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4.1 Introduction

• Logic Circuits: Combinational or Sequential

• Combinational

–No Memory (No Storage)

–Outputs fully based on combination of inputs

• Sequential

–Memory (Storage) + Combinational Logic 

3

4.2 Combinational Circuits

4

Sequential

Analysis

Design
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4.3 Analysis Procedure

1. Label all gate outputs as functions of input 
variables. 

– Use arbitrary symbols—with meaningful names.

2. Label gates as functions of input variables. 
Find the Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the 
outputs of the circuit are obtained.

4. Obtain output Boolean functions in terms of 

input variables.
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Analysis Example

Find F1 & F2 in terms of inputs?
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Truth Table
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4.4 Design Procedure

• Determine required number of inputs and 

outputs → assign a symbol to each.

• Derive truth table relating inputs and outputs.

• Simplify outputs Boolean function.

• Derive Logic Diagram
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Code Conversion Example

9

10

•Utilize Don’t Care

•Simplify Functions

Code 

Conversion 

Example
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Code Conversion Example Logic Diagram

4.5 Binary Adder–Subtractor

• simple addition consists of four possible 
elementary operations:

• 0+0 = 0

• 0+1 = 1

• 1+0 = 1

• 1+1 = 10    ←    Sum has Carry

–Half Adder (two ‘2’ input bits)

–Full Adder (three ‘3’ input bits)

12
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Half Adder (Top Overview)

• Binary addition used frequently

• Addition Development:

– Half-Adder (HA), a 2-input bit-wise addition 
functional block,

– Full-Adder (FA), a 3-input bit-wise addition 
functional block,

– Ripple Carry Adder, an iterative array to perform
binary addition, and

– Carry-Look-Ahead Adder (CLA), a hierarchical 
structure to improve performance.

13
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Functional Block: Half-Adder

� A 2-input, 1-bit width binary adder that performs the 

following computations:

� A half adder adds two bits to produce a two-bit sum

� The sum is expressed as a                                                    

sum bit , S and a carry bit, C

� The half adder can be specified                                        

as a truth table for S and C  ⇒

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 0 0 1 0 1 1 0

X Y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0
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Logic Simplification: Half-Adder

� The K-Map for S, C is:

� This is a pretty trivial map!
By inspection:

� and

� These equations lead to several implementations.

Y

X

0 1

32
1

1

S Y

X

0 1

32
1

C

)YX()YX(S

YXYXYXS

+⋅+=

⊕=⋅+⋅=

)(C

YXC

)YX( ⋅=

⋅=

Half Adder Implementation

Chapter 4    16
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Functional Block: Full-Adder

� A full adder is similar to a half adder, but includes a 

carry-in bit from lower stages.   Like the half-adder, it 

computes a sum bit, S and a carry bit, C.

• For a carry-in (Z) of                                                            

0, it is the same as                                                              

the half-adder: 

• For a carry- in

(Z) of 1:            

Z 0 0 0 0

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 0 0 1 0 1 1 0

Z 1 1 1 1

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 1 1 0 1 0 1 1

Chapter 4    18

Logic Optimization: Full-Adder

� Full-Adder Truth Table:  

� Full-Adder K-Map:

X Y Z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

X

Y

Z

0 1 3 2

4 5 7 6
1

1

1

1

S

X

Y

Z

0 1 3 2

4 5 7 6
1 11

1

C
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Equations: Full-Adder

� From the K-Map, we get:

� The S function is the three-bit XOR function (Odd 
Function):

� The Carry bit C is 1 if both X and Y are 1 (the sum is 
2), or if the sum is 1 and a carry-in (Z) occurs.   Thus C 
can be re-written as:

� The term X·Y   is carry generate.

� The term X⊕Y  is carry propagate.

ZYZXYXC
ZYXZYXZYXZYXS

++=

+++=

ZYXS ⊕⊕=

Z)YX(YXC ⊕+=

Full Adder Implementation
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Full Adder as 2-Half Adders

21

Chapter 4    22

Binary Adders

� To  add multiple operands, we “bundle” logical signals 

together into vectors and use functional blocks that 

operate on the vectors

� Example: 4-bit ripple carry

adder: Adds input vectors                                                

A(3:0) and B(3:0) to get

a sum  vector S(3:0) 

� Note: carry out of cell i

becomes carry in of cell

i + 1

Description Subscript

3 2 1 0

Name

Carry In 0 1 1 0 Ci

Augend 1 0 1 1 Ai

Addend 0 0 1 1 Bi

Sum 1 1 1 0 Si

Carry out 0 0 1 1 Ci+1
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4-bit Ripple-Carry Binary Adder

� A four-bit Ripple Carry Adder made from four 

1-bit Full Adders:    

B3 A 3

FA

B2 A 2

FA

B1

S3C4

C0

C3 C2 C1

S2 S1 S0

A 1

FA

B0 A 0

FA

Carry Propagation → Carry Lookahead Adder

Chapter 4    24
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Binary Subtraction: Signed Integers

� Positive numbers and zero can be represented by 

unsigned n-digit, radix r numbers.   We need a 

representation for negative numbers.   

� To represent a sign (+ or –) we need exactly one more 

bit of information (1 binary digit gives 21 = 2 elements 

which is exactly what is needed).

