Ch1: Digital Systems and Binary Numbers
Ch2: Boolean Algebra and Logic Gates

Ch3: Gate-Level Minimization
Ch4: Combinational Logic

Ch5: Synchronous Sequential Logic Ch6: Registers and Counters

Chapter 2 Boolean Algebra and Logic Gates

Switching Theory & Logic Design 1403271-4

Prof. Adnan Gutub

Main Ref: M. Morris Mano and Michael D. Ciletti, Digital Design, Prentice Hall

Content

Boolean Algebra and Logic Gates

- 2.1 Introduction 38
- 2.2 Basic Definitions 38
- 2.3 Axiomatic Definition of Boolean Algebra 40
- 2.4 Basic Theorems and Properties of Boolean Algebra 43
- 2.5 Boolean Functions 46
- 2.6 Canonical and Standard Forms 51
- 2.7 Other Logic Operations 58
- 2.8 Digital Logic Gates 60
- 2.9 Integrated Circuits 66

2.1 INTRODUCTION

Binary Logic and Gates

- Binary variables take on one of two values.
- Logical operators operate on binary values and binary variables.
- Basic logical operators are the <u>logic functions</u> AND, OR and NOT.
- Logic gates implement logic functions.
- Boolean Algebra: a useful mathematical system for specifying and transforming logic functions.
- We study Boolean algebra as a foundation for designing and analyzing digital systems!

ogic and Computer Design Fundamentals, 4e.

PowerPoint® Slides

2 2008 Pearson Education, Inc.

Chapter 2 -

3

Binary Variables

- Recall that the two binary values have different names:
 - True/False
 - On/Off
 - Yes/No
 - 1/0
- We use 1 and 0 to denote the two values.
- Variable identifier examples:
 - A, B, y, z, or X₁ for now
 - RESET, START IT, or ADD1 later

ogic and Computer Design Fundamentals, 4e lowerPoint® Slides Chapter 2 -

Logical Operations

- The three basic logical operations are:
 - AND
 - OR
 - NOT
- AND is denoted by a dot (·).
- OR is denoted by a plus (+).
- NOT is denoted by an overbar (), a single quote mark (') after, or (~) before the variable.

ogic and Computer Design Fundamentals, 4e owerPoint® Slides

Chapter 2 -

5

2.2 Basic Definitions

- Closure
- Associative law: (x * y) * z = x * (y * z)
- Commutative law : x * y = y * x
- Identity element :
- Inverse
- Distributive law : x * (y . z) = (x * y) . (x * z)

Chapter 2 -

2.3 Axiomatic Definition of Boolean Algebra

- In 1854, George Boole developed an algebraic system now called Boolean algebra
- Boolean algebra is an algebraic structure with two binary operators: + and .

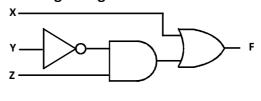
Logic Diagrams and Expressions

Trut	h '	Ta	ble)	
XYZ	F	=	Х	+	Υ
000					
001					

Equation

$$F = X + \overline{Y} Z$$

Logic Diagram



- Boolean equations, truth tables and logic diagrams describe the same
- Truth tables are unique; expressions and logic diagrams are not. This gives flexibility in implementing functions.

Chapter 2 -

Boolean Algebra

An algebraic structure defined on a set of at least two elements, B, together with three binary operators (denoted +, · and) that satisfies the following basic identities:

- 1. X + 0 = X
- $2. \quad X \cdot 1 = X$
- 3. X+1=1
- $4. \quad \boldsymbol{X} \cdot \boldsymbol{0} = \boldsymbol{0}$
- 5. X+X=X
- 6. $X \cdot X = X$
- 7. $X + \overline{X} = 1$
- 8. $X \cdot \overline{X} = 0$

9. $\overline{\overline{X}} = X$

10.

11. XY = YX

Commutative

- 12. (X+Y) + Z = X + (Y+Z)
- 13. (XY)Z = X(YZ)

Associative

 $14. \quad X(Y+Z) = XY+XZ$

X + Y = Y + X

15. X + YZ = (X + Y) (X + Z)

Distributive

- 16. $\overline{X+Y} = \overline{X} \cdot \overline{Y}$
- 17. $\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y}$

DeMorgan's

ogic and Computer Design Fundamentals, 4e

Chapter 2 -

c

Notation Examples

- **Examples:**
 - $Y = A \cdot B$ is read "Y is equal to A AND B."
 - z = x + y is read "z is equal to x OR y."
 - $X = \overline{A}$ is read "X is equal to NOT A."

