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Abstract 

 

This paper reflects the achievement of improved results in terms of cost for Pipelined 

Crypto Modular Multiplier Architecture when compared with its earlier versions of 

Parallel Crypto Architecture. The improved pipelined modular multiplier is implemented 

on Field Programmable Gate Array (FPGA), designed in four stages to be properly 

suitable for elliptic curve crypto computation. To avoid inversion complexity, the elliptic 

computations arithmetic utilizes projective coordinates instead of the normal affine 

coordinates. We adjusted the elliptic curve crypto addition operation with efficient 

scheduling for this pipelining.  

The proposed hardware is compared to the previous parallel (non-pipelined) 

models that were similarly designed. All considered architectures have been synthesized 

for 160-bits operations showing interesting features. Detailed results showed that this 

work gave overall efficiency in the cost, which shows a promising direction for further 

research. 

 

 

Keywords: Cryptography hardware (Crypto Hardware); Elliptic curve cryptography 

(ECC); Parallel crypto architecture (Parallel Crypto Arch.); Pipelined crypto architecture 

(Pipelined Crypto Arch.); Projective coordinate cryptosystems (Proj. Crypto Sys.) 

 

Introduction 

Encryption used to be considered a very mysterious subject. It seemed to have no 

important practical applications outside the government/military world and was 
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considered a harmless mathematical diversion if anyone else should pursue it. However, 

in today's world where everything we do is recorded on computers and all computers are 

linked to the Internet (and thus to each other), we find that encryption is of vital 

importance in many areas, such as the protection of privacy and confidentiality, 

transmission of secure information (e.g. credit card details), and to provide authentication 

of the sender of a message or even authenticate the time that message was sent. At the 

same time, law enforcement authorities worry that if everyone routinely kept their 

personal records encrypted, evidence held under a search warrant would be unusable. For 

this reason, they have tried to limit the ability of the general public to use strong 

(unbreakable) encryption. Therefore, the study of information security and cryptosystems 

has become an urgent need and a rich field of research and contribution. To cope with 

these challenges, one of the key areas has been the focus of research in the last two 

decades and is addressed in this work, Elliptic Curve Cryptography (ECC). 

The study of elliptic curves by algebraists, algebraic geometers and number 

theorists dates back to the middle of the nineteenth century. The existence of an extensive 

literature describes the beautiful and elegant properties of these marvelous objects. In 

1984, Hendrik Lenstra described an ingenious algorithm for factoring integers that relies 

on properties of elliptic curves (ECs). This discovery prompted researchers to investigate 

other applications of ECs in cryptography and computational number theory.  

Public-key cryptography was conceived in 1976 by Diffie and Hellman. The first 

practical realization followed in 1977 when Rivest, Shamir and Adleman proposed their 

now well-known RSA cryptosystem, in which security is based on the intractability of the 

integer factorization problem. ECC was discovered for crypto usage in 1985 by Neal 

Koblitz and Victor Miller. Elliptic curve cryptographic schemes are public-key 

mechanisms that provide the same functionality as RSA schemes but with less 

computation. Over the years, researchers have developed techniques for designing and 

proving the security of RSA, Discrete Logarithm (DL) and EC protocols under 

reasonable assumptions. The fundamental security issue that remains is the hardness of 

the underlying mathematical problem that is necessary for the security of all protocols in 

a public-key family: the integer factorization problem for RSA systems, the discrete 

logarithm problem for DL systems, and the elliptic curve discrete logarithm problem for 
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ECC systems. The perceived difficulty of these problems directly impacts performance, 

since it dictates the sizes of the domain and key parameters. That in turn affects the 

performance of the underlying arithmetic operations. The security of these schemes is 

based on the difficulty of a different problem, namely the elliptic curve discrete logarithm 

problem (ECDLP). Currently the best algorithms known to solve the ECDLP have fully 

exponential running time, in contrast to the sub-exponential time algorithms known for 

the integer factorization problem. This means that a desired security level can be attained 

with significantly smaller keys in elliptic curve systems than is possible with their RSA 

counterparts. For example, it is generally accepted that a 160-bit elliptic curve key 

provides the same level of security as a 1024-bit RSA key. The advantages that can be 

gained from smaller key sizes include speed and efficient use of power, bandwidth, and 

storage. 

ECC computations are performed in hardware as well as software, where 

hardware ECC computations have been proved to be faster and more efficient (Gutub 

2006). This work proposes improving ECC hardware by pipelining its modular multiplier 

that is implemented on FPGA. We tune the used modular multiplier as a 4-stage pipeline 

suitable for elliptic curve crypto computation. To avoid inversion complexity, the elliptic 

computations arithmetic utilizes projective coordinates instead of the normal affine 

coordinates as proved by Gutub (2006), i.e. the proposed architecture considers 

representing the elliptic curve points as projective coordinate points in order to reduce the 

number of all inversion operations to one. We also adjusted the elliptic curve crypto 

addition operation with efficient scheduling for correct pipelining. Our proposed 

hardware is compared to parallel (non-pipelined) models designed very similarly to 

ensure fair comparisons and conclusions.  