� Since computers use binary numbers, by convention,  

the most significant bit is interpreted as a sign bit:

s an–2 … a2a1a0

where:

s = 0 for Positive numbers

s = 1 for Negative numbers

and ai = 0 or 1 represent the magnitude in some form.

Chapter 4    26

Signed Integer Representations

�Signed-Magnitude – here the n – 1 digits are 

interpreted as a positive magnitude.

�Signed-Complement – here the digits are 

interpreted as the rest of the complement of the 

number.   There are two possibilities here:

• Signed 1's Complement 

� Uses 1's Complement Arithmetic

• Signed 2's Complement

� Uses 2's Complement Arithmetic
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Signed Integer Representation Example

� r =2, n=3

Number Sign -Mag. 1's Comp. 2's Comp.

+3 011 011 011

+2 010 010 010

+1 001 001 001

+0 000 000 000

– 0 100 111 —

– 1 101 110 111

– 2 110 101 110

– 3 111 100 101

– 4 — — 100

Chapter 4    28

Signed-Magnitude Arithmetic

� If the parity of the three signs is 0:
1. Add the magnitudes.

2. Check for overflow (a carry out of the MSB) 

3. The sign of the result is the same as the sign of the
first operand.

�If the parity of the three signs is 1:
1. Subtract the second magnitude from the first.

2. If a borrow occurs:

• take the two’s complement of result

• and make the result sign the complement of the 
sign of the first operand.

3. Overflow will never occur.
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� Example 1:     0010

+0101

� Example 2:     0010

+1101

� Example 3:     1010

− 0101

Sign-Magnitude Arithmetic Examples

Chapter 4    30

Signed-Complement Arithmetic

� Addition:

1. Add the numbers including the sign bits,  

discarding a carry out of the sign bits (2's 

Complement), or using an end-around carry (1's 

Complement).

2. If the sign bits were the same for both 

numbers and the sign of the result is different, an 

overflow has occurred.

3. The sign of the result is computed in step 1.

� Subtraction:

Form the complement of the number you are 

subtracting and follow the rules for addition.
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� Example 1:  1101

+0011

� Example 2:  1101

−0011

Signed 2’s Complement Examples

Binary Subtractor

32
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2’s Complement Adder/Subtractor

� Subtraction can be done by addition of the 2's Complement.  

1. Complement each bit (1's Complement.)

2. Add 1 to the result.

� The circuit shown computes A + B and A – B:

� For S = 1, subtract,

the 2’s complement

of B is formed by using

XORs to form the 1’s

comp and adding the 1

applied to C0.

� For S = 0, add, B is

passed through

unchanged

FA FA FA FA

S

B3

C3

S2 S1 S0S3C4

C2 C1 C0

A 3 B2 A 2 B1 A 1 B0 A 0

Overflow

34
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Overflow Detection

� Overflow occurs if n + 1 bits are required to contain the 

result from an n-bit addition or subtraction

� Overflow can occur for:

• Addition of two operands with the same sign

• Subtraction of operands with different signs

� Signed number overflow cases with correct result sign

0      0      1      11

+ 0 − 1 − 0 + 1

0      0      1      1

� Detection can be performed by examining the result 

signs which should match the signs of the top operand

Chapter 4    36

Overflow Detection 

� Signed number cases with carries Cn and Cn−1 shown for correct 

result signs:

0   0 0   0 1   1 1   1

0      0      1      11

+ 0 −1 −0 +1

0      0     1      1

� Signed number cases with carries shown for erroneous result signs 

(indicating overflow):

0   1 0   1 1   0 1   0

0      0      1      11

+ 0 − 1 −0 + 1

1      1     0      0

� Simplest way to implement overflow V = Cn + Cn − 1

� This works correctly only if 1’s complement and the addition of the 

carry in of 1 is used to implement the complementation! Otherwise 

fails for − 10 ... 0
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4.6 Decimal Adder: BCD Adder

37

38

BCD Adder
C=K+Z8Z4+Z8Z2
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4.7 Binary Multiplication

The binary multiplication table is simple: 

0 ∗ 0 = 0  |  1 ∗ 0 = 0  |  0 ∗ 1 = 0  |  1 ∗ 1 = 1 

Extending multiplication to multiple digits: 

Multiplicand 1011 

Multiplier x  101 

Partial Products 1011 

 0000 - 

 1011 - - 

Product 110111 

 

4.7 Binary Multiplier

40
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4.8 Magnitude Comparator

42
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4.9 Decoders (3 x 8 Decoder)

43

44

4.9 Decoders
3 x 8 Decoder
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Complemented Decoder 

with Active Low Enable

45

4 x 16 Decoder
made from two 3 x 8 decoders

46
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Implementation with Decoder
Ex: Full Adder Design

47

S(x,y,z) =   ∑ (1,2,4,7)                         C(x,y,z) = ∑ (3,5,6,7) 

4.10 Encoders

48
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Priority Encoder

49

Implementation of Priority Encoder

50
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4.11 Multiplexers
2 x 1 Mux

51

4 x 1 Mux

52
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4-Bits 2x1 Mux
Quadruple 2x1 

multiplexer 

Boolean Function Implementation

F(x,y,z) =   ∑ (1,2,6,7)

54
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Example of Implementation with Mux
F(A,B,C,D)= ∑ (1,3,4,11,12,13,14,15)

55

Three-State Gate (Tri-State Buffer)

56


