
Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 1

Chapter 4

Combinational Logic

Switching Theory & Logic Design
1403271-4

Prof. Adnan Gutub

Main Ref: M. Morris Mano and Michael D. Ciletti, Digital Design, Prentice Hall

Ch1: Digital Systems and Binary Numbers

Ch2: Boolean Algebra and Logic Gates

Ch3: Gate-Level Minimization

Ch4: Combinational Logic

Ch5: Synchronous Sequential Logic

Ch6: Registers and Counters

Content
Combinational Logic

• 4.1 Introduction 125

• 4.2 Combinational Circuits 125

• 4.3 Analysis Procedure 126

• 4.4 Design Procedure 129

• 4.5 Binary Adder–Subtractor 133

• 4.6 Decimal Adder 144

• 4.7 Binary Multiplier 146

• 4.8 Magnitude Comparator 148

• 4.9 Decoders 150

• 4.10 Encoders 155

• 4.11 Multiplexers 158

2

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 2

4.1 Introduction

• Logic Circuits: Combinational or Sequential

• Combinational

–No Memory (No Storage)

–Outputs fully based on combination of inputs

• Sequential

–Memory (Storage) + Combinational Logic

3

4.2 Combinational Circuits

4

Sequential

Analysis

Design

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 3

4.3 Analysis Procedure

1. Label all gate outputs as functions of input
variables.

– Use arbitrary symbols—with meaningful names.

2. Label gates as functions of input variables.
Find the Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the
outputs of the circuit are obtained.

4. Obtain output Boolean functions in terms of

input variables.

5

Analysis Example

Find F1 & F2 in terms of inputs?

6

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 4

Truth Table

7

4.4 Design Procedure

• Determine required number of inputs and

outputs → assign a symbol to each.

• Derive truth table relating inputs and outputs.

• Simplify outputs Boolean function.

• Derive Logic Diagram

8

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 5

Code Conversion Example

9

10

•Utilize Don’t Care

•Simplify Functions

Code

Conversion

Example

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 6

11

Code Conversion Example Logic Diagram

4.5 Binary Adder–Subtractor

• simple addition consists of four possible
elementary operations:

• 0+0 = 0

• 0+1 = 1

• 1+0 = 1

• 1+1 = 10 ← Sum has Carry

–Half Adder (two ‘2’ input bits)

–Full Adder (three ‘3’ input bits)

12

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 7

Half Adder (Top Overview)

• Binary addition used frequently

• Addition Development:

– Half-Adder (HA), a 2-input bit-wise addition
functional block,

– Full-Adder (FA), a 3-input bit-wise addition
functional block,

– Ripple Carry Adder, an iterative array to perform
binary addition, and

– Carry-Look-Ahead Adder (CLA), a hierarchical
structure to improve performance.

13

Chapter 4 14

Functional Block: Half-Adder

� A 2-input, 1-bit width binary adder that performs the

following computations:

� A half adder adds two bits to produce a two-bit sum

� The sum is expressed as a

sum bit , S and a carry bit, C

� The half adder can be specified

as a truth table for S and C ⇒

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 0 0 1 0 1 1 0

X Y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 8

Chapter 4 15

Logic Simplification: Half-Adder

� The K-Map for S, C is:

� This is a pretty trivial map!
By inspection:

� and

� These equations lead to several implementations.

Y

X

0 1

32
1

1

S Y

X

0 1

32
1

C

)YX()YX(S

YXYXYXS

+⋅+=

⊕=⋅+⋅=

)(C

YXC

)YX(⋅=

⋅=

Half Adder Implementation

Chapter 4 16

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 9

Chapter 4 17

Functional Block: Full-Adder

� A full adder is similar to a half adder, but includes a

carry-in bit from lower stages. Like the half-adder, it

computes a sum bit, S and a carry bit, C.

