Network

 Security (IJCSNS) 6(3A): 44–52.

Gutub, A. 2007. Area Flexible GF(2k) Elliptic curve cryptography coprocessor. International

 Arab Journal of Information Technology (IAJIT) 4(1):1-10.

Hauck, O., Katoch, A. & Huss, S.A. 2000. VLSI system design using asynchronous wave

 pipelines: A 0.35µm CMOS 1.5GHz elliptic curve public key cryptosystem chip.

 Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC), Pp.

188-197.

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 152

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

Huss, S.A., Jung, M. & Madlener, F. 2004. High speed elliptic curve crypto processors: Design space

exploration by means of reconfigurable hardware. Proceedings of the 6
th

 International Scientific

and Applied Conference - Information Security, Taganrog, Russian Federation, July 2004.

Itoh, K., Takenaka, M., Torii, N., Temma, S. & Kurihara, Y. 1999. Fast implementation of

 public-key cryptography on a DSP TMS320C6201. Cryptographic Hardware and

 Embedded Systems (CHES), LNCS 1717: 61-72.

Ja'rvinen, K., Tommiska, M. & Skytta J. 2004. A scalable architecture for elliptic curve point

 multiplication. IEEE Field-Programmable Technology (FPT), Pp. 303-306.

Kerins, T., Marnane, W. & Popovici, E. 2004. Design for reuse of elliptic curve cryptosystem

 processors for FPGAs. Irish Signals and Systems Conference (ISSC), Pp. 577-582.

Kerins, T., Marnane, W.P. & Popovici, E.M. 2005. An FPGA implementation of a flexible

 secure elliptic curve cryptography processor. Reconfigurable Computing: Architectures

 and Applications (ARC). Pp. 22-30, February 2005, IADIS Conference, Algarve, Portugal.

Kumar, S. & Wollinger, T. 2006. Optimum digit serial GF(2m) multipliers for curve-based

 cryptography. IEEE Trans. Computers. 55(10):1306-1311.

Leong, P. & Leung, I. 2002. A microcoded elliptic curve processor using FPGA technology.

 IEEE Transactions on VLSI Systems 10(5): 550-559.

Mekhallalati, M., Ibrahim, M.K. & Ashur, A. 1996. Radix modular multiplication algorithm.

 Journal of Circuits and Systems, and Computers, 6(5): 547-567.

Meurice de Dormale, G. & Quisquater, J. 2007. High-speed hardware implementations of

 Elliptic Curve Cryptography: A survey. Journal of Systems Architecture 53: 72-84.

Miyaji, A. 1992. Elliptic curves over FP suitable for cryptosystems. Advances in cryptology-

 AUSCRUPT’92, Australia.

Moller, B. 2001. Algorithms for multi-exponentiation. Selected Areas in Cryptography (SAC),

 LNCS 2259: 165-180.

Okada, S., Torii, N., Itoh, K. & Takenaka, M. 2000. Implementation of elliptic curve

 cryptographic coprocessor over GF(2m) on an FPGA. Cryptographic Hardware and

 Embedded Systems (CHES), LNCS 1965: 25-40.

Okeya, K. & Sakurai, K. 2002. Fast multi-scalar multiplication methods on elliptic curves with

 precomputation strategy using Montgomery trick. Cryptographic Hardware and Embedded

 Systems (CHES), LNCS 2523: 564-578.

Potgieter, M.J. & van Dyk, B.J. 2002. Two hardware implementations of the group operations

 necessary for implementing an elliptic curve cryptosystem over a characteristic two finite

 field. IEEE Africon Conference in Africa (AFRICON).

Sakiyama, K., Batina, L., Preneel, B. & Verbauwhede, I. 2007. Multicore curve-based

 cryptoprocessor with reconfigurable modular arithmetic logic units over GF(2n). IEEE

 Transactions on Computers 56(9): 1269-1282.

Satoh, A. & Takano, K. 2003. A scalable dual-field elliptic curve cryptographic processor. IEEE

 Transactions Computers 52(4): 449-460.