Note: The statement:

1 + 1 = 2 (read "one <u>plus</u> one equals two")

is not the same as

1 + 1 = 1 (read "1 or 1 equals 1").

ogic and Computer Design Fundamentals, 4e PowerPoint® Slides

Chapter 2 -

Operator Definitions

Operations are defined on the values "0" and "1" for each operator:

AND OR NOT
$$0 \cdot 0 = 0 \quad 0 + 0 = 0 \quad \overline{0} = 1$$

$$0 \cdot 1 = 0 \quad 0 + 1 = 1 \quad \overline{1} = 0$$

$$1 \cdot 0 = 0 \quad 1 + 0 = 1$$

$$1 \cdot 1 = 1 \quad 1 + 1 = 1$$

Chapter 2 -

11

Truth Tables

- Truth table a tabular listing of the values of a function for all possible combinations of values on its arguments
- **Example:** Truth tables for the basic logic operations:

		AND
X	Y	$\mathbf{Z} = \mathbf{X} \cdot \mathbf{Y}$
0	0	0
0	1	0
1	0	0
1	1	1

			OR
Χ	7	Y	Z = X+Y
0		0	0
0	(1	1
1		0	1
1		1	1

	NOT
X	$Z = \overline{X}$
0	1
1	0

Chapter 2 -

Example 1: Boolean Algebraic Proof

- Our primary reason for doing proofs is to learn:
 - Careful and efficient use of the identities and theorems of Boolean algebra, and
 - How to choose the appropriate identity or theorem to apply to make forward progress, irrespective of the application.

ogic and Computer Design Fundamentals, 4e.

PowerPoint® Slides

2008 Pearson Education, Inc.

Chapter 2 -

13

Example 2: Boolean Algebraic Proofs

ogic and Computer Design Fundamentals, 4e, PowerPoint® Slides Chapter 2 -

Example 3: Boolean Algebraic Proofs

gic and Computer Design Fundamentals, 4e werPoint[®] Slides

Chapter 2 -

15

2.4 Basic Theorems and Properties of Boolean Algebra

Useful Theorems

•
$$x \cdot y + \overline{x} \cdot y = y$$
 $(x + y)(\overline{x} + y) = y$ Minimization

•
$$x + x \cdot y = x$$
 $x \cdot (x + y) = x$ Absorption

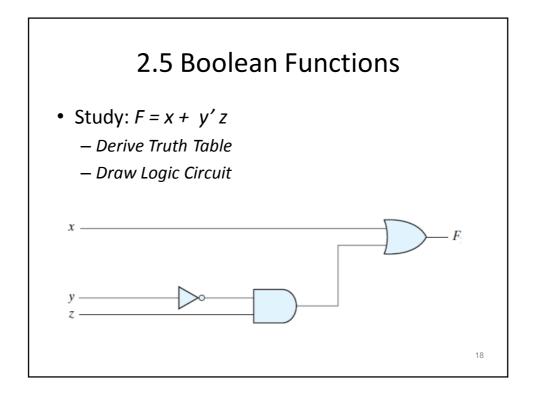
•
$$x + \overline{x} \cdot y = x + y$$
 $x \cdot (\overline{x} + y) = x \cdot y$ Simplification

•
$$x \cdot y + \overline{x} \cdot z + y \cdot z = x \cdot y + \overline{x} \cdot z$$
 Consensus
 $(x + y) \cdot (\overline{x} + z) \cdot (y + z) = (x + y) \cdot (\overline{x} + z)$

■
$$\overline{x+y} = \overline{x} \cdot \overline{y}$$
 $\overline{x \cdot y} = \overline{x} + \overline{y}$ DeMorgan's Laws

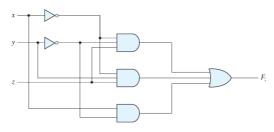
ogic and Computer Design Fundamentals, 4e PowerPoint® Slides Chapter 2 -

