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Chapter 2 - 3

2.1 INTRODUCTION
Binary Logic and Gates

� Binary variables take on one of two values.

� Logical operators operate on binary values and 
binary variables.

� Basic logical operators are the logic functions
AND, OR and NOT.

� Logic gates implement logic functions.

� Boolean Algebra: a useful mathematical system 
for specifying and transforming logic functions.

� We study Boolean algebra as a foundation for 
designing and analyzing digital systems!

Chapter 2 - 4

Binary Variables

� Recall that the two binary values have 
different names:
• True/False

• On/Off

• Yes/No

• 1/0

� We use 1 and 0 to denote the two values.

� Variable identifier examples:
• A, B, y, z, or X1 for now

• RESET, START_IT, or ADD1 later
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Chapter 2 - 5

Logical Operations

� The three basic logical operations are:

• AND 

• OR

• NOT

� AND is denoted by a dot (·). 

� OR is denoted by a plus (+).

� NOT is denoted by an overbar ( ¯ ), a 
single quote mark (') after, or (~) before 
the variable.

2.2 Basic Definitions

• Closure

• Associative law : (x * y) * z = x * (y * z)

• Commutative law : x * y = y * x

• Identity element : 

• Inverse

• Distributive law : x * (y . z) = (x * y) . (x * z)

Chapter 2 - 6
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2.3 Axiomatic Definition of Boolean Algebra

• In 1854, George Boole developed an algebraic 

system now called Boolean algebra

• Boolean algebra is an algebraic structure with 

two binary operators: + and .

7

Chapter 2 - 8

Logic Diagrams and Expressions

• Boolean equations, truth tables and logic diagrams describe the same 
function!

• Truth tables are unique; expressions and logic diagrams are not. This gives 
flexibility in implementing functions.

X

Y F

Z

Logic Diagram

Equation

ZYX F +=

Truth Table

11 1 1

11 1 0

11 0 1

11 0 0

00 1 1

00 1 0

10 0 1

00 0 0

X Y Z ZYX F ⋅+=
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Chapter 2 - 9

1.

3.

5.

7.

9.

11.

13.

15.

17.

Commutative

Associative

Distributive

DeMorgan’s

2.

4.

6.

8.

X . 1 X=

X . 0 0=

X . X X=

0=X . X

Boolean Algebra
�An algebraic structure defined on a set of at least two elements, B, 

together with three binary operators (denoted +, · and ) that satisfies 
the following basic identities:

10.

12.

14.

16.

X + Y Y + X=

(X + Y) Z+ X + (Y Z)+=

X(Y + Z) XY XZ+=

X + Y X . Y=

XY YX=

(XY) Z X(Y Z)=

X + YZ (X + Y) (X + Z)=

X . Y X + Y=

X + 0 X=

+X 1 1=

X + X X=

1=X + X

� � �

Chapter 2 - 10

� Examples:

• is read “Y is equal to A AND B.”

• is read “z is equal to x OR y.”

• is read “X is equal to NOT A.” 

Notation Examples

�Note: The statement: 

one equals two”)plus(read “one 2 = 1 + 1 

is not the same as

”).1equals 1 or1 (read “1 = 1 + 1 

= BAY ⋅

yxz +=

AX =
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Chapter 2 - 11

Operator Definitions

 

�Operations are defined on the values 
"0" and "1" for each operator:

AND

0 · 0 = 0

0 · 1 = 0

1 · 0 = 0

1 · 1 = 1

OR

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

NOT

10 =

01 =

Chapter 2 - 12

01

10

X

NOT

XZ=

Truth Tables

� Truth table − a tabular listing of the values of a 
function for all possible combinations of values on its 
arguments

� Example: Truth tables for the basic logic operations:

111

001

010

000

Z = X·YYX

AND OR

X Y Z = X+Y

0 0 0

0 1 1

1 0 1

1 1 1
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Chapter 2 - 13

Example 1: Boolean Algebraic Proof

� A + A·B = A (Absorption Theorem)

Proof Steps Justification (identity or theorem)

A + A·B

= A · 1 + A · B X = X · 1

= A · ( 1 + B)      X · Y + X · Z = X ·(Y + Z)(Distributive Law)

= A · 1 1 + X = 1

= A X · 1 = X

� Our primary reason for doing proofs is to learn:
• Careful and efficient use of the identities and theorems of 

Boolean algebra, and

• How to choose the appropriate identity or theorem to apply 
to make forward progress, irrespective of the application. 