Solinas, J.A. 2001. Low-weight binary representations for pairs of integers. Tech. Report CORR

 01-41, Department of Combinatorics & Optimization. Available online from:

 <http://wwwcacr.math.uwaterloo.ca/techreports/2001/corr2001-41.ps>.

Tawalbeh, L., Mohammad, A. & Gutub, A. 2010. Efficient FPGA implementation of a programmable

architecture for GF(p) elliptic curve crypto computations. Journal of Signal Processing

Systems, Springer 59(3): 233-244.

Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed 153

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011

Telle, N., Luk, W. & Cheung, R.C.C. 2004. Customising hardware designs for elliptic curve

 cryptography. Computer Systems: Architectures, Modeling, and Simulation (SAMOS),

 Pp. 274-283.

Gathen, J. von zur & Shokrollahi, J. 2005. Efficient FPGA-based karatsuba multipliers for

 polynomials over F2, in: Selected Areas in Cryptography (SAC), LNCS 3897: 359-

 369.

Lutz, J. & Hasan, M.A. 2004. High performance FPGA based elliptic curve cryptographic co-

 processor. IEEE Symposium on Information Technology: Coding and Computing (ITCC),

 2: 486-492.

McIvor, C., McLoone, M. & McCanny, J. 2004. An FPGA elliptic curve cryptographic

 accelerator over GF(p). Irish Signals and Systems Conference (ISSC), Pp. 589-594.

Mentens, N., Örs, S.B. & Preneel, B. 2004. An FPGA implementation of an elliptic curve

 processor GF(2m). 14
th

 ACM Great Lakes Symposium on VLSI (GLSVLSI'04). Pp. 454-

457.

Nguyen, N., Gaj, K., Caliga, D. & El-Ghazawi, T., 2003. Implementation of elliptic curve

 cryptosystems on a reconfigurable computer. IEEE Field-Programmable Technology

 (FPT), Pp. 60-67.

Orlando, G. & Paar, C. 2001. A scalable GF(p) elliptic curve processor architecture for

 programmable hardware. Cryptographic Hardware and Embedded Systems (CHES),

 LNCS 2162: 356-371.

Orlando, G. & Paar, C. 2000. A high-performance reconfigurable elliptic curve processor for

 GF(2m). Cryptographic Hardware and Embedded Systems (CHES), LNCS 1965: 41-

 56.

Örs, S.B., Batina, L., Preneel, B. & Vandewalle, J., 2003. Hardware implementation of an

 elliptic curve processor over GF(p). Application-Specific Systems, Architectures, and

 Processors (ASAP), Pp. 433-443.

Rodríguez-Henríquez, F. & Koç, Ç.K. 2003. On fully parallel karatsuba multipliers for GF(2m).

 Computer Science and Technology (CST), Pp. 405-410.

Saqib, N.A., Rodríguez-Henríquez, F. & Díaz-Pérez, A. 2004. A parallel architecture for

 computing scalar multiplication on hessian elliptic curves. Symposium on Information

 Technology: Coding and Computing (ITCC), 2:493-497.

Saqib, N.A., Rodríguez-Henríquez, F., & Díaz-Pérez, A., 2004. A parallel architecture for fast

computation of elliptic curve scalar multiplication over GF(2m). 18
th
 International Parallel &

Distributed Processing Symposium (RAW2004), IEEE Computer Society Press, Santa Fe, New

Mexico, Pp. 144-154

Shu, C., Gaj, K., & El-Ghazawi, T. 2005. Low-latency elliptic curve cryptography accelerators

 for NIST curves on binary fields. IEEE Field-Programmable Technology (FPT), Pp. 309-

 310.

Smart, N.P. 2001. The hessian form of an elliptic curve. Cryptographic Hardware and Embedded

 Systems (CHES), LNCS 2162: 118-125.

Sozzani, F., Bertoni, G., Turcato, S., & Breveglieri, L., 2005. A parallelized design for an

 elliptic curve cryptosystem coprocessor. Symposium on Information Technology: Coding

 and Computing (ITCC) 1:626-630.

