

Reliable Secret Key Generation For

Counting-Based Secret Sharing

Adel Al-Qurashi*, Adnan Gutub

Computer Engineering Department, Umm Al-Qura University, Makkah, Saudi Arabia

*Corresponding author email: adel.qurashi8@gmail.com

Abstract: Secret sharing scheme is becoming famous for increasing

the security to access sensitive information for applications and

resources that have to be protected by more than one person. It

divides the secret key into shares, distributed to participants such

that only subsets of participants can reconstruct the secret key. This

paper adopts counting-based secret sharing scheme as a promising

secret sharing technique presented recently. This counting-based

method works on constructing shares by changing one or two 0-bits

within the secret key to one at different locations for producing

needed shares. The combination of selected shares is counting the

ones in parallel to recover the secret key. This paper proposed

improving the reliability of this counting-based secret sharing

scheme by increasing the size of the secret key to 64-bits as

realistically needed by most applications. The work also improved

the security of the secret key affecting its shares by adjusting the

generation algorithm to involve applicable statistical randomness

tests from NIST 800-22 standard where any unreliable secret key is

regenerated again whenever needed. The proposal is implemented

and compared with the original scheme via Java platform modeling

showing interesting practical remarks providing remarkable

contributions.

Keywords: information security, secret key generation, secret

sharing, frequency Monobit test, frequency test within a block.

1. Introduction

Technological advancement in information technologies,

communication networks, databases, and multimedia have

become the nerve of knowledge life, industrial, financials,

health, and security. Given to the increasing demand for web

applications and the continuous growth of a number of

networks users involving Cloud computing, E-Government,

E-Commerce, E-Business, online banking services, which all

contain sensitive information, it may be vulnerable to theft or

access by wrong persons or even destroyed by hackers or

service providers as non-trusted agencies in many cases.

Therefore, there is an urgent need for information security

with its three main components: Confidentiality, Integrity,

and Availability (CIA) [1].

Information security is a big challenge in recent years,

during which security has become the significant aspect of

protecting from all the threats. There are several techniques

of information security which have been proposed to protect

data from disclosure. Some of them focus on traditional

encryption to data, which is based on mathematical concepts

and special arithmetic operations [2], while others focus on

enhancing the confidentiality of the exchanged data by hiding

the information in any cover media such as picture, sound,

and text, known as steganography [3]. In fact, the security

techniques, i.e. cryptography and steganography, focus on

the phenomena that one person is in the controlling seat who

is in charge of the secrecy of information [1]. However, the

question is what happens when the encrypted or hidden data

are corrupted, or the secret key is lost. It means that there is

only security, but there is not reliability. Secret sharing

considers solving this problem, as it allows to achieve high

levels of confidentiality and reliability arbitrarily [4]. Secret

sharing opened the computing filed for several interesting

applications and resources which requires the security to be

implemented by several participants, i.e., the security

decision is shared among a set of participants.

In the beginning, the primary motivation behind the secret

sharing was safeguarding cryptographic key from loss [5].

Losing a cryptographic key is an equal to data loss, as we

cannot recover data without the encryption key. Keeping the

cryptographic key at one location deos not depend on any

physical or electronic problem, such as loss of key, system

breakdown, sabotage or sudden death of persons who owns

the secret key, etc. Losing the key leads to loss of data and

may make access to the data impossible. Therefore, the

storing of several key copies, i.e. distributing the

cryptographic key in various sites, was the solution to

increase the reliability of security access to systems.

However, this distribution leads to decreasing confidentiality

may be by making the status worst, causing main data to be

in great risk to be lost, modified, destroyed, or leaking to

wrong hands. Therefore, secret sharing considers solving this

problem by achieving high level of confidentiality as well as

reliability. Another motivation behind the secret sharing is

the reduction of trust on a single person. The dominance of a

specific authority avoids individual trusty by keeping the

secret key by one person to control the secrecy of

information alone [4]. Therefore, the secret sharing provides

collective access to the confidential information by making

the decision collectively and distributing the trust among

many participants to further enhance the reliability and

confidentiality.

To stress on the idea, the secret sharing is considered more

needed in the areas that have highly sensitive information

with big impact on decision making [6]. Accordingly, secret

sharing can be seen via many examples in the real-life. It can

be essential for opening the vault in central banks, nuclear

missile launch control, voting systems, sensitive encryption

keys, and considerable medical agreement. Each of these

Journal of Computer Science & Computational Mathematics, Volume 8, Issue 4, December 2018
DOI: 10.20967/jcscm.2018.04.006

cases requires access to be collectively agreed upon the

sensitive information and resources. So, there is a need for

this secret key to be shared or distributed among a set of

participants by asking them all or a subset to be available at

the same time for proper access [1].

Secret sharing scheme divides secret among a set of

participants where that specified set of participants can

reconstruct the secret. Therefore, the secret sharing scheme

consists of two phases: the construction-distribution phase,

and the secret-reconstruction phase. In the construction-

distribution phase, the secret sharing scheme allows a trusted

dealer (Algorithm) to generate secret shares by making

information related to the secret called shares, and then these

shares are distributed among a set of the participants via

secure channel where each participant holds one share [7]. In

the secret-reconstruction phase, the access structure enables a

qualified subset of participants to collaborate and reconstruct

the secret by collecting their shares in a specific way [8].

Note that secret sharing scheme divides all participants into

two sets: the set able to retrieve the secret called authorized

set and another set unable to recover the secret called an

unauthorized set [9].

The secret key is considered very secure in secret sharing

scheme. The system distributes the shares among users, n

participants, where k or more of the participants (k ≤ n) can

retrieve the secret key by combining their k shares. The

authorized set k is a subset of n participants (k out of n),

considering (n, k) as threshold of secret-sharing scheme. In

the threshold scheme, an attacker cannot discover the secret

key, except if he knows at least k shares; knowing less than k

shares should not reveal any information about the secret key

[8]. In the secret sharing scheme there are two main

properties which must be provided for applicability of any

secret sharing scheme known as recoverability and

confidentiality as declared below.

- Recoverability: It is the ability to retrieve the secret by the

authorized set of participants by combining their secret

shares.

- Confidentiality: It is the fact that no shares can lead to

disclosure of information of the secret key, i.e. stopping

any intruder attempt to recover the secret key by guessing

from less than k shares.