Chapter 2 - 14

� AB + AC + BC = AB + AC (Consensus Theorem)

Proof Steps Justification (identity or theorem)

AB + AC + BC

= AB + AC + 1 · BC                      ?    

= AB +AC + (A + A) · BC            ?

= 

Example 2: Boolean Algebraic Proofs
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Chapter 2 - 15

Example 3: Boolean Algebraic Proofs

�

Proof Steps Justification (identity or theorem)

=

YXZ)YX( ++

)ZX(XZ)YX( +=++ Y Y

Chapter 2 - 16

x y⋅y

�

�

�

�

�

2.4 Basic Theorems and Properties of Boolean Algebra

Useful Theorems

( )( ) ninimizatioMyyyxyyyx =++=⋅⋅

( ) tionSimplificayxyxyxyx ⋅=+⋅+=⋅+

( ) Absorption xyxxxyxx =+⋅=⋅+

Consensuszyxzyzyx ⋅+⋅=⋅+⋅+⋅

( ) ( ) ( ) ( ) ( )zyxzyzyx +⋅+=+⋅+⋅+

LawssDeMorgan'xx ⋅=+

+ x x

x x

x x

x x

y x= + y
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Chapter 2 - 17

2.4 Basic Theorems and Properties of Boolean Algebra

Theorems

2.5 Boolean Functions

• Study: F = x +  y’ z

– Derive Truth Table

– Draw Logic Circuit 

18
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Boolean Simplification

F = x’y’z + x’yz + xy’

F = x’y’z + x’yz + xy’

= x’z(y’ + y) + xy’ 

= x’z + xy’

19

Algebraic Manipulation

• Example 2.1: Simplify the following Boolean 

functions to a minimum number of literals

20
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Complement of Function

• Example 2.2: Find complement of F1 and F2

• F1 = x’yz’+x’y’z

• F2 = x(y’z’+yz)

21

Chapter 2 - 22

� Unless it happens to be self-dual, the dual of an 
expression does not equal the expression itself.

� Example: F = (A + C) · B + 0

dual F =  (A · C + B) · 1 = A · C  + B

� Example: G = X · Y + (W + Z)

dual G = 

� Example: H = A · B + A · C + B · C

dual H = 

� Are any of these functions self-dual?

Some Properties of Identities & the Algebra
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Chapter 2 - 23

Expression Simplification

� An application of Boolean algebra

� Simplify to contain the smallest number 
of literals (complemented and 
uncomplemented variables):

= AB + ABCD +  A C D + A C D + A B D

= AB + AB(CD) + A C (D + D) + A B D

= AB + A C + A B D = B(A + AD) +AC 

= B (A + D) + A C  5 literals

++++ DCBADCADBADCABA

Chapter 2 - 24

Boolean Function Evaluation

x y z F1 F2 F3 F4 

0 0 0 0 0   

0 0 1 0 1   

0 1 0 0 0   

0 1 1 0 0   

1 0 0 0 1   

1 0 1 0 1   

1 1 0 1 1   

1 1 1 0 1   

 

zxyxF4
xzyxzyxF3

xF2
xyF1

+=
+=

=
= z

yz+

y+
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Chapter 2 - 25

2.6 Canonical and Standard Forms

� What are Canonical Forms?

� Minterms and Maxterms

� Index Representation of Minterms and 
Maxterms 

� Sum-of-Minterm (SOM) Representations

� Product-of-Maxterm (POM) Representations

� Representation of Complements of Functions

� Conversions between Representations

Chapter 2 - 26

Canonical Forms

� It is useful to specify Boolean functions in 
a form that:

• Allows comparison for equality.

• Has a correspondence to the truth tables 

� Canonical Forms in common usage:

• Sum of Minterms (SOM)

• Product of Maxterms (POM)
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Chapter 2 - 27

Minterms

� Minterms are AND terms with every variable 
present in either true or complemented form.  

� Given that each binary variable may appear 
normal (e.g., x) or complemented (e.g.,   ), there 
are 2n minterms for n variables.

� Example: Two variables (X and Y)produce
2 x 2 = 4 combinations:

(both normal)

(X normal, Y complemented)

(X complemented, Y normal)

(both complemented)

� Thus there are four minterms of two variables.

YX
XY

YX
YX

x

Chapter 2 - 28

Maxterms

� Maxterms are OR terms with every variable in 
true or complemented form.