2.4 Basic Theorems and Properties of Boolean Algebra **Theorems** Table 2.1 Postulates and Theorems of Boolean Algebra Postulate 2 x + 0 = x $x \cdot 1 = x$ Postulate 5 (a) x + x' = 1(b) $x \cdot x' = 0$ Theorem 1 (a) (b) x + x = x $x \cdot x = x$ Theorem 2 (a) x + 1 = 1 $x \cdot 0 = 0$ Theorem 3, involution (x')' = xPostulate 3, commutative (b) x + y = y + xxy = yxTheorem 4, associative (a) x + (y + z) = (x + y) + z(b) x(yz) = (xy)zPostulate 4, distributive (a) x(y+z)=xy+xz(b) x + yz = (x + y)(x + z)Theorem 5, DeMorgan (a) (x+y)'=x'y'(b) (xy)' = x' + y'Theorem 6, absorption (a) x + xy = x(b) x(x + y) = xChapter 2 - 17



Boolean Simplification

F = x'y'z + x'yz + xy'



$$F = x'y'z + x'yz + xy'$$

$$= x'z(y' + y) + xy'$$

$$= x'z + xy'$$

19

Algebraic Manipulation

- Example 2.1: Simplify the following Boolean functions to a minimum number of literals
- 1. x(x' + y) = xx' + xy = 0 + xy = xy.
- 2. x + x'y = (x + x')(x + y) = 1(x + y) = x + y.
- 3. (x + y)(x + y') = x + xy + xy' + yy' = x(1 + y + y') = x.
- 4. xy + x'z + yz = xy + x'z + yz(x + x')= xy + x'z + xyz + x'yz= xy(1 + z) + x'z(1 + y)= xy + x'z.
- 5. (x + y)(x' + z)(y + z) = (x + y)(x' + z), by duality from function 4.

Complement of Function

$$(A + B + C)' = (A + x)'$$
 let $B + C = x$
 $= A'x'$ by theorem 5(a) (DeMorgan)
 $= A'(B + C)'$ substitute $B + C = x$
 $= A'(B'C')$ by theorem 5(a) (DeMorgan)
 $= A'B'C'$ by theorem 4(b) (associative)

- Example 2.2: Find complement of F1 and F2
- F1 = x'yz'+x'y'z
- F2 = x(y'z'+yz)

2

Some Properties of Identities & the Algebra

- Unless it happens to be self-dual, the dual of an expression does not equal the expression itself.
- Example: $F = (A + \overline{C}) \cdot B + 0$ dual $F = (A \cdot \overline{C} + B) \cdot 1 = A \cdot \overline{C} + B$
- Example: $G = X \cdot Y + (\overline{W + Z})$ dual G =
- Example: $H = A \cdot B + A \cdot C + B \cdot C$ dual H =
- Are any of these functions self-dual?

Logic and Computer Design Fundamentals, 4e PowerPoint[®] Slides © 2008 Pearson Education, Inc.

Chapter 2 -

Expression Simplification

- An application of Boolean algebra
- Simplify to contain the smallest number of <u>literals</u> (complemented and uncomplemented variables):

$$AB + \overline{A}CD + \overline{A}BD + \overline{A}C\overline{D} + ABCD$$

$$= AB + ABCD + \overline{A} C D + \overline{A} C \overline{D} + \overline{A} B D$$

$$= AB + AB(CD) + \overline{A} C (D + \overline{D}) + \overline{A} B D$$

$$= AB + \overline{A}C + \overline{A}BD = B(A + \overline{A}D) + \overline{A}C$$

=
$$B(A + D) + \overline{A}C$$
 5 literals

Logic and Computer Design Fundamentals, 4e PowerPoint® Slides

Chapter 2 -

22

Boolean Function Evaluation

$$F1 = xy\overline{z}$$

$$F2 = x + \overline{y}z$$

$$F3 = \overline{x}\overline{y}\overline{z} + \overline{x}yz + x\overline{y}$$

$$F4 = x\overline{y} + \overline{x}z$$

		_		i	1	
X	y	Z	F1	F2	F3	F4
0	0	0	0	0		
0	0	1	0	1		
0	1	0	0	0		
0	1	1	0	0		
1	0	0	0	1		
1	0	1	0	1		
1	1	0	1	1		
1	1	1	0	1		

ogic and Computer Design Fundamentals, 4e owerPoint® Slides Chapter 2 -

2.6 Canonical and Standard Forms

- What are Canonical Forms?
- Minterms and Maxterms
- Index Representation of Minterms and Maxterms
- Sum-of-Minterm (SOM) Representations
- Product-of-Maxterm (POM) Representations
- Representation of Complements of Functions
- Conversions between Representations

ogic and Computer Design Fundamentals, 4e owerPoint® Slides 2008 Pearson Education, Inc. Chapter 2 -