Threshold secret sharing scheme began in 1979 by Shamir

[6] and Blakley [5] independently. Shamir's scheme depends

on polynomial interpolation, while Blakley's scheme depends

on the geometry. Since then many work attempts have been

proposed to serve secret sharing schemes. Some of them

handled problems improving Shamir [6] and Blakley [5]

methods and some others innovated new techniques, all to

achieve the same principle secret sharing scheme, i.e. by

various methods, such as Kai Wang [10]; Tassa [11];

Herzberg [12]; Komargodski [13]; Bai [14]; Blundo [15];

Chi-Sung Laih, Tzonelih Hwang [16], and lately Adnan

Gutub et al. [1]. This research focuses on Adnan Gutub's

novel approach of counting-based secret sharing working on

constructing the shares by changing one or two 0-bits at

different specific locations within the secret key for

producing a new share. This counting-based secret sharing

scheme have been studied due to its wide range of

applicability to almost all applications as well as its

simplicity and performance in its running. Hence, the

combination of shares can be applied by parallel counting the

ones within selected shares (k shares) to recover the secret

key.

This counting-based secret sharing scheme simplicity and

practicality come from the method low mathematical

operations usage, i.e. when constructing shares until

retrieving the secret key, as well as its achievement of

reasonable level of security, as will be stressed upon later in

this work. Accordingly, in this paper, we have proposed

improving the reliability of the counting-based secret sharing

scheme by increasing the size of the secret key to 64-bit and

applying two statistical tests on the generated secret key

checking randomness of the shares and secret key sequence.

This strategy allows getting the optimal reliability of secret

key and constructing its shares contributing to the

improvement of the security system.

The main objectives of this reliable secret key generation

study can be stated in three points.

- increasing the reliable secret key size to 64-bits to male it

suitable for real-life applications.

- testing the security of the reliable secret key as randomly

generated via passing NIST RNG testing.

- verifying whether the reliable secret key is able to serve

the number of users being capable to produce enough

trustworthy shares.

The paper has been organized as follows. Section 2 covers

the related works about secret sharing schemes. Section 3

presents specific background about the counting-based secret

sharing scheme. We cover generating the shares and

retrieving the secret key via clarification examples. Section 4

presents our proposal modeling the reliable secret key

selection within counting-based secret sharing. Section 5

discusses comparisons and result analysis. The final section,

Section 6, includes the conclusion and the recommendations

of this study.

2. Related Work

In the literature, there are many researches who discussed

Threshold Secret Sharing Schemes from several aspects. For

example, Shamir's Threshold Secret Sharing Scheme is the

first scheme for secret sharing proposed by Adi Shamir in

1979 [6]. It is based on Lagrange interpolation polynomial.

To get (t, n) threshold scheme, D pick a random (t-1) degree

polynomial q(×) = a0 + a1× + …… + at-1×t-1 in which a0 is the

secret and , where p is a prime number.

Dealer generates n shares Si = q(i)………. Sn = q(n) and then

distribute them to the participants by channel secure. By

selecting any subset t of those Sn values, we can construct the

polynomial by Lagrange interpolation and recover the secret,

but cannot calculate the secret with (t-1) participants.

Shamir's threshold scheme has some features that makes it

secure. The size of shares does not override the size of the

secret key. Also, the scheme is to be expandable, i.e. when t

is fixed, the shares can be dynamically deleted or added

without impact on the other shares. The system can have

88 Reliable Secret Key Generation For Counting-Based Secret Sharing

some changes within the shares without alteration of the

secret key as well as without needing to generatie new shares

to the participants. Shamir's scheme is thought to be a

hierarchical scheme, by which it can provide each participant

with a various number of shares based on their importance

inside the organization [6].

In Blakley's scheme [5], the system is dependent on

geometry to achieve a (t, n) threshold, the secret is

represented as a point P in the vector space , and n shares

are distinct (t-1) dimensional hyperplanes that pass through

this point p that contain the secret, where (t−1)-dimensional

hyperplane is a set of form:{ (,….,) |

+… = } where ,…, and are arbitrary points of

the field . The secret can be obtained by intersecting t

hyperplanes at P, whereas fewer than t hyperplanes will

intersect only in some subspace containing P. Thus fewer

than t participants are able to recover the subspace, but

cannot recover the secret correctly. In fact, Blakley’s scheme

is not preferred due to the fact that unauthorized group of

participants may know partial information of the subspace

containing the secret making them able to guess the secret.

The scheme is then improved by Simmons [17] to make it

acceptable using affine space instead of vector space.

However, in multi-level organizations, there is the need to

share secret among all the members of the organization in

hierarchically structured groups, where members from

different levels have varying powers and as such, they need

to factor in the powers in sharing the information [18].

Sharing of information is based on a predetermined sequence

of threshold requirements. Such thresholds require the

presence of a member with a higher power to enhance the

organization's secret, as in Tamir-Tassa's Hierarchical Secret

Sharing in [11]. Tamir-Tassa's introduced the perfect secret

sharing scheme to solve users’ problem in their threshold

secret sharing scheme, where the secret is shared among a

group of users into their levels. This proposal uses

polynomial derivatives to generate lesser shares for

participants of lower levels, compared with Shamir’s scheme

in which the secret is represented as the free coefficient of

some polynomial. Thus, the secret is reconstructed in this

scheme by using Birkhoff interpolation as discussed to assign

identities of the participants from the underlying finite field

[11].

Based on Herzberg et al. [12], the proactive secret sharing

scheme is a game changer in secret sharing. Traditionally

secret sharing schemes relied on fixed shares. However, in

long-lived and sensitive secrets, this approach is not

sufficient, as attackers may gain access to enough shares to

reach the set threshold before the life of the secret is over. A

proactive scheme of secret sharing solves this situation by

periodically renewing shares. This is done without changing

the secret being protected. If an attacker has accessed to any

portion of the shares using the old information, the

information becomes useless as soon as an update is done. In

this scheme, an attacker has limited time to break into k

locations before an update occurs [12].

Bai et al. [14] improved Shamir’s single-secret sharing

scheme to a multiple-secret sharing scheme using matrix

projection. They proposed a proactive secret sharing scheme

method to renew (n) secret shares periodically in a (k, n)

threshold-based secret sharing scheme without changing the

secret or reconstructing the secret to generating new shares.

Also, he presented a distributed proactive secret sharing

scheme for the matrix projection secret sharing scheme.

Note that, his technique cannot reveal the secrets from (k)

shares by adversaries when new mixed shares with past and

present are updated (i.e., this method is protected against the

passive attacks) [14].

In Asmuth-Bloom Secret Sharing Scheme [19], the scheme

uses an ascending sequence for a set of pair wise co-prime

positive integers (x0< x1< x2< ..<xn, where x0>K is a prime),

are chosen such that: . Asumuth-

Bloom scheme works on chooses secret K as a random

integer from x0, and then n shares are constructed as Si = (K

+ r * x0) mod xi, for all (1 ≤ i ≤ n) where r is a positive

integer generated randomly such that K + r * x0 x0 . xk.