The flow of the paper will be as follows: first we provide some background 

behind the security of ECC and elliptic curve crypto computations. This section will also 

provide an example of simple procedure for using ECC for encryption and decryption. 

Several available techniques for implementing ECC at high-speed are explored in the 

section to follow. All ECC design schemes are to sustain the high throughput required by 

applications, where hardware-based designs are shown as the solution reaching 

acceptable performance-cost ratio. Section 4 describes the ECC scalar multiplication 
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concept and algorithm, which is detailed and reconsidered within this work as coordinate 

systems (Section 5). Section 6 covers designing the hardware components used with the 

modules data flow that is improved for this architecture. The proposed pipelined design is 

detailed in Section 7. Section 8 elaborates in the pipelining stages derivation proofing the 

accuracy of the proposed design. The hardware implementation and simulation results are 

given in Section 9 followed by the comparison and analysis remarks (Section 10). 

Finally, Section 11 concludes the work. 

 

Way to ECC 

This section provides background behind the security of elliptic curve crypto 

computations. It also provides an example of a simple procedure for using ECC for 

encryption and decryption.  

The cryptographic protocols generally serve very similar objectives and are based 

on almost same principles (Blake et al., 1999). They contain a function which, by means 

of a parameter called the encryption key, can be easily computed. The inverse of this 

function is hard to compute unless a trapdoor function (a second key corresponding to the 

former one) is known. A general assumption made during the analysis of the security of a 

system is that all information about the system except the trapdoor key are known by the 

adversary. The previously mentioned group of public and private key systems is based on 

the way these keys are generated and kept. 

In a private key system, encryption and decryption are performed using the same 

key which should be kept secret, otherwise the system is broken. In public key 

cryptosystems, encryption and decryption are done using two different keys. One of the 

keys is published and the other is kept secret. When one party is going to sign a message, 

the encryption key is kept secret but the key to verify the signature will be published. On 

the other hand, when a secret message is to be sent, the encryption key will be published 

while the key to open the message will be kept secret by the owner. For example, when 

messages sent to a user are encrypted by his public key, he is the only person who has 

access to the corresponding private key and can decrypt the message. There are several 

types of public key cryptosystems. A major group of these systems is based on the 
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difficulty of solving the discrete logarithm problem, which is the basic security feature 

behind Elliptic Curve Cryptography (ECC). 

ECC bases its security on the difficulty in solving the discrete logarithm problem 

(DLP). ECC’s main operation can be simplified to the sum of elliptic curve points, i.e. 

the ECC operation is to compute point Q given point P, where Q=kP and this kP is 

interpreted as the sum of points P+P+…..+P+P (k-times). Here, the points P and Q 

should satisfy an elliptic curve equation defined on a finite field (a finite set of elements 

that satisfies some axioms). The logarithm discrete problem is now defined: Given the 

points P and Q, find the integer k such that Q=kP. This point summation operation (kP) 

is called scalar multiplication. The difficulty in solving this conjectured problem 

increases as the number of elements (valid points) increase. 

There are many ways to apply elliptic curves for encryption/decryption purposes. 

In its most basic form, users randomly chose a base point (x,y) lying on the elliptic curve 

E. The plaintext (the original message to be encrypted) is coded into an elliptic curve 

point (xm,ym). Each user selects a private key 'n' and computes his public key P=n(x,y). 

For example, user A’s private key is nA and his public key is PA=nA(x,y). For anyone to 

encrypt and send the message point (xm,ym) to user A, he/she needs to choose a random 

integer k and generate the ciphertext Cm={k(x,y),(xm,ym)+kPA}. The ciphertext pair of 

points uses A’s public key, wherein only user A can decrypt the plaintext using his private 

key. To decrypt the ciphertext Cm, the first point in the pair Cm, k(x,y) is multiplied by A’s 

private key to get the point: nA(k(x,y)). When this point is subtracted from the second 

point of Cm, the result will be the plaintext point (xm,ym). The complete decryption 

operations are [(xm,ym)+kPA]-A[k(x,y)]= (xm,ym)+k[nA(x,y)]- nA[k(x,y)]= (xm,ym). 

The most time consuming operation in the encryption and decryption procedure is 

finding the multiples of the base point (x,y). The approach used to implement this is 

discussed in the Section 4, after covering the literature review of Section 3. 