25

Canonical Forms

- It is useful to specify Boolean functions in a form that:
 - · Allows comparison for equality.
 - Has a correspondence to the truth tables
- Canonical Forms in common usage:
 - Sum of Minterms (SOM)
 - Product of Maxterms (POM)

ogic and Computer Design Fundamentals, 4e. PowerPoint® Slides Chapter 2 -

Minterms

- Minterms are AND terms with every variable present in either true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{x}), there are 2^n minterms for n variables.
- Example: Two variables (X and Y)produce 2 x 2 = 4 combinations:

XY (both normal)

 $\mathbf{X}\overline{\mathbf{Y}}(\mathbf{X} \text{ normal, } \mathbf{Y} \text{ complemented})$

 $\overline{\mathbf{X}}\mathbf{Y}$ (X complemented, Y normal)

 $\mathbf{X}\overline{\mathbf{V}}$ (both complemented)

Thus there are four minterms of two variables.

ogic and Computer Design Fundamentals, 4e PowerPoint® Slides 3 2008 Pearson Education, Inc. Chapter 2 -

27

Maxterms

- Maxterms are OR terms with every variable in true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{x}), there are 2^n maxterms for n variables.
- Example: Two variables (X and Y) produce 2 x 2 = 4 combinations:

X+Y (both normal)

 $X + \overline{Y}$ (x normal, y complemented)

 $\overline{X} + Y$ (x complemented, y normal)

 $\overline{X} + \overline{Y}$ (both complemented)

ogic and Computer Design Fundamentals, 4e. PowerPoint® Slides Chapter 2 -

Maxterms and Minterms

Examples: Two variable minterms and maxterms.

Index	Minterm	Maxterm
0	$\overline{\mathbf{x}}\overline{\mathbf{y}}$	x + y
1	x y	$x + \overline{y}$
2	x y	$\overline{\mathbf{x}} + \mathbf{y}$
3	ху	$\overline{x} + \overline{y}$

• The index above is important for describing which variables in the terms are true and which are complemented.

ogic and Computer Design Fundamentals, 4e lowerPoint® Slides

Chapter 2 -

29

Standard Order

- Minterms and maxterms are designated with a subscript
- The subscript is a number, corresponding to a binary pattern
- The bits in the pattern represent the complemented or normal state of each variable listed in a standard order.
- All variables will be present in a minterm or maxterm and will be listed in the <u>same order</u> (usually alphabetically)
- Example: For variables a, b, c:
 - Maxterms: $(a+b+\overline{c})$, (a+b+c)
 - Terms: (b + a + c), a \(\bar{c}\) b, and (c + b + a) are NOT in standard order.
 - Minterms: $a \bar{b} c$, a b c, $\bar{a} \bar{b} c$
 - Terms: (a + c), \bar{b} c, and $(\bar{a} + b)$ do not contain all variables

Logic and Computer Design Fundamentals, 4e PowerPoint® Slides Chapter 2 -

Purpose of the Index

- The <u>index</u> for the minterm or maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true form or complemented form.
- For Minterms:
 - "1" means the variable is "Not Complemented" and
 - "0" means the variable is "Complemented".
- For Maxterms:
 - "0" means the variable is "Not Complemented" and
 - "1" means the variable is "Complemented".

gic and Computer Design Fundamentals, 4e werPoint® Slides

Chapter 2 -

31

Index Example in Three Variables

- Example: (for three variables)
- Assume the variables are called X, Y, and Z.
- The standard order is X, then Y, then Z.
- The <u>Index 0</u> (base 10) = 000 (base 2) for three variables). All three variables are complemented for <u>minterm 0</u> (\overline{X} , \overline{Y} , \overline{Z}) and no variables are complemented for <u>Maxterm 0</u> (X,Y,Z).
 - Minterm 0, called m_0 is $\overline{X}\overline{Y}\overline{Z}$.
 - Maxterm 0, called M_0 is (X + Y + Z).
 - Minterm 6 ?
 - Maxterm 6 ?