• For a carry-in (Z) of

0, it is the same as

the half-adder:

• For a carry- in

(Z) of 1:

Z 0 0 0 0

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 0 0 1 0 1 1 0

Z 1 1 1 1

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 1 1 0 1 0 1 1

Chapter 4 18

Logic Optimization: Full-Adder

� Full-Adder Truth Table:

� Full-Adder K-Map:

X Y Z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

X

Y

Z

0 1 3 2

4 5 7 6
1

1

1

1

S

X

Y

Z

0 1 3 2

4 5 7 6
1 11

1

C

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 10

Chapter 4 19

Equations: Full-Adder

� From the K-Map, we get:

� The S function is the three-bit XOR function (Odd
Function):

� The Carry bit C is 1 if both X and Y are 1 (the sum is
2), or if the sum is 1 and a carry-in (Z) occurs. Thus C
can be re-written as:

� The term X·Y is carry generate.

� The term X⊕Y is carry propagate.

ZYZXYXC
ZYXZYXZYXZYXS

++=

+++=

ZYXS ⊕⊕=

Z)YX(YXC ⊕+=

Full Adder Implementation

Chapter 4 20

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 11

Full Adder as 2-Half Adders

21

Chapter 4 22

Binary Adders

� To add multiple operands, we “bundle” logical signals

together into vectors and use functional blocks that

operate on the vectors

� Example: 4-bit ripple carry

adder: Adds input vectors

A(3:0) and B(3:0) to get

a sum vector S(3:0)

� Note: carry out of cell i

becomes carry in of cell

i + 1

Description Subscript

3 2 1 0

Name

Carry In 0 1 1 0 Ci

Augend 1 0 1 1 Ai

Addend 0 0 1 1 Bi

Sum 1 1 1 0 Si

Carry out 0 0 1 1 Ci+1

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 12

Chapter 4 23

4-bit Ripple-Carry Binary Adder

� A four-bit Ripple Carry Adder made from four

1-bit Full Adders:

B3 A 3

FA

B2 A 2

FA

B1

S3C4

C0

C3 C2 C1

S2 S1 S0

A 1

FA

B0 A 0

FA

Carry Propagation → Carry Lookahead Adder

Chapter 4 24

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 13

Chapter 4 25

Binary Subtraction: Signed Integers

� Positive numbers and zero can be represented by

unsigned n-digit, radix r numbers. We need a

representation for negative numbers.

� To represent a sign (+ or –) we need exactly one more

bit of information (1 binary digit gives 21 = 2 elements

which is exactly what is needed).

� Since computers use binary numbers, by convention,

the most significant bit is interpreted as a sign bit:

s an–2 … a2a1a0

where:

s = 0 for Positive numbers

s = 1 for Negative numbers

and ai = 0 or 1 represent the magnitude in some form.

Chapter 4 26

Signed Integer Representations

�Signed-Magnitude – here the n – 1 digits are

interpreted as a positive magnitude.

�Signed-Complement – here the digits are

interpreted as the rest of the complement of the

number. There are two possibilities here:

• Signed 1's Complement

� Uses 1's Complement Arithmetic

• Signed 2's Complement

� Uses 2's Complement Arithmetic

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 14

Chapter 4 27

Signed Integer Representation Example

� r =2, n=3

Number Sign -Mag. 1's Comp. 2's Comp.

+3 011 011 011

+2 010 010 010

+1 001 001 001

+0 000 000 000

– 0 100 111 —

– 1 101 110 111

– 2 110 101 110

– 3 111 100 101

– 4 — — 100

Chapter 4 28

Signed-Magnitude Arithmetic

� If the parity of the three signs is 0:
1. Add the magnitudes.

2. Check for overflow (a carry out of the MSB)

3. The sign of the result is the same as the sign of the
first operand.

�If the parity of the three signs is 1:
1. Subtract the second magnitude from the first.

2. If a borrow occurs:

• take the two’s complement of result

• and make the result sign the complement of the
sign of the first operand.

3. Overflow will never occur.

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 15

Chapter 4 29

� Example 1: 0010

+0101

� Example 2: 0010

+1101

� Example 3: 1010

− 0101

Sign-Magnitude Arithmetic Examples

Chapter 4 30

Signed-Complement Arithmetic

� Addition:

1. Add the numbers including the sign bits,

discarding a carry out of the sign bits (2's

Complement), or using an end-around carry (1's

Complement).