 

Literature review 

Elliptic Curve Cryptography (ECC) is gaining increased research acceptance and has 

lately been the subject of several standards (Tawalbeh et al., 2010). This interest is 

mainly due to the high level of security with relatively small keys provided by ECC. To 



Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed   130 

 

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011 

sustain the high throughput required by applications such as network servers, high speed 

implementations of public-key cryptosystems are needed. For that purpose, hardware-

based processors or accelerators are often the optimum solution for reaching an 

acceptable performance-cost ratio. The fundamental question that arises is how to choose 

the appropriate efficiency–flexibility tradeoff. In this section, techniques for 

implementing ECC at a high speed are explored. 

Some studies deal with architectures using only one field size and one hardwired 

irreducible polynomial (or modulo). This polynomial is of course inconsistent through 

reconfiguration of reconfigurable platforms. A fully hardwired asynchronous Applicaion-

Specific Integrated Circuit (ASIC) design is presented by K. Ja'rvinen et al. (2004). It is 

based on a special Optimal Normal Basis (ONB) multiplier. Another similar ASIC 

implementation, based on synchronous polynomial basis multiplier, can be found in 

(Sozzani et al., 2005). Designs for curves defined over GF(p) finite fields are explained 

in Batina et al., (2004), McIvor et al. (2004), Orlando & Paar, (2001) and Ors et 

al.(2003), where all use Montgomery multiplications. Three architectures (Bantina et al., 

2004; Orlando & Paar, 2001; Ors et al., 2003) use systolic array Montgomery modular 

multipliers while the design in McIvor et al., (2004) uses Montgomery multiplication 

based on parallel schoolbook multipliers. A systolic array Montgomery modular 

multiplier is also modeled by N. Mentens et al. (2004) but for GF(2
m

) curves. Other 

research work using reconfigurable hardware can be found in Bajracharya et al. (2004) 

and Nguyen et al., (2003). They focus on an efficient hardware/software partition for the 

scalar multiplication. Reconfigurable architectures based on digit-serial polynomial basis 

multiplier can be found in Ansari & Hasan (2006), Lutz & Hasan (2004), Orlando & Paar 

(2000) and Shu et al., (2005). The research by Ansari & Hasan (2006) also mentions 

ASIC results performing the fastest implementation. Saqib (2004) presented utilizing 

Hessian elliptic curves from Smart (2001) but they were used in order to extract more 

parallelism. The same design using the DLP is presented by Saqib et al. (2004). 

Nevertheless, the low frequency of this design shows that large multipliers must be 

handled with special care. More about Karatsuba multipliers can be found in Dyka & 

Langendoerfer (2005), Gathen et al., (2005) and Rodríguez-Henríquez & Koç (2003). 

Considering several designs, the hardware shown by Ansari & Hasan (2006) seems to be 
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the best representative of a high-speed architecture using a hardwired irreducible 

polynomial, a single field size, and an unknown base point P. It is a pipelined and parallel 

structure based on a large Most Significant Digit (MSD)-first multiplier and an accurate 

scheduling of the DLP algorithm. 

The Sakiyama et al. (2007) work presents a reconfigurable curve-based crypto-

processor that accelerates scalar multiplication of ECC and Hyper Elliptic Curve 

Cryptography (HECC) of genus 2 over GF(2
m

). By allocating several copies (say x) of 

processing cores that embed reconfigurable Modular Arithmetic Logic Units (MALUs) 

over GF(2
m

), scalar multiplication of ECC/HECC can be accelerated by exploiting 

Instruction-Level Parallelism (ILP). The supported field size can be arbitrary up to a limit 

related to the number of cores, i.e. up to x(n+1)-1 . The super-scaling feature is facilitated 

by defining a single instruction that can be used for all field operations and point/divisor 

operations. Chen et al. (2007) presented a high-performance elliptic curve cryptographic 

processor for GF(p) general curves which featured a systolic arithmetic unit. The work 

proposed a new unified systolic array that efficiently implements addition, subtraction, 

multiplication and division. At the system level, the control dependencies in the operation 

sequence and the mismatched communication between the systolic array and the separate 

storage would stall the pipeline in the systolic array. The design avoided these pipeline 

stalls successfully using optimization methods. The processor is synthesized in 0.13-

micron standard-cell technology. It required 1.01-ms to compute a 256-bit scalar 

multiplication for general curves over GF(p). 

Kumar et al. (2006) showed different architectural enhancements in a Least 

Significant Digit (LSD) multiplier for binary fields GF(2
m

). They proposed two different 

architectures: the Double Accumulator Multiplier (DAM), and N-Accumulator Multiplier 

(NAM), which are faster than traditional LSD multipliers. The evaluation of the 

multipliers for different digit sizes gave best choices and showed that currently used digit 

sizes are not efficient. The paper suggested that one should always use the NAM 

architecture to get the best timings. Considering the time area product, DAM or NAM 

gave the best performance depending on the digit size. 