.ogic and Computer Design Fundamentals, 4e PowerPoint® Slides Chapter 2 -

Index Examples – Four Variables

Index	Binary	Minterm	Maxterm
i	Pattern	$\mathbf{m}_{\mathbf{i}}$	$\mathbf{M_{i}}$
0	0000	abcd	a+b+c+d
1	0001	abcd	?
3	0011	?	$a+b+\overline{c}+\overline{d}$
5	0101	abcd	$a + \overline{b} + c + \overline{d}$
7	0111	?	$a + \overline{b} + \overline{c} + \overline{d}$
10	1010	a b c d	$\bar{a} + b + \bar{c} + d$
13	1101	abēd	?
15	1111	abcd	$\overline{a} + \overline{b} + \overline{c} + \overline{d}$

ogic and Computer Design Fundamentals, 4e owerPoint® Slides

Chapter 2 -

33

Minterm and Maxterm Relationship

- Review: DeMorgan's Theorem $\overline{x \cdot y} = \overline{x} + \overline{y}$ and $\overline{x + y} = \overline{x} \cdot \overline{y}$
- Two-variable example:

 $\mathbf{M}_2 = \overline{\mathbf{x}} + \mathbf{y}$ and $\mathbf{m}_2 = \mathbf{x} \cdot \overline{\mathbf{y}}$

Thus M2 is the complement of m2 and vice-versa.

- Since DeMorgan's Theorem holds for n variables, the above holds for terms of n variables
- giving:

$$\mathbf{M}_{i} = \overline{\mathbf{m}}_{i \text{ and }} \mathbf{m}_{i} = \overline{\mathbf{M}}_{i}$$

Thus M_i is the complement of m_i .

ogic and Computer Design Fundamentals, 4e lowerPoint® Slides Chapter 2 -

Observations

- In the function tables:
 - Each minterm has one and only one 1 present in the 2^n terms (a minimum of 1s). All other entries are 0.
 - Each <u>max</u>term has one and only one 0 present in the 2ⁿ terms All other entries are 1 (a <u>max</u>imum of 1s).
- We can implement any function by "ORing" the minterms corresponding to "1" entries in the function table. These are called the minterms of the function.
- We can implement any function by "ANDing" the maxterms corresponding to "0" entries in the function table. These are called the maxterms of the function.
- This gives us two <u>canonical forms</u>:
 - Sum of Minterms (SOM)
 - Product of Maxterms (POM)

for stating any Boolean function.

Logic and Computer Design Fundamentals, 4e PowerPoint® Slides © 2008 Pearson Education, Inc. Chapter 2 -

35

Minterm Function Example

• Example: Find $F_1 = m_1 + m_4 + m_7$

• $\mathbf{F1} = \overline{\mathbf{x}} \ \overline{\mathbf{y}} \ \mathbf{z} + \mathbf{x} \ \overline{\mathbf{y}} \ \overline{\mathbf{z}} + \mathbf{x} \ \mathbf{y} \ \mathbf{z}$

хуz	index	m1	+	m4	+	m7	$= \mathbf{F1}$
000	0	0	+	0	+	0	= 0
001	1	1	+	0	+	0	= 1
010	2	0	+	0	+	0	= 0
011	3	0	+	0	+	0	= 0
100	4	0	+	1	+	0	= 1
101	5	0	+	0	+	0	= 0
110	6	0	+	0	+	0	= 0
111	7	0	+	0	+	1	= 1
	•	•				Chante	er 2 - 3

PowerPoint® Slides © 2008 Pearson Education, Inc.