� Given that each binary variable may appear 
normal (e.g., x) or complemented (e.g., x), there 
are 2n maxterms for n variables.

� Example: Two variables (X and Y) produce
2 x 2 = 4 combinations:

(both normal)

(x normal, y complemented)

(x complemented, y normal)

(both complemented)

YX +

YX +

YX +

YX +
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Chapter 2 - 29

� Examples: Two variable minterms and 
maxterms.

� The index above is important for describing 
which variables in the terms are true and 
which are complemented.

Maxterms and Minterms

Index Minterm Maxterm

0 x y x + y

1 x y x + y

2 x y x + y

3 x y x + y

Chapter 2 - 30

Standard Order

� Minterms and maxterms are designated with a subscript

� The subscript is a number, corresponding to a binary 
pattern

� The bits in the pattern represent the complemented or 
normal state of each variable listed in a standard order.

� All variables will be present in a minterm or maxterm and 
will be listed in the same order (usually alphabetically) 

� Example: For variables a, b, c:

• Maxterms:  (a + b + c),   (a + b + c)

• Terms:   (b + a + c), a c b, and (c + b + a) are NOT in 
standard order.

• Minterms:    a b c,   a  b  c, a b  c

• Terms:    (a + c), b c, and (a + b) do not contain all 
variables
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Chapter 2 - 31

Purpose of the Index

� The index for the minterm or maxterm, 
expressed as a binary number, is used to 
determine whether the variable is shown in the 
true form or complemented form.

� For Minterms:

• “1” means the variable is “Not Complemented” and 

• “0” means  the variable is “Complemented”.

� For Maxterms:

• “0” means  the variable is “Not Complemented” and 

• “1” means the variable is “Complemented”. 

Chapter 2 - 32

Index Example in Three Variables

� Example: (for three variables)

� Assume the variables are called X, Y, and Z.

� The standard order is X, then Y, then Z.

� The Index 0 (base 10) = 000 (base 2) for three 
variables). All three variables are complemented 
for minterm 0 ( ) and no variables are 
complemented for Maxterm 0 (X,Y,Z).

• Minterm 0, called m0 is           .

• Maxterm 0, called M0 is (X + Y + Z).

• Minterm 6 ?

• Maxterm 6 ?

Z,Y,X

ZYX
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Chapter 2 - 33

Index Examples – Four Variables

Index  Binary  Minterm  Maxterm

i       Pattern     mi Mi

0       0000 

1       0001 

3       0011

5       0101 

7       0111 

10       1010

13       1101

15       1111           

dcba dcba +++

dcba

dcba +++

dcba dcba +++

dcba +++

dcba dcba +++

dba

dcba dcba +++

?

?

?

?c

Chapter 2 - 34

� Review:  DeMorgan's Theorem
and    

� Two-variable example: 
and 

Thus M2 is the complement of m2 and vice-versa.
� Since DeMorgan's Theorem holds for n variables, 

the above holds for terms of n variables
� giving:

and  
Thus Mi is the complement of mi.

Minterm and Maxterm Relationship

yxy·x += yxyx ⋅=+

yxM2
+= yx·m2

=

i mM =
i ii Mm =
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Chapter 2 - 35

Observations

� In the function tables:
• Each minterm has one and only one 1 present in the 2n terms 

(a minimum of 1s).  All other entries are 0.

• Each maxterm has one and only one 0 present in the 2n terms 
All other entries are 1 (a maximum of 1s). 

� We can implement any function by "ORing" the 
minterms corresponding to "1" entries in the function 
table. These are called the minterms of the function.

� We can implement any function by "ANDing" the 
maxterms corresponding to "0" entries in the function 
table. These are called the maxterms of the function.

� This gives us two canonical forms:
• Sum of Minterms (SOM)

• Product of Maxterms (POM)

for stating any Boolean function.