A GF(p) processor suitable for RSA, DSA and ECDSA is presented by K. Itoh et 

al. (1999). It is based on a Montgomery multiplier with a 16-bit digit size, implemented 
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in a TMS320C6201 DSP (digital signal processor) hardware. Another processor using 

MAC2424 (24x24-bit) for GF(p
10

) OEF is presented by Chung et al. (2000). It includes 

an interesting analysis of the pre-computation needed by the signed window scalar 

multiplication method. More about GF(p
m

) arithmetic can be found in Bertoni et al. 

(2003) and Bajard et al. (2003). Two 64-bit dual-field processors can be found in Eberle 

et al. (2004) and Satoh & Takano (2003). They also use Montgomery multipliers and are 

both able to compute integer and binary polynomial arithmetic (for GF(p) and GF(2
m

)). 

In particular, RSA, DSA, ECDSA and DH are supported. The architecture proposed in 

Satoh & Takano (2003) is an ASIC, while Eberle et al. (2004) is implemented on FPGA 

with ASIC extrapolations. The work in Eberle et al. described an architecture based on a 

64-bit datapath with its core based on a 64x64-bit multiplier able to process both integer 

and binary polynomial arithmetic. The processor currently implements the main public-

key protocols like RSA, DSA, ECDSA and DH with arbitrary key sizes and curves. 

 

Scalar multiplication 

The ECC algorithm used for calculating nP from P is based on the binary method. The 

algorithm used for scalar multiplication is based on the binary method (Gutub, 2006; 

Gutub & Ibrahim, 2003), since it is efficient for hardware implementation. The binary 

method algorithm is shown below: 

Inputs:  k: a constant , P: point on the elliptic curve 

Output: Q: another point on the elliptic curve, Q=k . P 

Define: w: number of bits in k, where ki is the i
th

 bit in k 

If kw-1:=1 then Q := P else Q := 0; 

for i:= w-2 down to 0 do 

        Q := Q + Q;    Point Doubling  

        If kw-1=1 then  Q := Q + P;    Point Addition 

Return Q; 

 

Basically, the binary method algorithm scans the bits of n and doubles the point Q k-

times. Whenever a particular bit of n is found to be one, an extra operation is needed. 

This extra operation is Q+P. As a result, adding and doubling elliptic curve points are the 

most basic operations in each iteration. The point addition and doubling requires  
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performing inversion operations. It is known that these inversion operations are the most 

expensive operations since their cost is equivalent to 9~30 modular multiplications 

(Gutub & Ibrahim, 2003); i.e., inversion is extremely slow, which made researchers 

generally try to avoid it if possible. The use of coordinate systems other than the Affine 

coordinate system (which will be illustrated later) greatly reduces the number of 

inversions required in the operations of the scalar multiplication on the expense of extra 

multiplications. 

ECC effectively uses point doubling and addition operations in the arithmetic 

execution. The optimized formulae available for these operations eliminate the costly 

field inversion from the main loop of the scalar multiplication; i.e. fast operations are 

achieved by using projective coordinates (Gutub, 2006). However, the operation in 

projective coordinates involves more scalar multiplication than in affine coordinate and 

ECC on projective coordinates, and will be efficient only when the implementation of 

scalar multiplication is much faster than a multiplicative inverse operation. Therefore, 

transfer is needed from one coordinate to another for avoiding the inversion process cost. 

The following section is dedicated to illustration of the coordinate systems structure used 

for these purposes.  

 

Coordinate systems 

An elliptic curve can be represented by different coordinate systems. Following are 

descriptions of two coordinates, i.e. affine coordinate and standard projective coordinate 

procedures (Miyaji, 1992). This standard projective coordinate system is found 

appropriate for parallel implementation, as detailed in Gutub & Ibrahim (2003), which 

led to our choice for this proposed pipelined hardware. 

Affine coordinate: 

Let E be an elliptic curve over GF(p), has the following equation:  

E: y
2
=x

3
+ax+b (mod p),  

where a and b are constants satisfying 4a
3
+27b

2
≠0 (mod p). 

Let P=(x1,y1), Q=(x2,y2), and P+Q=(x3,y3), be points of E(GF(p)) ,  

1      Addition formula: x3=
2
-x1-x2, y3=(x1-x3)-y1, where =(y2-y1)/(x1-x2)  

2   Doubling formula: x3=
2
-2x1, y3=(x1-x3)-y1, where =(3x1

2
+a)/(2y1)  
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Addition time = 1 Inversion + 1 Squarings + 2 Multiplications + 6 Subtractions 

Doubling time = 1 Inversion + 2 Squarings + 2 Multiplications + 1 Addition + 

3 Subtractions 

 

Standard projective coordinate: 

For standard projective coordinates, we set x=X/Y and y=Y/Z, giving the equation: 