Minterm Function Example

- $F(A, B, C, D, E) = m_2 + m_9 + m_{17} + m_{23}$
- F(A, B, C, D, E) =

gic and Computer Design Fundamentals, 4e werPoint® Slides 2008 Pearson Education, Inc. Chapter 2 - 37

Maxterm Function Example

Example: Implement F1 in maxterms:

$$F_1 = M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6$$

$$F_1 = (x + y + z) \cdot (x + \overline{y} + z) \cdot (x + \overline{y} + \overline{z}) \cdot (\overline{x} + y + \overline{z}) \cdot (\overline{x} + \overline{y} + z)$$

ogic and Computer Design Fundamentals, 4e

Chapter 2 - 3

Maxterm Function Example

- $F(A,B,C,D) = M_8 M_8 M_{11} M_{14}$
- $\mathbf{F}(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}) =$

Chapter 2 -

Canonical Sum of Minterms

- Any Boolean function can be expressed as a Sum of Minterms.
 - For the function table, the minterms used are the terms corresponding to the 1's
 - For expressions, <u>expand</u> all terms first to explicitly list all minterms. Do this by "ANDing" any term missing a variable v with a term $(v + \overline{v})$.
- Example: Implement $f = x + \overline{x} \overline{y}$ as a sum of minterms.

First expand terms: $f = x(y + \overline{y}) + \overline{x} \overline{y}$ Then distribute terms: $f = xy + x\overline{y} + \overline{x}\overline{y}$ Express as sum of minterms: $f = m_3 + m_2 + m_0$

Chapter 2 -

Another SOM Example

- Example: $F = A + \overline{B}C$
- There are three variables, A, B, and C which we take to be the standard order.
- Expanding the terms with missing variables:
- Collect terms (removing all but one of duplicate terms):
- Express as SOM:

ogic and Computer Design Fundamentals, 4e lowerPoint® Slides

Chapter 2 -

41

Shorthand SOM Form

• From the previous example, we started with:

$$F = A + \overline{B} C$$

We ended up with:

 $F = m_1 + m_4 + m_5 + m_6 + m_7$

This can be denoted in the formal shorthand:

$$F(A,B,C) = \Sigma_m(1,4,5,6,7)$$

Note that we explicitly show the standard variables in order and drop the "m" designators.

Logic and Computer Design Fundamentals, 4e PowerPoint® Slides Chapter 2 -

Canonical Product of Maxterms

- Any Boolean Function can be expressed as a **Product of** Maxterms (POM).
 - For the function table, the maxterms used are the terms corresponding to the 0's.
 - For an expression, expand all terms first to explicitly list all maxterms. Do this by first applying the second distributive law, "ORing" terms missing variable v with a term equal to ${f V}\cdot{f V}$ and then applying the distributive law again.
- **Example: Convert to product of maxterms:**

$$f(x,y,z) = x + \overline{x} \overline{y}$$

Apply the distributive law:

$$x + \overline{x} \overline{y} = (x + \overline{x})(x + \overline{y}) = 1 \cdot (x + \overline{y}) = x + \overline{y}$$

Add missing variable z:

$$x + \overline{y} + z \cdot \overline{z} = (x + \overline{y} + z)(x + \overline{y} + \overline{z})$$

Express as POM: $f = M_2 \cdot M_3$

Chapter 2 -

43

Another POM Example

Convert to Product of Maxterms:

$$f(A, B, C) = A \overline{C} + BC + \overline{A} \overline{B}$$

• Use $x + yz = (x+y)\cdot(x+z)$ with $x = (A\overline{C} + BC)$, $y = \overline{A}$, and $z = \overline{B}$ to get:

$$f = (A\overline{C} + BC + \overline{A})(A\overline{C} + BC + \overline{B})$$

• Then use $x + \overline{x}y = x + y$ to get:

$$f = (\overline{C} + BC + \overline{A})(A\overline{C} + C + \overline{B})$$

and a second time to get:

$$f = (\overline{C} + B + \overline{A})(A + C + \overline{B})$$

Rearrange to standard order,

$$f = (\overline{A} + B + \overline{C})(A + \overline{B} + C)$$
 to give $f = M_5 \cdot M_2$

Chapter 2 -

Function Complements

- The complement of a function expressed as a sum of minterms is constructed by selecting the minterms missing in the sum-of-minterms canonical forms.
- Alternatively, the complement of a function expressed by a Sum of Minterms form is simply the Product of Maxterms with the same indices.
- Example: Given $F(x, y, z) = \Sigma_m(1,3,5,7)$ $\overline{F}(x, y, z) = \Sigma_m(0,2,4,6)$ $\overline{F}(x, y, z) = \Pi_M(1,3,5,7)$

ogic and Computer Design Fundamentals, 4e owerPoint® Slides

Chapter 2 -

X	y	Z	F	
0	0	0	0	Minterm
0	0	1	1	
0	1	0	0	
0	1	1	1 📉	(
1	0	0	0	
1	0	1	0-/	
1	1	0	14/	Maxterm
1	1	1	1 1	