2. If the sign bits were the same for both

numbers and the sign of the result is different, an

overflow has occurred.

3. The sign of the result is computed in step 1.

� Subtraction:

Form the complement of the number you are

subtracting and follow the rules for addition.

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 16

Chapter 4 31

� Example 1: 1101

+0011

� Example 2: 1101

−0011

Signed 2’s Complement Examples

Binary Subtractor

32

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 17

Chapter 4 33

2’s Complement Adder/Subtractor

� Subtraction can be done by addition of the 2's Complement.

1. Complement each bit (1's Complement.)

2. Add 1 to the result.

� The circuit shown computes A + B and A – B:

� For S = 1, subtract,

the 2’s complement

of B is formed by using

XORs to form the 1’s

comp and adding the 1

applied to C0.

� For S = 0, add, B is

passed through

unchanged

FA FA FA FA

S

B3

C3

S2 S1 S0S3C4

C2 C1 C0

A 3 B2 A 2 B1 A 1 B0 A 0

Overflow

34

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 18

Chapter 4 35

Overflow Detection

� Overflow occurs if n + 1 bits are required to contain the

result from an n-bit addition or subtraction

� Overflow can occur for:

• Addition of two operands with the same sign

• Subtraction of operands with different signs

� Signed number overflow cases with correct result sign

0 0 1 11

+ 0 − 1 − 0 + 1

0 0 1 1

� Detection can be performed by examining the result

signs which should match the signs of the top operand

Chapter 4 36

Overflow Detection

� Signed number cases with carries Cn and Cn−1 shown for correct

result signs:

0 0 0 0 1 1 1 1

0 0 1 11

+ 0 −1 −0 +1

0 0 1 1

� Signed number cases with carries shown for erroneous result signs

(indicating overflow):

0 1 0 1 1 0 1 0

0 0 1 11

+ 0 − 1 −0 + 1

1 1 0 0

� Simplest way to implement overflow V = Cn + Cn − 1

� This works correctly only if 1’s complement and the addition of the

carry in of 1 is used to implement the complementation! Otherwise

fails for − 10 ... 0

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 19

4.6 Decimal Adder: BCD Adder

37

38

BCD Adder
C=K+Z8Z4+Z8Z2

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 20

39

4.7 Binary Multiplication

The binary multiplication table is simple:

0 ∗ 0 = 0 | 1 ∗ 0 = 0 | 0 ∗ 1 = 0 | 1 ∗ 1 = 1

Extending multiplication to multiple digits:

Multiplicand 1011

Multiplier x 101

Partial Products 1011

 0000 -

 1011 - -

Product 110111

4.7 Binary Multiplier

40

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 21

41

4.8 Magnitude Comparator

42

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 22

4.9 Decoders (3 x 8 Decoder)

43

44

4.9 Decoders
3 x 8 Decoder

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 23

Complemented Decoder

with Active Low Enable

45

4 x 16 Decoder
made from two 3 x 8 decoders

46

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 24

Implementation with Decoder
Ex: Full Adder Design

47

S(x,y,z) = ∑ (1,2,4,7) C(x,y,z) = ∑ (3,5,6,7)

4.10 Encoders

48

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 25

Priority Encoder

49

Implementation of Priority Encoder

50

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 26

4.11 Multiplexers
2 x 1 Mux

51

4 x 1 Mux

52

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 27

53

4-Bits 2x1 Mux
Quadruple 2x1

multiplexer

Boolean Function Implementation

F(x,y,z) = ∑ (1,2,6,7)

54

Chapter 4

Combinational Logic

Switching Theory & Logic Design

1403271-4

Ref: M. Morris Mano and Michael D. Ciletti,

Digital Design, Prentice Hall Prof. Adnan Gutub 28

Example of Implementation with Mux
F(A,B,C,D)= ∑ (1,3,4,11,12,13,14,15)

55

Three-State Gate (Tri-State Buffer)

56