E: Y
2
Z=X

3
+aXZ

2
+bZ

3
(mod p) ,  

Let P=(X1,Y1,Z1), Q=(X2,Y2,Z2) and P+Q=(X3,Y3,Z3) be points of E(GF(p)) ,  

1 Addition formula: X3= vA ,  Y3= u(v
2
X1Z2 – A) – v

3
Y1Z2    , Z3=v

3
Z1Z2 

where, u = Y2Z1 – Y1Z2 ,  v = X2Z1 – X1Z2 ,  A = u
2
Z1Z2 – v

3
 – 2v

2
Y1Z2 

2 Doubling formula: X3= 2hs ,  Y3= w(4B-h) – 8s
2
Y1

2
    , Z3=8s

3
    

where, w = aZ1
2
+3X1

2
, s = Y1Z1, B = X1Y1s ,  h = w

2
-8B 

 

Addition time = 12 Multiplications + 4 Subtractions 

Doubling time = 7 Multiplications + 1 Addition + 1 Subtraction 

 

The work in Gutub & Ibrahim (2003) proposed running these ECC point 

operations with projective coordinates on hardware with parallel multipliers. It was found 

that four parallel multipliers would give the maximum parallelization with the least 

number of multiplication steps as proven in Tawalbeh et al. (2010). We, in this work, are 

concentrating on the implementation of the ECC point addition operation for comparison 

purposes. Figure 1 shows a rearranged ECC point addition data flow graph assuming 4 

parallel multipliers. The computation through this data flow graph (Figure 1) requires 4 

steps of modular multipliers and 4 steps of modular adders. 
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Fig. 1: Projecting (X,Y) to (X/Z,Y/Z) adding two points data flow. 

 

Related hardware components 

This section introduces the designs and algorithms considered for studying our pipelined 

hardware. We give a brief idea about modular addition first, followed by modular 

multiplication. Figure 2 shows the design implemented for modular addition operations in 

this model, extracted from the previous work by Gutub (2006).  

 

 
 

Fig. 2: Non-pipelined modular adder. 
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To obtain a pipelined implementation of this adder, it has been divided into two 

stages, as shown in Figure 3. The Ripple Carry Adders (RCAs) are split into two 

modules, each of which is a separate stage. The two RCAs in Figure 3 are divided into 

two stages using latches as shown in Figure 4. Note that this block diagram is a 

simplified example of a 6-bit operation. 

 

 
 

Fig. 3: Modular adder pipelined into two stages 

 

 
 

Fig. 4: 6-bit Ripple Carry Adder divided into two stages 

 

As was mentioned earlier, the multiplication process is the most sophisticated and 

time consuming process in the ECC systems. Thus, optimizing the multiplier design and 

delay is a fundamental requirement for system efficiency. The straightforward approach 

to compute modular multiplication is by performing multiplication followed by reduction 

(Gutub, 2007). The multiplication can be computed through several addition operations. 

Then, the reduction is performed through several subtractions, by subtracting the 
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modulus several times, until the result is less than the modulus. This approach is 

inefficient and suffers from very low speed. It can, however, be improved by merging 

modulo subtraction with the multiplication-add operations (Gutub, 2007), as in the 

algorithm below.  

Define k: number of bits in x;   xi: the i
th 

bit of x  

Input:  x,y, and n; where x,y < n;   

Output: P = xy mod n 

 

1. P := 0; 

2. For i = k-1 down to 0;  

3.  { 

4.  P:= 2P; 

5.  If P  n Then P:= P – n ; 

6.  If xi = 1 Then 

7.   {P := P + y; 

8.   If P  n Then P:= P – n}; 

9.  } 

10. End; 

 

The algorithm above is for GF(p) modulo multiplication and found to be very appropriate 

for hardware implementation (Gutub, 2007). It has a bounding ‘for’ loop, which includes 

iterative modulo multiplication reduction operations. The bounding loop can be designed 

in hardware as a controller that will control the number and processes of the iterations. 

The modulo multiplication reduction is implemented in hardware with three adders and 

three multiplexers connected, as shown in Figure 5. There are no registers in the 

hardware design; the small boxes shown are symbols to clarify the mapping of bit-flow. 

The adder can function as a subtractor by inverting one of its inputs. The complete 

process of x.y mod n will need k clock cycles, if each modulo reduction iteration is 

performed in one clock cycle. The multiplication of P by two (as in step 4 of the 

algorithm above) is performed by a shift to the bits of P toward the left. The multiplexers 

Mux-1 and Mux-3 are controlled by the subtractor’s output-carry-bit. Therefore, the 

complete subtractions are to be made for the Mux to give the output. The reader is 

referred to Gutub (2007) for more details. 
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Fig. 5: Modular non-pipelined multiplier. 