Conversion Between Forms

- To convert between sum-of-minterms and productof-maxterms form (or vice-versa) we follow these steps:
 - Find the function complement by swapping terms in the list with terms not in the list.
 - Change from products to sums, or vice versa.
- Example: Given F as before: $F(x, y, z) = \sum_{m} (1,3,5,7)$
- Form the Complement: $\overline{F}(x,y,z) = \Sigma_m(0,2,4,6)$
- Then use the other form with the same indices this forms the complement again, giving the other form of the original function: $F(x,y,z) = \prod_{M} (0,2,4,6)$

ogic and Computer Design Fundamentals, 4e lowerPoint® Slides 2 2008 Pearson Education Inc. Chapter 2 -

47

Standard Forms

- <u>Standard Sum-of-Products (SOP) form:</u>
 equations are written as an OR of AND terms
- Standard Product-of-Sums (POS) form: equations are written as an AND of OR terms
- Examples:
 - SOP: $ABC + \overline{A}\overline{B}C + B$
 - POS: $(A+B) \cdot (A+\overline{B}+\overline{C}) \cdot C$
- These "mixed" forms are neither SOP nor POS
 - $\bullet (A B + C) (A + C)$
 - $\cdot AB\overline{C} + AC(A+B)$

ogic and Computer Design Fundamentals, 4e. PowerPoint® Slides Chapter 2 -

Standard Sum-of-Products (SOP)

- A sum of minterms form for n variables can be written down directly from a truth table.
 - Implementation of this form is a two-level network of gates such that:
 - The first level consists of *n*-input AND gates, and
 - The second level is a single OR gate (with fewer than 2^n inputs).
- This form often can be simplified so that the corresponding circuit is simpler.

ogic and Computer Design Fundamentals, 4e PowerPoint® Slides

Chapter 2 -

40

Standard Sum-of-Products (SOP)

- A Simplification Example:
- $F(A,B,C) = \Sigma m(1,4,5,6,7)$
- Writing the minterm expression: $F = \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C + AB\overline{C} + ABC$
- Simplifying:

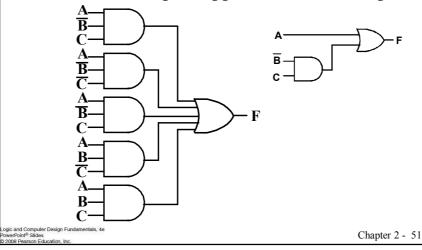
 $\mathbf{F} =$

Simplified F contains 3 literals compared to 15 in minterm F

ogic and Computer Design Fundamentals, 4e., PowerPoint® Slides Chapter 2 -

AND/OR Two-level Implementation of SOP Expression

The two implementations for F are shown below – it is quite apparent which is simpler!



SOP and POS Observations

- The previous examples show that:
 - Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard forms (SOP, POS) differ in complexity
 - Boolean algebra can be used to manipulate equations into simpler forms.
 - Simpler equations lead to simpler two-level implementations
- Questions:
 - How can we attain a "simplest" expression?
 - Is there only one minimum cost circuit?
 - The next part will deal with these issues.

ogic and Computer Design Fundamentals, 4e lowerPoint® Slides Chapter 2 -

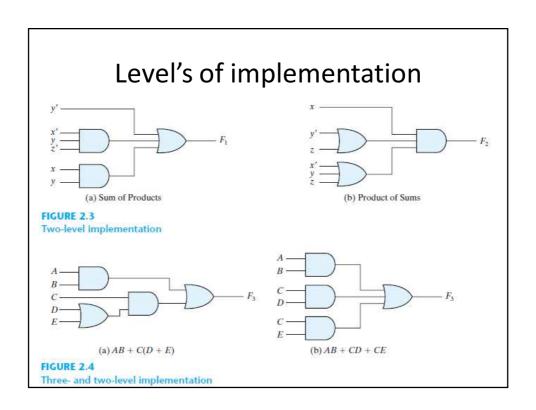


Table 2.8 Boolean Expressions for the 16 Functions of Two Variables Operator Symbol **Boolean Functions** Comments Name $F_0 = 0$ Null Binary constant 0 $F_1 = xy$ $x \cdot y$ AND x and y $F_2 = xy'$ x/yInhibition x, but not y Transfer y, but not x Inhibition $F_4 = x'y$ y/x $F_5 = y$ Transfer Exclusive-OR x or y, but not both $F_6 = xy' + x'y$ $x \oplus y$ OR x + yx or y $F_7 = x + y$ NOR Not-OR $x \downarrow y$ $F_8 = (x + y)'$