Chapter 2 - 36

x y z index m1 + m4 + m7 = F1

0 0 0 0 0 + 0 + 0 = 0

0 0 1 1 1 + 0 + 0 = 1

0 1 0 2 0 + 0 + 0 = 0

0 1 1 3 0 + 0 + 0 = 0

1 0 0 4 0 + 1 + 0 = 1

1 0 1 5 0 + 0 + 0 = 0

1 1 0 6 0 + 0 + 0 = 0

1 1 1 7 0 + 0 + 1 = 1

Minterm Function Example

� Example:  Find F1 = m1 + m4 + m7 

� F1 = x y  z + x  y z  + x  y  z
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Chapter 2 - 37

Minterm Function Example

� F(A, B, C, D, E) = m2 + m9 + m17 + m23

� F(A, B, C, D, E) =

Chapter 2 - 38

Maxterm Function Example

� Example:  Implement  F1 in maxterms:

F1 =      M0 · M2 · M3 · M5 ·   M6

)zyz)·(xy·(xz)y(xF1 ++++++=

z)yx)·(zyx·( ++++
x y z i M0 ⋅ M2 ⋅ M3 ⋅ M5 ⋅ M6 = F1

0 0 0 0 0  1  1  1 = 0
0 0 1 1 1  1  1 1  1 = 1

0 1 0 2 1  0  1 1  1 = 0

0 1 1 3 1  1  0 1  1 = 0

1 0 0 4 1  1  1 1  1 = 1

1 0 1 5 1  1  1 0  1 = 0

1 1 0 6 1  1  1 1  0 = 0

1 1 1 7 1  

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅ 1  1 1  1 = 1

1  ⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅
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Chapter 2 - 39

Maxterm Function Example

�

� F(A, B,C,D) =

141183 MMMM)D,C,B,A(F ⋅⋅⋅=

Chapter 2 - 40

Canonical Sum of Minterms

� Any Boolean function can be expressed as a 
Sum of Minterms.
• For the function table, the minterms used are the 

terms corresponding to the 1's

• For expressions, expand all terms first to explicitly 
list all minterms.  Do this by “ANDing” any term 
missing a variable v with a term (          ).

� Example:   Implement                       as a sum of 
minterms.

First expand terms:

Then distribute terms: 

Express as sum of minterms: f = m3 + m2 + m0

yxxf +=

yx)yy(xf ++=

yxyxxyf ++=

v  v +
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Chapter 2 - 41

Another SOM Example

� Example:

� There are three variables, A, B, and C which 
we take to be the standard order.

� Expanding the terms with missing variables:

� Collect terms (removing all but one of duplicate 
terms): 

� Express as SOM:

CBAF +=

Chapter 2 - 42

Shorthand SOM Form

� From the previous example, we started with:

� We ended up with:

F = m1+m4+m5+m6+m7

� This can be denoted in the formal shorthand:

� Note that we explicitly show the standard 
variables in order and drop the “m” 
designators.

)7,6,5,4,1()C,B,A(F mΣ=

CBAF +=
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Chapter 2 - 43

Canonical Product of Maxterms

� Any Boolean Function can be expressed as a Product of 
Maxterms (POM).
• For the function table, the maxterms used are the terms 

corresponding to the 0's.

• For an expression, expand all terms first to explicitly list all 
maxterms.  Do this by first applying the second distributive 
law , “ORing” terms missing variable v with a term equal to  
and then applying the distributive law again.

� Example: Convert to product of maxterms:

Apply the distributive law:

Add missing variable z:

Express as POM: f = M2 · M3

yxx)z,y,x(f +=

yx)y(x1)y)(xx(xyxx +=+⋅=++=+

( )zyx)zyx(zzyx ++++=⋅++

vv ⋅

Chapter 2 - 44

� Convert to Product of Maxterms:

� Use  x + y z = (x+y)·(x+z) with                                     , 
and           to get:

� Then use                          to get:

and a second time to get:

� Rearrange to standard order,

to give f = M5 · M2

Another POM Example

BACBCAC)B,f(A, ++=

Bz=
)BCBC)(AACBC(Af ++++=

yxyxx +=+

)BCC)(AABCC(f ++++=

)BC)(AABC(f ++++=

C)B)(ACBA(f ++++=

AyC),B(Ax =+= C
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Chapter 2 - 45

Function Complements

� The complement of a function expressed as a 
sum of minterms is constructed by selecting the 
minterms missing in the sum-of-minterms 
canonical forms.

� Alternatively, the complement of a function 
expressed by a Sum of Minterms form is simply 
the Product of Maxterms with the same indices.

� Example: Given )7,5,3,1()z,y,x(F mΣ=

)6,4,2,0()z,y,x(F mΣ=

)7,5,3,1()z,y,x(F MΠ=

Chapter 2 - 46
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Chapter 2 - 47

Conversion Between Forms

� To convert between sum-of-minterms and product-
of-maxterms form (or vice-versa) we follow these 
steps:

• Find the function complement by swapping terms in the 
list with terms not in the list.

• Change from products to sums, or vice versa.

� Example:Given F as before:

� Form the Complement: 

� Then use the other form with the same indices – this 
forms the complement again, giving the other form 
of the original function:

)7,5,3,1()z,y,x(F mΣ=

)6,4,2,0()z,y,x(F mΣ=

)6,4,2,0()z,y,x(F MΠ=

Chapter 2 - 48

� Standard Sum-of-Products (SOP) form:
equations are written as an OR of AND terms 

� Standard Product-of-Sums (POS) form:
equations are written as an AND of OR terms

� Examples:

• SOP:

• POS:

� These “mixed” forms are neither SOP nor POS

•

•

Standard Forms

BCBACBA ++

C·)CB(A·B)(A +++

C)(AC)B(A ++

B)(ACACBA ++
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Chapter 2 - 49

Standard Sum-of-Products (SOP)

� A sum of minterms form for n variables 
can be written down directly from a truth 
table.
• Implementation of this form is a two-level 

network of gates such that:

• The first level consists of n-input AND gates, 
and

• The second level is a single OR gate (with 
fewer than 2n inputs).

� This form often can be simplified so that 
the corresponding circuit is simpler.

Chapter 2 - 50

� A Simplification Example:

�

� Writing the minterm expression:

F = A B C + A B C + A B C + ABC + ABC

� Simplifying:

F =

� Simplified F contains 3 literals compared to 15 in 
minterm F 

Standard Sum-of-Products (SOP)

)7,6,5,4,1(m)C,B,A(F Σ=
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Chapter 2 - 51

AND/OR Two-level Implementation 
of SOP Expression

� The two implementations for F are shown 
below – it is quite apparent which is simpler!

F

A
B
C

A
B
C

A
B
C

A
B
C

A
B
C

 

F

B

C

A

Chapter 2 - 52

SOP and POS Observations

� The previous examples show that:
• Canonical Forms (Sum-of-minterms, Product-of-

Maxterms), or other standard forms (SOP, POS) 
differ in complexity

• Boolean algebra can be used to manipulate 
equations into simpler forms.

• Simpler equations lead to simpler two-level 
implementations

� Questions:
• How can we attain a “simplest” expression?

• Is there only one minimum cost circuit?

• The next part will deal with these issues.
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Level’s of implementation

Chapter 2 - Part 1         53

2.7 Other Logic Operations

54
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2.8 Digital 

Logic Gates

55

2.9 Integrated Circuits

• In the earliest computers, switches were 
opened and closed by magnetic fields 
produced by energizing coils in relays. The 
switches in turn opened and closed the 
current paths.

• Later, vacuum tubes that open and close 
current paths electronically replaced relays.

• Today, transistors are used as electronic 
switches that open and close current paths.

56
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� Using Switches
• For inputs: 

� logic 1 is switch closed

� logic 0 is switch open

• For outputs:
� logic 1 is light on

� logic 0 is light off.

• NOT uses a switch such

that:
� logic 1 is switch open

� logic 0 is switch closed

Logic Function Implementation

Switches in series => AND

Switches in parallel => OR

C

Normally-closed switch => NOT

Chapter 2 - 58

� Example: Logic Using Switches

� Light is on (L = 1) for 

L(A, B, C, D) =

and off (L = 0), otherwise.

� Useful model for relay circuits and for CMOS 
gate circuits, the foundation of current digital 
logic technology

Logic Function Implementation (Continued)

B

A

D

C
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Chapter 2 – 59
(b) Timing diagram

X 0 0 1 1

Y 0 1 0 1

X · Y(AND) 0 0 0 1

X 1  Y(OR) 0 1 1 1

(NOT) X 1 1 0 0

(a) Graphic symbols

OR gate

X

Y
Z 5  X 1  Y

X

Y
Z 5  X · Y

AND gate

X  Z 5  X

NOT gate or
inverter

Logic Gate Symbols and Behavior

� Logic gates have special symbols:

� And waveform behavior in time as follows:

Chapter 2 - 60

Gate Delay

� In actual physical gates, if one or more input 
changes causes the output to change, the output 

change does not occur instantaneously.

� The delay between an input change(s) and the 
resulting output change is the gate delay
denoted by tG:

tG tG
Input

Output

Time (ns)

0

0

1

1

0 0.5 1 1.5

tG = 0.3 ns