 

 Proposed pipelined multiplier design 

We propose improving the previous ECC design in Figure 6, detailed by Gutub & 

Ibrahim (2003), into a new 4-stage pipelined modular multiplication approach as shown 

in Figure 7. The design is similar in principle to our previous pipelined design in Gutub 

(2006); however, its architecture components are designed based on pipelining the 

standard projective coordinates which makes it an improved hardware with multipliers of 

four new stages. Each stage contains a different modular multiplication operation. Each 

multiplication operation loops through all stages k-times.  

 

 

Fig. 6: Previous parallel architecture. 
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Fig. 7: Proposed pipelined architecture. 

 

The modular adder consists of four k/2 digit carry-propagate adder and three 

(k/2+1) digits carry-propagate adder. The modular multiplication can accommodate a 

maximum of 4 different multiplication stages (Figure 8), where each multiplication can 

be processed independently from other multiplications timings. However, new modular 

multiplication does not start looping through the pipeline until stage 1 is free. The output 

is delivered from stage 4 after 4k cycles, as shows in Figure 8. 

 
 

Fig. 8: Pipelined modular multiplier staged cycle 

 

It should be noted that the control box is used to select when a new modular 

multiplication operation will be inserted. It also controls the looping of existing 

operations to complete 4k cycles. The control box will allow a new multiplication 

operation if no current multiplication operation occupies this stage. If all stages are busy, 
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the inputs will be stalled. Figure 9 shows the design implemented for the pipelined 

modular multiplication operations in our proposed model. 

 

 
 

Fig. 9: Modular pipelined multiplier. 

Figure 9 shows the four stages and where each stage needs to finalize its outputs for the 

next stage to start its operation accurately. Stage 1 processes the inputs at the first cycle; 

it contains two adders connected through multiplexers to direct the data correctly, i.e. 

either from as new inputs or as fed back from Stage 4 as an intermediate result. Note that 

Stages 2, 3, and 4 are also made up of adders that work together as a pipeline; they are 

following the k-times cycle shown in Figure 8 until the output is ready and to be taken 

from connection Z at Stage 4. 

  

Derivation of pipelined point addition framework 

The procedure for standard projective coordinates point addition can be defined 

corresponding to the registers as detailed in the following register sequence: 

R1=Y1Z2 R2=Y2Z1 R3=X1Z2 R4=Z1X2 R5=R2-R1 R6=R3+R4 

R7=R4-R3 R8=R7Z2 R9=R5R5 R10=R7R7 R11=Z1Z2 R12=R4R10 

R13=R8R10 R14=R11R9 R15=R6R10 R16=R14-R15 R17=R12-R16 R18=Y1R13 

R19= Z3 =Z1R13  R20=R5R17 R21= X3 =R16R7  R22= Y3 =R20-R18 
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The above procedure is rescheduled to avoid any dependency. It considers proper 

arrangement for trying to fully utilize all of the 4-stage modular pipelined multiplier 

(Figure 9). This rescheduling is shown in Table 1, which notes the number of clock 

cycles in an accumulation manner.  

Table 1. ECC point addition scheduling for 4-stage pipelining. 

Clock Cycle 
Accumulation 

Modular Multiplication Modular Adder  

Stage 1 Stage 2 Stage 3 Stage 4 Stage 1 Stage 2 Comments 

0 R1       

1N R2 R1      

2N R3 R2 R1     

3N R4 R3 R2 R1    

4N R11 R4 R3 R2    

4N+1  R11 R4 R3 R5   

4N+2   R11 R4  R5  

4N+3 R9   R11 R7   

4N+4 R11 R9   R6 R7  

4N+5 R10 R11 R9   R6  

4N+6 R9 R10 R11 R9    

8N  R9 R9 R10    

8N+3 R14 R9 R10     

8N+5 R15  R14 R9    

8N+6 R12 R15  R14    

8N+7 R14 R12 R15    R13 is stalled 

8N+8 R13 R14 R12 R15    

12N+3  R12 R15 R13    

12N+5  R13  R12 R16   

12N+6   R13   R16  

12N+7 R21    R17   

12N+8 R19 R21    R17  

12N+9 R20 R19 R21     

12N+10 R19 R20 R19 R21   Output X3 

16N+7  R19 R20 R19    

16N+8   R19 R20    

16N+9    R19 R22  Output Z3 

16N+10      R22 Output Y3 

 

In fact, this gives the clear estimation of the total number of clock cycles needed for an 

ECC point addition operation as 16N+10, where N is the size of the modulus in bits. 

 

Hardware implementations and simulations 

The purpose of the hardware implementation is to give some common platform and fair 

comparison between our proposed pipelined architecture and similar previous designs. 
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The focus in this study is not targeted toward industrial purposes. It does not give the 

details of the architecture implementation; instead, the aim is to extract the hardware time 

and area parameters of the main blocks to build a fair comparison study between the 

designs. Therefore, our implementation exploration here is going to be limited to the 

level needed to serve this comparison goal. We will implement the basic blocks of 

hardware that are commonly used to build all studied designs, i.e. our model here as well 

as similar previous architectures. The major common components needed by all designs 

are the modular multiplier and modular adder. 

    For simulation, we have used Silos Compiler (free Verilog compiler) to generate the 

results. A sample of the output results are shown for each design implemented in the 

project. For synthesis, we used the Virtex-4 XC4VSX35 FPGA library of Xilinx IES 

software. Unfortunately, this available FPGA platform does not create an Area report, 

unlike synthesis using ASIC libraries. Note that the ASIC area report advantage gives an 

accurate estimate of the space requirements in micrometer
2
 and number of gates needed. 

However, as mentioned before, this FPGA implementation cannot be precise for 

industrial usages; it is mainly a practical tool for fair comparison and academic study. We 

used it for comparing pipelined and non-pipelined versions of the ECC operations 

hardware. In this section, we have included a brief summary of the synthesis results 

(Table 2) followed by some output report-briefing subsections for each design. 

Table 2. FPGA synthesis summary. 

 

 Modular Adder Modular Multiplier 

Parallel Pipelined Parallel Pipelined 

Time Path delay 8.36ns 7.4ns 6.05ns 3.2ns 

Frequency 119.6Mhz 135.2MHz 165.24MHz 312.4MHz 

 

FPGA 

Hardware 

Slices 18 29 59 105 

Flip Flops - 28 33 139 

LUTs 32 48 105 141 

IOBs 32 36 36 36 

 

This study Hardware 

Area Estimation Figure 
82 141 233 421 

 

Parallel Design (Non-pipelined) Modular Adder 

 Synthesis Results 
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(a) Time: 

The maximum combinational path delay is 8.359ns. This is equivalent to having a 

maximum frequency of 119.6MHz. 

(b) FPGA Hardware:  

- Number of Slices: 18 out of 15360 (0%). 

- Number of 4 input LUTs: 32 out of 30720 (0%). 

- Number of bonded IOBs: 32 out of 448 (7%). 

 

 

Fig. 10: Non-Pipelined Modular Adder Block Diagram. 

 

 Macro Statistics 

- Adders/Subtractors: 2 

- 8-bit adder: 1 

- 9-bit adder: 1 

- XORs: 8 

- 1-bit XOR3: 8 

Pipelined Modular Adder 

 Synthesis Results 

(a) Time: 
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The minimum input arrival time before clock is 4.190ns. The maximum output 

required time after clock is 7.399ns. The maximum combinational path delay was 

not found. This is equivalent to having a maximum frequency of 135.2MHz. 

 

(b) FPGA Hardware: 

- Number of Slices: 29 out of 15360 (0%) 

- Number of Slice Flip Flops: 28 out of 30720 (0%) 

- Number of 4 input LUTs: 48 out of 30720 (0%) 

- Number of bonded IOBs: 36 out of 448 (8%) 

 

Fig. 11: Pipelined Modular Adder Block Diagram. 

 

 Macro Statistics 
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- Adders/Subtractors: 4 

- 4-bit adder carry in: 1 

- 4-bit adder carry out: 2 

- 5-bit adder carry in: 1 

- Registers: 29 

- Flip-Flops: 29 

- XORs: 8 

- 1-bit XOR3: 8 

 

Parallel Design (Non-pipelined) Modular Multiplier 

 

Fig. 12: Non-Pipelined Modular Multiplier Block Diagram. 

 

 

 Synthesis Results 



Adnan Abdul-Aziz Gutub, Abdul-Rahman M. El-Shafe and Mohammed A. Aabed   146 

 

Kuwait J. Sci. Eng. 38(2B) pp 125-153, 2011 

(a) Time: 

The minimum period is 6.052ns (Maximum Frequency: 165.238MHz). The 

minimum input arrival time before clock is 6.633ns. The maximum output 

required time after clock is 9.784ns. The maximum combinational path delay is 

10.365ns. 

(b) FPGA Hardware:  

- Number of Slices: 59 out of 15360 (0%) 

- Number of Slice Flip Flops: 33 out of 30720 (0%) 

- Number of 4 input LUTs: 105 out of 30720 (0%) 

- Number of bonded IOBs: 36 out of 448 (8%) 

 

 Macro Statistics 

- Adders/Subtractors: 4 

- 5-bit subtractor: 1 

- 8-bit adder: 1 

- 9-bit adder: 2 

- Counters : 1 

- 5-bit up counter: 1 

- Registers: 28 

- Flip-Flops: 28 

- Comparators: 1 

- 5-bit comparator equal: 1 

- Multiplexers: 1 

- 8-bit 4-to-1 multiplexer: 1 

- XORs: 8 

- 1-bit XOR3: 8 

 

Pipelined Modular Multiplier 

 

 Synthesis Results 

(a) Time: 

The minimum period: 3.201ns (Maximum Frequency is 312.402MHz). The 

minimum input arrival time before clock is 3.904ns. The maximum output 
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required time after clock is 6.909ns. The maximum combinational path delay is 

7.629ns 

 

(b) FPGA Hardware: 

- Number of Slices: 105 out of 15360 (0%) 

- Number of Slice Flip Flops: 139 out of 30720 (0%) 

- Number of 4 input LUTs: 141 out of 30720 (0%) 

- Number of bonded IOBs: 36 out of 448 (8%) 

 

 

Fig. 13. Pipelined Modular Multiplier Block Diagram. 

 

 Macro Statistics 

- Adders/Subtractors: 8 

- 4-bit adder carry out: 4 

- 5-bit adder carry in/out: 3 
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- 5-bit subtractor: 1 

- Counters: 1 

- 5-bit up counter: 1 

- Registers: 134 

- Flip-Flops: 134 

- Comparators: 1 

- 5-bit comparator equal: 1 

 

Comparisons and analysis remarks 

Based on the results obtained from the 160-bit synthesis, the pipelined Homogenous ECC 

point addition and the parallel Homogenous ECC point addition have been compared. For 

pipelined point–addition, the longest path in the implementation will be the path of a 

modular addition. This is because modular addition operations are given their own 

designated clock cycles separate than the multiplications. Note that the critical path of the 

modular multiplication is less than the modular addition. Therefore, the period used for 

pipelined point addition will depend on the longer path, i.e. the modular addition. The 

reason that modular addition takes a longer period is that the critical path depends on the 

full-adder of the carry-save adder along with the k/2+1 carry-propagate adder.  

In contrast, the critical path of the modular multiplication depends only on 2-to-1 

Mux along with a k/2 carry-propagate adder. Therefore, the implementation total period 

is 7.399ns with total number of clock cycles: 16N+10, as discussed earlier. Hence, the 

total time needed for a point addition using 160-bit operands is  

T=7.399n*(16*160 + 10)=19.01microsecond. 

   For a parallel implementation of the point-addition, the longest period includes a 

modular multiplication and 2 modular additions. This is because the modular additions 

are implemented in combinational logic.  

The total period is: 6.052n + 2*8.359n = 22.77ns. 

    The total number of clock cycles is 4N. Therefore, the total time needed for a point 

addition using 160-bit operands is  

T=(4*160)* 22.77n= 14.57microseconds. 

    Using the implemented multiplication and addition units, we compared the proposed 

design (Figure 7) with previous parallel design shown in Figure 6, both studied in relation 

to their area and time. Since the basic components are the same implemented in FPGA, 
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the comparison is believed to be fair and very practical. The study considered the area 

and timing estimations. To make our study consistent with the previous study in Gutub & 

Ibrahim (2003), we assume the basic hardware unit as the multiplier. All other units are 

quantified relative to this multiplier unit, as summarized in Table 3. 

 

Conclusion 

In this paper, we redesigned multiplier hardware as pipelined for Elliptic Curve 

Cryptography (ECC) computations. The design adopted projective coordinates ECC 

arithmetic to reduce the inversion complexity. The pipelined architecture is implemented 

and synthesized through a Xilinx Virtex-4 FPGA platform for 160-bits. Based on the 

synthesis results provided, we concluded that the parallel implementation of the point 

addition is faster than our pipelined approach; however, the pipelined approach is more 

advanced in term of chip area. Combing the speed and area as a figure of merit cost- 

values showed that this work gave overall efficiency in its area time cost which made it 

very attractive showing a promising research direction for researchers to work on. 

 
Table 3. Cost comparison. 

Total Time (microsecond) 

(for 160-bits ECC point addition 

operation) 

Pipelined Parallel Percentage 

19.01 14.57 ~30% more delay 

 

Cost 

approximation 

based on 

similar Area 

estimate 

considered in 

previous 

designs [33] 

Area (figure 

relating to size 

of hardware) 

2 4 ~50% efficient area 

AT (Area  

Time) 
38 58 ~34% efficient cost 

AT
2
 (Area  

Time  Time)
 722 845 ~15% efficient cost 

A
2
T (Area  

Area  Time) 
76 232 ~67% efficient cost 

 

Cost 

approximation 

based on this 

work 

implementation 

Area estimate 

Area (figure 

relating to size 

of hardware) 

141+421=562 82+4*233=1014 ~45% efficient area 

AT (Area  

Time) 
10,678 14,804 ~28% efficient cost 

AT
2
 (Area  

Time  Time)
 202,882 216,144 ~6% efficient cost 

A
2
T (Area  

Area  Time) 
6,001,036 15,011,256 ~60% efficient cost 
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