Equivalence

Complement

Complement

Implication

NAND

Identity

Implication

2.7 Other Logic Operations

 $(x \oplus y)'$

y'

x'

 $x \subset y$

 $x \supset y$

 $x \uparrow y$

 $F_9 = xy + x'y'$

 $F_{10} = y'$ $F_{11} = x + y$

 $F_{12} = x'$

 $F_{13} = x' + y$

 $F_{14} = (xy)'$

 $F_{15} = 1$

x equals y

If y, then x

If x, then y

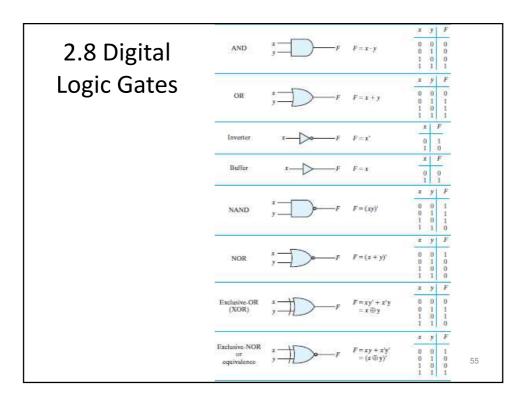
Not-AND

Binary constant 1

54

Not y

Not x



2.9 Integrated Circuits

- In the earliest computers, switches were opened and closed by magnetic fields produced by energizing coils in relays. The switches in turn opened and closed the current paths.
- Later, vacuum tubes that open and close current paths electronically replaced relays.
- Today, transistors are used as electronic switches that open and close current paths.

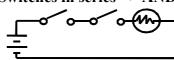
Logic Function Implementation

- Using Switches
 - For inputs:
 - logic 1 is switch closed
 - logic 0 is switch open
 - For outputs:
 - logic 1 is <u>light on</u>
 - logic 0 is <u>light off</u>.
 - NOT uses a switch such that:

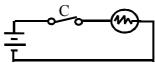
• logic 0 is switch closed

Switches in parallel => OR

Switches in series => AND



Normally-closed switch => NOT

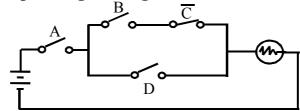


ogic and Computer Design Fundamentals, 4e PowerPoint® Slides © 2008 Pearson Education, Inc.

Chapter 2 -

Logic Function Implementation (Continued)

Example: Logic Using Switches



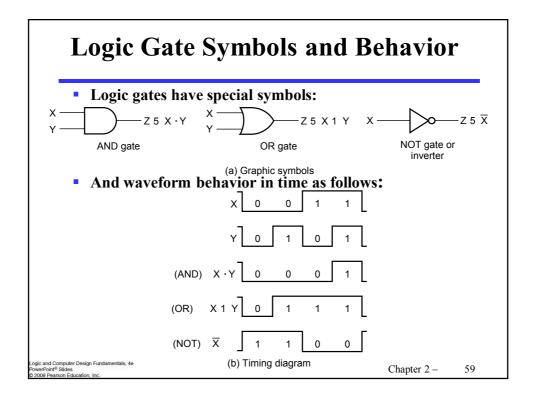
• Light is on (L = 1) for

$$L(A, B, C, D) =$$

and off (L = 0), otherwise.

 Useful model for relay circuits and for CMOS gate circuits, the foundation of current digital logic technology

Logic and Computer Design Fundamentals, 4e PowerPoint® Slides Chapter 2 -



In actual physical gates, if one or more input changes causes the output to change, the output change does not occur instantaneously.

Gate Delay

 The delay between an input change(s) and the resulting output change is the gate delay denoted by t_G:

