Switching Theory & Logic Design 1403271-4

Ch1: Digital Systems and Binary Numbers Ch2: Boolean Algebra and Logic Gates Ch3: Gate-Level Minimization Ch4: Combinational Logic Ch5: Synchronous Sequential Logic Ch6: Registers and Counters

Chapter 4 Combinational Logic

Switching Theory & Logic Design 1403271-4

Prof. Adnan Gutub

Main Ref: M. Morris Mano and Michael D. Ciletti, Digital Design, Prentice Hall

			-	-		-		
A	В	C	F ₂	F ' ₂	T 1	T ₂	T ₃	F 1
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

	Inpu	t BCD)	Output Excess-3 Code				
Α	В	С	D	w	x	y	z	
0	0	0	0	0	0	1	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	
0	1	1	0	1	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	0	1	0	1	1	
1	0	0	1	1	1	0	0	

 A full adder is similar to a carry-in bit from lower sta computes a sum bit, S and 	half addo ges. Lik a carry b	er, but te the h oit, C.	includ alf-add	es a ler, it	
• For a carry-in (Z) of	Z	0	0	0	0
0, it is the same as	X	0	0	1 + 0	1
the half-adder:	+ Y	+0	+1		+1
	C S	00	01	01	10
 For a carry- in (Z) of 1: 	Z	1	1	1	1
(X	0	0	1	1
	+ Y	+ 0	+1	+ 0	+1
	CS	01	10	10	11

• r -	-7 n-3			
- 1 -	-2, 11-3			
	Number	Sign -Mag.	1's Comp.	2's Comp.
	+3	011	011	011
	+2	010	010	010
	+1	001	001	001
	+0	000	000	000
	-0	100	111	
	-1	101	110	111
	-2	110	101	110
	-3	111	100	101
	-4			100

	Bin	ary S	um			Decimal				
K	Z 8	Z 4	Z ₂	<i>Z</i> ₁	c	S 8	S 4	S ₂	S 1	
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

Switching Theory & Logic Design 1403271-4

Ref: M. Morris Mano and Michael D. Ciletti, Digital Design, Prentice Hall

			-							
x	Inputs y	Z	Do	D ₁	D ₂	Out D3	puts D₄	D ₅	D 6	D
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	Ő	0	Ő
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

	4.	10 E		ode	ers		$z = D_1$ $y = D_2$ $x = D_4$	$+ D_3 + + D_3 + + D_5 + $	$D_5 + D_6 + D_6 + D_6 + D_6$	D D D
utn I	able o	r an Oc	Inp	outs	Encode	er	~	C	utput	ts
Do	D ₁	D ₂	D_3	D ₄	D ₅	D ₆	D ₇	x	y	z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
	0	0	0	0	0	0	1	1	1	1