Given k various shares S1; S2,… ,SK, the secret K is retrieved

as K= S0 mod x0, , where x0 is the unique solution of the

system of congruencies using Chinese remainder theorem

CRT [19].

A Fully Dynamic Secret Sharing Schemes was presented

by Blundo et al [15]. They presented a study with different

access structures and proposed that a dealer enables a

particular set of users to reconstruct different secrets by

sending the same broadcast message to all users. This

approach is based fully on information-theoretic without any

computational assumption, i.e. the security of the scheme is

unconditional. Also, the model appears both the size of

shares held by users and the size of the broadcast message

based on the defined size of the secret.

Evolving Secret Sharing Dynamic Thresholds and

Robustness presented by Komargodski et al. [13] depended

on proposing an efficient scheme for secret sharing among an

unlimited number of participants, where only subsets of (k)

participants can recover the secret. They evolved their

method to resolve the problem of an efficient scheme for the

dynamic threshold access structure. The method considered

the size of qualified groups increasing as the number of

participants increases which showed how to translate any

scheme for k-threshold into the scheme which is robust. This

secret sharing system had security incompatibility such that

its secret can be recovered even if some participants have

incorrect shares [13].

3. Overview on Counting-Based Secret

Sharing Scheme

The counting-based secret sharing scheme works by

generating all the possible shares from the secret key (SK)

[1]. It is mainly using two methods, namely 1-bit and 2-bit

methods, which both work in different styles. The generated

shares can be denoted by A having the same size as the SK

secret key. This scheme only chooses n shares as being

useful, i.e., n out of A shares are found to be suitable, while

the remaining shares should be ignored. It is important to

consider these n shares from the beginning to correctly

distribute them among participants in secure way by

Adel Al-Qurashi, Adnan Gutub 89

authentic channel or trusted dealer. Note that these applicable

n of A shares are selected accurately to be combined with

each other to reconstruct SK fulfilling the counting-base

reconstruction strategy. However, in case one or more of n

shares are absent or unavailable, SK cannot be regenerated.

Thus, subset of k shares is to be assigned of n, where k≤ n is

able to reconstruct SK. This counting-based secret sharing

scheme can be classified as (n, k) threshold scheme. It is to

be mentioned that the security of the system relies

tremendously on the difficulty of reconstructing SK from

shares found to be less than k [1].

This section will introduce the original two methods of

shares generation, 1-bit and 2-bit methods, which are

affecting the pool A consisting acceptable and unacceptable

shares. Then, the secret key SK retrieval from secret shares

will be briefly presented clarifying the counting-based secret

sharing approach. A clarification example is provided to

elaborate the idea covering different cases of real applicable

scenarios.

3.1 Generating Shares via 1-Bit Method

Secret shares generating via the 1-bit method depend mainly

on the zero bits within SK. This 1-bit method generates all

possible A shares based on the number of zeros found within

SK, i.e. shares cannot be more than the number of zeros.

This method works on selecting one zero from a specific

position of SK and then flipping it to one to produce a valid

share. Note that every time in generating the new shares, we

must select the different location not previously chosen for

producing another share and so forth.

The following example clarifies the 1-bit method to

generate shares, where we proposed a simple example of

SK= [1 0 0 1 0 0 1 0] as presented in Table 1. Note that in

this example, SK has 5 zeros, so it generates five shares by

changing one zero at a time, as in highlighted cells in Table

1. This method is considered simple to implement, fast to

run, confirmed as reliable, and all shares are useful when

performing the combination in parallel, but it has a drawback

where it gives a limited number of shares produced.

Table 1. Example of the 1-Bit method shares construction

3.2 Generating Shares via 1-Bit Method

The 2-bit method is a modification to increase the numbers

of shares generation described by means of the 1-bit method.

The 2-bit method can be used alone or as an extension with

the 1-bit method to increase the numbers of shares. This 2-bit

method depends on changing two zeros within SK to

generate extra possible shares. The method scans SK for

zeros, whenever two zeros are found, they can be flipped

providing a probable share to be used. Not all generated 2-bit

shares can be useful since some that are generated do not

fulfilling the counting-based secret key SK reconstruction

strategy.

For our example of SK= [1 0 0 1 0 0 1 0] , we can flip the

first zero with second zero to generate a new share as shown

in Table 2. Similarly, we can flipp the first zero with third

zero to generate more new shares and so on. These

applicable 2-bits shares are used in addition to the 1-bits

shares for generating all the possible shares A within SK.

Table 2 illustrates a modified example of Table 1 showing

extra shares of 6 to15 added over the 1-bit method as an

extension. The number of shares generated by this 2-bit

method is 10, i.e. by flipping two different zeros every time

within different positions. Therefore, the total shares

generated by combining the two methods for SK= [1 0 0 1 0

0 1 0] are 15 shares, A=15 shares. Note that the 2-bit method

enhances the 1-bit method and increases the number of

shares produced for SK. However, not all these A shares are

useful. It is found that many shares are not suitable to

reconstruct SK, this factor forces us to verify the validity of

needs A to generate n suitable shares. So, n out of A shares

are to pass the testing to reconstruct SK before using them to

ensure the applicability before distributing among the

participants.

Table 2. Example of the 2-Bit & 1-Bit methods shares

construction

3.3 Secret Key Retrieval from Secret Shares

As discussed before, the counting-based secret sharing

scheme cannot use all A shares to recover SK. Only selected

n shares are to be reliable and acceptable for distribution to

participants. Therefore, n shares need to be tested to make

sure of their validity before their usage as set of authorized

participants shares, i.e. good to retrieve SK. Nevertheless, in

case that one or more of participant's shares are found absent,

SK cannot be recovered. Consequently, a subset of n which

is used as prerequisite to reconstruct SK must be provided as

k shares. This subset k is less than or equal to n (k ≤ n) and

preserving the same condition of it cannot recover SK if the

shares are less than k inputted. After determining n shares

and making sure of their validity, the application defines a

value of k out of n to be used as threshold of available true

users’ shares in parallel for SK regeneration. Accordingly,

the k shares are mapped in parallel within the system and the

90 Reliable Secret Key Generation For Counting-Based Secret Sharing

parallel bits are counted. If the counting output from shares

parallel combination for all bits in any column equals the

value of k or more, then the resulted bit is one otherwise the

resulted bit is zero, and so on. These resulted bits are

combined and compared with original SK, i.e. to check the

validity of the shares for SK secret key reconstruction. The

reader is referred to a study [1] for more in-depth elaboration

on the philosophy behind this counting-based secret sharing

scheme.

3.2.1 Clarification Examples

The following examples focus on the counting based secret

sharing idea and its SK secret key proper generation. The

examples illustrate different cases for utilization of shares to

clarify SK retrieval method and possible challenges to be

addressed. The example is made simple with the same 8-bits

SK size used in Table 1 for clarification purpose. The

research will show a real-life application using 64-bits key as

studied later. Recall SK= [1 0 0 1 0 0 1 0] as introduced in

Table 1 and the shares generated by 1-bit and 2-bit methods

exist in Table 2 assuming the number of selected shares to be

given to users as n=8, as follows:

Case 1: Situation of Combining Shares = k

In this case, it is assumed that k=4 and the number of

shares = k. This case is considered valid. Thus, the shares are

combined as in Table 3.

Table 3. The Example of the Situation of Combining Shares

= k

Consider the counting result row which counts the ones

within every column. SK reconstruction is performed by

assigning value one whenever counting column result ≥k,

otherwise a zero is placed in that location. Thus, the retrieved

outcome of the combination process equals hexadecimal

value 92 which is correct as SK=92.

Case 2: Situation of Combining Shares > k.

In this case, it is assumed that k=4, and the number of

shares is greater than k. Thus, this case is considered valid

even if the number of shares is more than k. The shares are

combined with the condition that the counting result of bits is

greater than or equal to k, as in Table 4.

Table 4. The Example of the Situation of Combining Shares

> k

Adel Al-Qurashi, Adnan Gutub 91

Note, in this case, the number of shares is more than k. So,

if the counting result of bits in one column ≥ k, then it gives

one, otherwise, zero is placed in that location. Thus, the

hexadecimal outcome of the combination process is 92, i.e.

as needed SK=92.

Case 3: Situation of Combining Shares < k.

In this case, assuming k=4, and a number of shares is less

than k, thus it is considered unable to retrieve SK. As

needed, it cannot recover the SK secret key as the number of

shares be less than k, as in Table 5.

Table 5. The Example of the Situation of Combining Shares

< k

Note that in this case, the number of shares is less than k.

Thus, the outcome of the combination process is 00 ≠

SK=92, which is exactly as required.

Case 4: Situation of Involving Intruder False Share

Assume an intruder inserts a false share in the same

scenario of Case 1, i.e. k=4, and a number of shares = k, but

one of the shares (or more) is falsely inserted by an intruder,

as in Table 6.

Table 6. The Example of the Situation of Involving one

Intruder as False Share

This case is depicted to be invalid, where all the shares are

valid except the false one marked as FSh of hexadecimal

value 89. Thus, the outcome of the combination process is 80

≠ SK=92, confirming the system security validity.

Assume the same case of intruder inserting false shares but

more than one, namely FSh1 and FSh2, as in Table 7.

Table 7. The Example of the Situation of Involving Intruder

Multi False Shares

These two false shares involvement result in invalid SK as

needed. Thus the outcome of the combination process is

found to be 00 ≠ SK=92 that verifies the scheme security

strength.

4. The Proposed Reliable Secret Key Selection

This paper is proposed to improve the original counting-

based secret sharing scheme though increasing the reliability

of the secret key selection process. The aim is to increase the

shares space applying the method on secret key of size SK

64-bits compared to the original scheme of small SK as for

clarifying the idea of counting-based secret sharing. The

original method depends on the simple variant sizes of SK,

i.e. SK=4-bits, SK=5-bits, SK=6-bits, SK=8bits, and SK=12-

bits. These sizes are not realistic to be used in real-life

applications. So, we proposed to study the SK binary format

of 64-bits allowing the scheme to be adopted in reality

password numbers, such as: SK= [10110010 00110101

01101101 00110001 00110110 00110011 01100110

01110010] and are represented in Hex as SK= [B2 35 6D 31

36 33 66 72].

Recall the principle phenomena of SK secret key in

counting-based secret sharing scheme to be unknown to all

participants. Only the system dealer (Algorithm) is to know

the SK secret key. This means that the SK secret key

sequence should be random and preferred impossible to be

guessed or predicted. This difficulty of guessing the random

secret key sequence by intruders is the main block assuring

secrecy of the system. So, the system dealer (Algorithm)

generates SK secret key with its size 64-bit using Random

Number Generators (RNGs), i.e. to produce pseudo-random

SK secret key. Therefore, we assume an RNG is used at the

beginning to provide SK followed by security verification

before producing the shares, as algorithm flow graph shown

in Figure 1. The SK secret key generated by RNG needs to

be verified to be realistic. This SK sequence should be

random and possible to provide number of shares enough for

the users, which is a process needed before selecting the

shares by the 1-bit and 2-bits methods. To check the

randomness of SK in this proposed scheme, we will rely on

applying two statistical standard tests from NIST 800-22

suites to test the randomness of SK. The aim is getting a

reliable random SK secret key. This proposed method

introduced the new reliable counting-based secret sharing

scheme, as depicted in Figure 1.

In this new approach, we tested the modified algorithm

using an Intel processor Core i7 PC with speed 2.90 GHz,

RAM 16 GB, 64-bit operating system. Also, we depended on

NetBeans IDE platform version 8.9 as our programming

environment for simulating of the counting-based secret

sharing scheme via Java language platform. This platform is

used for simulating the two RNG tests of NIST 800-22 which

are Frequency (Monobit) test and Frequency test within a

block to provide reliable SK results. In addition, we

depended on database of MySQL Workbench version 6.3 as

our storage memory to keep the results and we link them with

NetBeans IDE. Extracting the results have been performed

by accessing the database MySQL Workbench and then

exporting data to Excel program for analysis and

comparison.

92 Reliable Secret Key Generation For Counting-Based Secret Sharing

Figure 1. Proposed Modified Counting-Based Secret

Sharing

4.1 Generating Reliable Random Secret Key

Random numbers are basically known as sequence of

numbers that are almost unpredictable in nature. It is

assumed to be generated through Random number generator

(RNG) which provide random sequence of numbers having

no particular order or pattern to form them [20]. In the

literature, there are two basic types of random number

generators used to produce random sequences, True Random

Number Generator (TRNG), Pseudo-Random Number

Generator (PRNG) [21].

4.1.1 True Random Number Generator (TRNG)

TRNG is an electronic piece that plugs into a computer and

produces random numbers from a physical process, rather

than computer programs [21]. TRNG uses a non-

deterministic source (i.e., the entropy source) to produce

randomness and often depends on measuring the

unpredictable process of microscopic phenomena that

generate random noise signals, such as thermal noise,

atmospheric noise, the photoelectric effect, the quantum

effects in a semiconductor, etc. The outputs of these random

processes are assumed completely unpredictable, it may be

used directly as a random number or may be supplied as a

seed into a pseudo-random generator (PRNG). In fact, the

generation of high-quality random numbers is considered

unrealistic, too much time-consuming, making TRNG

undesirable when a large quantity of random numbers is

needed. So the research always recommends to use

pseudorandom number generators to generate large number

of random numbers [22].

4.1.2 Pseudo-Random Number Generator (PRNG)

PRNG is an algorithm used to produce a sequence of

numbers which it is not truly random, but its properties are

closer to the properties of sequences of random numbers

[22]. PRNG depends on an initial value, called a seed to

generate multiple pseudo-random numbers. This seed should

be random and unpredictable. So the pseudo-random

numbers of a PRNG are deterministic, i.e., all true

randomness is confined to seed generation. The pseudo-

random numbers are periodicity which is a desirable feature

for several applications, like simulations of stochastic

processes, statistical sampling and performance assessment

of computer algorithms and Monte Carlo simulation. PRNG

is important in several fields for its speed in random number

generation compared to TRNGs which are comparatively

slow [23].

In this proposed scheme, we depended on PRNG function

from Java program to generate the pseudo-random number

for SK. This Java program provides support to generate

random numbers primarily through (java.util.Random

classes) [24]. The random function will generate a set of

random bits based on the required 64-bits range intended as

reliable size of SK. Therefore, these pseudo-random numbers

of secret keys that are produced by the random function are

subject to statistical tests verification which aim to emphasize

the randomness of the secret key sequence. Reliable SK is

then used to construct shares via the 1-bit and 2-bit methods,

i.e. based on the number of zeros existed as shown earlier in

Fig 1.

4.2 Statistical RNG Tests

Statistical tests provide a mechanism for comparing and

evaluating the sequence of bits as making standard decisions

to determine the sequence randomness. The tests aim to try to

verify that the random sequence of bits does not follow a

definite pattern or specific order and it cannot be described

as a probabilistic property [21]. There are a large number of

probable statistical tests, each of them is evaluating the

existence or non-existence of a pattern by a certain way. If

RNG testing outcomes is found acceptable, then it will

indicate that the sequence is applicably random to be

accepted [25]. Statistical tests are formulated to test a

specific null hypothesis (H0). In this paper, the null

hypothesis indicates that SK sequence is being tested as

Adel Al-Qurashi, Adnan Gutub 93

random. If this case is not achieved, the hypothesis requests

an alternative hypothesis (Ha) as set, which indicates that SK

sequence is non-random. When any statistical test is applied,

a decision or conclusion is obtained that accepts or rejects

the null hypothesis, i.e. whether the generated SK is

considered acceptably random or not. The possible outcome

of the statistical hypothesis testing, either accept H0

assuming the secret key is random, or reject H0 asking for

the secret key to be regenerated again. This rejected decision

is called Type I error.

The possibility of Type I error is usually called the level of

significance of the test denoted as α. That means α is the

probability that the test will reference the SK sequence as

non-random when it indeed is random. The reason may be

that SK sequence holds non-random properties even when

being the generator as pretended reliably good.

The statistic test is used to compute a P-value that

determines the force of the evidence against the null

hypothesis. Hence, P-value is the probability that RNG

would have generated SK sequence less random than the

sequence tested. If a P-value for a test converges to 1, then

SK sequence seems to be perfect close to applicable

randomness. Otherwise, if P-value test indicates value near

zero, then SK sequence seems to be completely non-random.

To be realistic, the system needs to decide an acceptable

range for P-value to consider SK randomness acceptable,

which is decided by significance level α. This significance

level α is our realistic threshold that can determine the

realistic tests within the range [0.01 or 0.001]. If (P-value ≥

α), we consider the null hypothesis as accepted, i.e., SK

sequence assumed to be random. If (P-value < α), we

conclude that the null hypothesis is rejected and α indicates

the probability of Type I error, i.e., SK sequence seems to be

non-random. We decided to accept 1% as the level of

significance α, so the test specified in this study needs 0.01

minimum to be accepted. This made the reality acceptance

rate to be of 1 SK from 100 SK, which insured reliable

security. The system is tuned to only allow for a P-value ≥

0.01, pretending the secret key would be considered random

(reliable) with a confidence of 99.9%. Accordingly, we chose

two applicable NIST 800-22 standard tests, namely the

frequency (Monobit) test and the frequency test within a

block, to determine whether SK is reliable in terms of

randomness [21], as introduced next. In fact, the reason to

choose these two tests is to emphasize considering all the bits

(frequency Monobit test) as well as portions of blocks

(frequency test within a block) having reliable number of

ones and zeros. For this case, the number of zeros within SK

shouldn't be much more than the number of ones, where it

can be observed clearly through previous elaboration shares

example of Table 2. On the other hand, as the number of

ones increases within SK, the number of shares generated

reduces and makes a different contradicting variable, which

may lead to unacceptable reliability identifying SK as invalid

to be used, too.

Our work selected the applicable two tests for verifying

randomness of SK which have been implemented within the

proposed system providing reliable remarks.

4.2.1 Frequency (Monobit) Test

The Frequency (Monobit) test focuses on testing the

proportion of ones and zeros for the entire sequence of the

SK secret key. This test works on determining whether the

numbers of ones and zeros in a sequence are nearly equal. In

fact, all tests within NIST 800-22 standard depend on the

passing of this Monobit test, i.e., the success of this test gives

reliability evidence for the existence of randomness in the SK

secret key sequence and allows for possible success of the

other test. If this test fails, the generated SK is rejected, as

shown in Figure 1.

4.2.2 Frequency Test within a Block

Frequency test within a block is sub-derived from the

previous Monobit test to further stress on security reliability.

This test asks for diving the sequence (SK) into M-bit blocks.

The focus then, becomes on the proportion of ones within

this M-bit blocks. It works on determining whether the

frequency of ones in any block is approximately M/2,

nominating the sequence of the secret key in accepted

reliability randomness. It is assumed as for the reason to

choose Frequency Test within a Block to give homogenous

distribution closer to equal among ones and zeros within SK

to insure its fairness. This test checks for cases where any

part of SK is containing more number of ones or zeros than

the others. Therefore, failing this test makes the probability

of guessing SK from generated shares high and then leads to

low reliability.

These two tests are ready tools libraries provided by

NIST. We applied them within our modified secret sharing

procedure aiming to calculate the P-value, i.e. to determine

randomness and then to enable us to acquire the reliable

secret key. To summarize, if P-value ≥ 0.01 then SK

indicates that the sequence is reliably random and the SK

secret key is valid to use for constructing shares. Otherwise,

the secret key is not-secure to use and the algorithm (Figure

1) asks for new SK to be generated.

5. Comparison and Analysis

The proposed reliable counting-based secret sharing system

is implemented via Java platform. This model results are

analyzed at each stage to verify its contribution. We show

remarks of the statistical tests applied to SK to acquire

reliability within the secret key in order to proceed further

within the process (Figure 1) to construct the shares. We

studied the proportion of ones and zeros in SK based on the

statistical tests to determine preferred SK secret key to be

used. Therefore, our analytical study has been based on

random samples of SK, which are generated by Random

Function within our Java program generating series of

pseudo-random bits, as observed in Table 8. These pseudo-

random samples of SK have been subjected to the two

statistical tests from NIST 800-22 suites, i.e. the frequency

(Monobit) test and the frequency test within a block, in order

to experiment their randomness. We simulated these two

tests applied on the samples to get the P-value per SK which

determines whether the sequence for SK is random or non-

94 Reliable Secret Key Generation For Counting-Based Secret Sharing

random, then sorted them as presented in Table 8. To

simplify readability, Table 8 random SKs have been listed

from SK1 to SK63 as providing reliable randomness, while the

non-random samples of SKs, generated by the same Java

Random Function, have been sorted as SK64 to SK100 to

prove possible non-random results.

Table 8. Randomness Tests for Generated Secret Keys

ID
Secret Key

for Hex
Num of

Zeros

Frequency Test Frequency Test within a

Block

 P-value Result P-value Result

k1 11F24EDB5DF13604 32 1 Rand 0.25807 Rand

Sk 2 E05E7C3FCDA5279C 28 0.317311 Rand 0.84799 Rand

Sk 3 8EFACEEB0BDE0163 29 0.453255 Rand 0.169963 Rand

Sk 4 C6C9D03A54DBD908 34 0.617075 Rand 0.423763 Rand

Sk 5 40514DFCB317682A 35 0.453255 Rand 0.377154 Rand

Sk 6 179BF475C4D6F891 29 0.453255 Rand 0.891292 Rand

Sk 7 4BEA6A76C0F2D525 31 0.802587 Rand 0.799347 Rand

Sk 8 B1E3258E374F319E 30 0.617075 Rand 0.927926 Rand

Sk 9 1499C854EF674C59 33 0.802587 Rand 0.377154 Rand

Sk10 6A09BB374A03CF49 33 0.802587 Rand 0.29423 Rand

Sk11 15CBB4CAC20FD5E4 32 1 Rand 0.981012 Rand

Sk12 A782CDCF42CE9ABD 29 0.453255 Rand 0.29423 Rand

Sk13 9C15E6DA1482F44F 33 0.802587 Rand 0.580338 Rand

Sk14 9C2FEF5B68A5A89E 28 0.317311 Rand 0.525883 Rand

Sk15 64367EA57FC03EBD 27 0.2113 Rand 0.169963 Rand

Sk16 77DDC689112BDF0E 29 0.453255 Rand 0.169963 Rand

Sk17 D5C1B2C4261A9601 38 0.133614 Rand 0.525883 Rand

Sk18 FA17B82397CC052F 31 0.802587 Rand 0.691937 Rand

Sk19 DE613179549D2FB2 30 0.617075 Rand 0.746837 Rand

Sk20 CC02DD9120213D41 40 0.0455 Rand 0.040971 Rand

Sk21 BE28FA3B385DB570 29 0.453255 Rand 0.377154 Rand

Sk22 8C91AD930A2E4110 40 0.0455 Rand 0.258077 Rand

Sk23 2F5FDE8C2DBFF627 23 0.024449 Rand 0.169963 Rand

Sk24 ED509BC4962D794A 32 1 Rand 0.636031 Rand

Sk25 75F95277FC2ADE0D 26 0.133614 Rand 0.258077 Rand

Sk26 91DA68DE69A09CDE 31 0.802587 Rand 0.473485 Rand

Sk27 2D68073619A89E36 35 0.453255 Rand 0.956905 Rand

Sk28 12AB8D9B6799EE97 28 0.317311 Rand 0.636031 Rand

Sk29 EF30BC41756093AD 32 1 Rand 0.146798 Rand

Sk30 D21A3312F010CF2E 36 0.317311 Rand 0.33393 Rand

Sk31 C48733170FC20E2E 35 0.453255 Rand 0.992708 Rand

Sk32 8640BF06FB1A507E 33 0.802587 Rand 0.008289 Rand

Sk33 FD32F2DA9E368C43 29 0.453255 Rand 0.473485 Rand

Sk34 1CB8189CE132DCA8 36 0.317311 Rand 0.84799 Rand

Sk35 76BB881970120FEA 34 0.617075 Rand 0.423763 Rand

Sk36 C96FCAC7237B8F51 28 0.317311 Rand 0.636031 Rand

Sk37 91B36CE1950CECC0 35 0.453255 Rand 0.691937 Rand

Sk38 D407141615A0C1DC 39 0.080118 Rand 0.580338 Rand

Sk39 854B78391A5F4DA3 32 1 Rand 0.934358 Rand

Sk40 3B6C9DA2EBF3BA21 28 0.317311 Rand 0.423763 Rand

Sk41 FFCA398066C2572D 31 0.802587 Rand 0.095765 Rand

Sk42 C201036AD7494BFB 34 0.617075 Rand 0.079196 Rand

Sk43 FA7191C146461C4E 35 0.453255 Rand 0.799347 Rand

Sk44 D8ADC09623105CE6 36 0.317311 Rand 0.423763 Rand

Sk45 A2DA40516B7E00F4 36 0.317311 Rand 0.029084 Rand

Sk46 FCA881B7ED86B8D9 29 0.453255 Rand 0.29423 Rand

Sk47 C69C682CA1ECB562 34 0.617075 Rand 0.927926 Rand

Sk48 6CF10AEF913CCECB 29 0.453255 Rand 0.377154 Rand

Adel Al-Qurashi, Adnan Gutub 95

Sk49 962D32681FDD2968 33 0.802587 Rand 0.799347 Rand

Sk50 9A292DF2C52B71E9 31 0.802587 Rand 0.992708 Rand

Sk51 ED8D3C2B25C3A749 31 0.802587 Rand 0.891292 Rand

Sk52 D2617CE1CF8C88E2 33 0.802587 Rand 0.691937 Rand

Sk53 E49864EC2AD4EBB3 31 0.802587 Rand 0.799347 Rand

Sk54 58CBAA2C311F2762 34 0.617075 Rand 0.927926 Rand

Sk55 7393A2892CEE41D1 34 0.617075 Rand 0.636031 Rand

Sk56 3B4E38EE12A63A5C 32 1 Rand 0.746837 Rand

Sk57 11E69633E9CC53B0 33 0.802587 Rand 0.891292 Rand

Sk58 214AB18A73EEAAF0 33 0.802587 Rand 0.691937 Rand

Sk59 3D0B7B463472783F 30 0.617075 Rand 0.636031 Rand

Sk60 1C87B2247D964FB6 31 0.802587 Rand 0.691937 Rand

Sk61 70D6872AD85DC6A5 32 1 Rand 0.981012 Rand

Sk62 559AA8174F5E7E92 30 0.617075 Rand 0.84799 Rand

Sk63 B24FD832373B1887 32 1 Rand 0.84799 Rand

Sk64 FDEFD7BA9F9A6EFF 16 0.000063 Non-Rand 0.004734 Non-Rand

Sk65 FFEDDFA7B7FFAFF3 12 0.000001 Non-Rand 0.000305 Non-Rand

Sk66 CDBDF8DA7BFAF7FD 17 0.000177 Non-Rand 0.034554 Rand

Sk67 AEBFF65DEE1FECFD 18 0.000465 Non-Rand 0.05723 Rand

Sk68 FFFF8E7BBF3CDD6F 15 0.000021 Non-Rand 0.000829 Non-Rand

Sk69 24032040A016808C 49 0.000021 Non-Rand 0.008289 Non-Rand

Sk70 352600002840EBA2 45 0.001154 Non-Rand 0.001229 Non-Rand

Sk71 D080004051083316 48 0.000063 Non-Rand 0.003238 Non-Rand

Sk72 6C18208801521202 48 0.000063 Non-Rand 0.009964 Non-Rand

Sk73 0000530500C02710 51 0.000002 Non-Rand 0.000076 Non-Rand

Sk74 0819005080400321 52 0.000001 Non-Rand 0.000456 Non-Rand

Sk75 0000181811082B01 52 0.000001 Non-Rand 0.000135 Non-Rand

Sk76 A0080A19B611000B 46 0.000465 Non-Rand 0.009964 Non-Rand

Sk77 528800B138D07000 46 0.000465 Non-Rand 0.009964 Non-Rand

Sk78 00210C00C0481209 52 0.000001 Non-Rand 0.000456 Non-Rand

Sk79 4512A40B00300005 49 0.000021 Non-Rand 0.002674 Non-Rand

Sk80 0080600040000401 58 0 Non-Rand 0.000001 Non-Rand

Sk81 1400268832043A01 48 0.000063 Non-Rand 0.004734 Non-Rand

Sk82 8110528A4410AA14 46 0.000465 Non-Rand 0.040971 Rand

Sk83 0880092E44100030 51 0.000002 Non-Rand 0.000557 Non-Rand

Sk84 0001007081021108 54 0 Non-Rand 0.000039 Non-Rand

Sk85 0080090062000081 56 0 Non-Rand 0.000002 Non-Rand

Sk86 FFF7B6A42BBF3DFF 17 0.000177 Non-Rand 0.000829 Non-Rand

Sk87 3F771FB7FEFCEF95 17 0.000177 Non-Rand 0.024434 Rand

Sk88 FFAF6EE515FDFFFD 15 0.000021 Non-Rand 0.000373 Non-Rand

Sk89 7FDDA4FFAAD7DFFF 15 0.000021 Non-Rand 0.000249 Non-Rand

Sk90 F6EE7FD5FAEFB7FE 14 0.000007 Non-Rand 0.004734 Non-Rand

Sk91 D66BBCF7F926FF77 19 0.001154 Non-Rand 0.017152 Rand

Sk92 96DC3E55FDDEDBBD 21 0.00596 Non-Rand 0.169963 Rand

Sk93 BEC2EDBDFDBF73F2 19 0.001154 Non-Rand 0.034554 Rand

Sk94 11ACFFAF7FAEFF1E 20 0.0027 Non-Rand 0.001495 Non-Rand

Sk95 4D97711FDBFF7CFB 20 0.0027 Non-Rand 0.040971 Rand

Sk96 FF3316FF24F90CB9 26 0.133614 Rand 0.003238 Non-Rand

Sk97 C47D2E76EFDBE7FF 19 0.001154 Non-Rand 0.01196 Rand

Sk98 7B9DEBB7DFFC5ACB 19 0.001154 Non-Rand 0.092806 Rand

Sk99 66279B37FA7BEDFF 20 0.0027 Non-Rand 0.05723 Rand

Sk100 7108E8604000E92A 44 0.0027 Non-Rand 0.009964 Non-Rand

5.1 Selecting Reliable SK Based on Frequency Test

Frequency (Monobit) test focuses on the proportion of ones

and zeros for the entire SK sequence. The numbers of ones

96 Reliable Secret Key Generation For Counting-Based Secret Sharing

and zeros in a sequence are to be verified closer to equal. So,

this test results in Table 8 compute the absolute value of the

sum of ones and zeros Sn within SK sequence. Where, ones

represented for +1 and zeros for -1, and then the resulting

absolute value of the sum of ones and zeros in SK is divided

by the square root of the size of SK sequence of 64 bits.

Then, we will get on the test statistic value Sobs= . As

mentioned earlier, the level of significance α determined in

Frequency (Monobit) test is 0.01. Accordingly, the

computation of P-value through erfc (denoting to the

complementary error function), gives P-value = erfc ().

Accepting H0 if the P-value ≥ α then SK would be

considered reliably random. This test has been applied to the

100 sample of SK, where p-value has been calculated per SK

based on the proportion of ones and zeros in the entire SK

sequence. When the number of ones and zeros is close to

equal, they will cancel each other. Thus that test statistic

result will be almost 0 and the P-value will be equal to one.

That means that this SK is perfectly random based on this

test and valid to use as the reliable secret key in the counting-

based secret sharing scheme.

In fact, the counting-based secret sharing scheme depends

on the number of zeros within the secret key to construct

secret shares. Since the proposed SK size in counting-based

secret sharing scheme is 64 bit, then the equal point in this

test between ones and zeros within SK sequence is 32, and

the P-value indicates to 1. It means that the SK which

contains 32 zeros, will be perfectly random and reliable. The

population of testing P-values of SKs can be shown in Figure

2 below.

Figure 2. P-value Distribution of Randomness Applying

Monobit Frequency Test

Consider Figure 3, observing the random samples of secret

keys passed the frequency test, i.e. having p-value > 0.01, we

will determine the reliable random secret key as valid to use

in counting-based secret sharing scheme.

Figure 3. Secret Keys Reliability Based on Frequency Test

In Figure 3, we have assumed that if P-value ≥ 0.8, i.e.

when the number of zeros within SK equals 31, 32 & 33,

then the random secret key has a high level of reliability to

be used, as the case in (sk1, sk7, sk9, sk10, sk11, sk13, sk18, sk24,

sk26, sk29, sk32, sk39, sk41, sk49, sk50, sk51, sk52, sk53, sk56, sk57,

sk58, sk60, sk61& sk63). Similarly, if the P-value < 0.2, as the

number of zeros within SK equals 26, 25, 24, 23, 40,39 &

38, then the secret keys hold a low level of reliability and are

not advisable to be used, as the case in (sk17, sk20, sk22, sk23,

sk25& sk38). As for, the remaining of secret keys in which P-

values are range between 0.8 and 0.2 they hold a medium

level of reliability and can be used.

5.2 Selecting Reliable SK Based on Frequency Test

within a Block

Frequency test within block focuses on the proportion of

ones within M-bit blocks, and through determining whether

the frequency of ones in an M-bit block approaching of M/2

until as would be the secret key is accepted as randomness.

This test works on partitioning SK sequence into N= []

Adel Al-Qurashi, Adnan Gutub 97

non-overlapping blocks, where n indicates the length of SK

and m the number of bits within a block. Any unused bits are

discarded. In this frequency test within a block, the null

hypothesis H0 defines that SK sequence is random. The

alternative hypothesis Ha is SK sequence that is non-random.

Test statistic χ
2

 computes the proportion πi of ones in each

block, i.e., the number of ones within the block is divided by

m. The test statistic χ
2

 is represented in the equation:

.

Recall the level of significance α as determined before in

this study to be as 0.01. Accordingly, we can compute the P-

value through IGAMC (denoting to Incomplete Gamma

Function), where P-value = IGAMC (N/2, χ2/2).

Accordingly, accepting H0 if the P-value ≥ α then SK would

be considered random. Reject H0 if the P-value < α then SK

would be considered non-random. The testing P-values of

SKs can be shown in Figure 4 below.

Figure 4. P-value Distribution of Randomness Applying the

Frequency Test Within Block

Figure 4 results generated are from testing the 100 samples

of SKs, where SK length is 64-bit (n=64), and the number of

bits within a block is 8-bit (M=8). Observe that all the points

that represent acceptable SKs, i.e. from SK1 to SK63 (Table

8), are located above the level of significance α (i.e., all p-

values ≥ 0.01). Hence, these secret keys considered are

random. That means accepting the null hypothesis H0 is that

SK is random. Through Figure 4, there are many SKs that

have not overridden the frequency test within a block, as

listed in Table 8 which are (sk64, sk65, sk68, sk69, sk70, sk71,

sk72, sk73, sk74, sk75, sk76, sk77, sk78, sk79, sk80, sk81, sk83, sk84,

sk85, sk86, sk88, sk89, sk90, sk94, sk96, sk100). That means that

these SK secret keys are not-random (i.e., all p-values <

0.01). Consequently, the null hypothesis H0 is rejected and

Ha hypothesis is accepted alternative as that the SK is non-

random. Note that, some of SKs have overridden the test as

in Table 8, i.e. (sk66, sk67, sk82, sk87, sk91, sk92, sk93, sk95, sk97,

sk98& sk99). These SKs appear to have acceptable

randomness while not passing the Monobit test, due to the

reason of holding some of random properties when divided

into small blocks.

Figure 5 represents random samples of SKs which passed

the frequency test within a block having p-value ≥ 0.01.

These samples determine the reliable random SK secret key

valid to use in counting-based secret sharing scheme. The

test represents great importance to get on distributing the bits

to be ones and zeros within SK as closer to equal

percentages.

Figure 5 also shows SKs for different higher P-value ≥0.8.

The secret key has a high level of reliability as common case

in (sk2, sk6, sk8, sk11, sk27, sk31, sk34, sk39, sk47, sk50, sk51, sk54,

sk57, sk61, sk62& sk62). Controversially, if the P-value ≤ 0.2,

for secret key holding low level of reliability is not advisable

to use, as the case in (sk3, sk15, sk16, sk20, sk23, sk29, sk32, sk41,

sk42 & sk45). Acceptable usage can be for the remaining P-

values range between 0.8 and 0.2 holding medium level of

reliability.

Figure 5. Random Secret Keys Reliability Based on Frequency Test within Block

98 Reliable Secret Key Generation For Counting-Based Secret Sharing

5.3 Practical Reliable Secret Key Selection

The randomness frequency tests alone are not enough for SK

practicality. The tests are limited to compute the proportion

of ones and zeros within SK sequence which tends to

converge. Therefore, having SK with passing statistical test

values, i.e., P-value ≈1, can lack the optimal distribution of

ones and zeros within the sequence, i.e. degrading the

optimal reliability. It can be observed as part of SK

containing more number of ones or zeros than other parts.

Accordingly, higher P-value is recommended to avoid this

problem. We found that any SK passed both tests and having

P-value for both tests greater than or equal to 0.8, i.e. P-value

≥ 0.8, considers the selection practically optimal for the

reliable secret key, which is preferred to be used in the

counting-based secret sharing scheme. Combining both tests

within one graph can give proper indication. Consider Figure

6, the F-test denotes Monobit frequency test and the F-Test

within Block denotes the other frequency test within a block

showing the SKs passing with high P-values, as the case in

(sk11, sk39, sk50, sk51, sk57, sk61, sk63,), where their P-value ≥

0.8. These SKs above 0.8 can be considered preferred

selection for the reliable secret key although they are found

only 7% of the SK generated.

Figure 6 show that some of SKs have achieved their P-

value ≥ 0.8 in one test, but less in the other one and vice

versa. Therefore, any SK passing 0.8 only with one test is not

considered preferred optimal selection although considered

reliable, as the case in (sk1, sk2, sk6, sk7, sk8, sk9, sk10, sk13,

sk18, sk24, sk26, sk27, sk29, sk31, sk32, sk34, sk41, sk47, sk52, sk53,

sk54, sk56, sk58, sk60, sk62), representing 25% of the generated

SKs. The low level of α = 0.2 or 0.1 (i.e. 0.1 < p-value < 0.2)

is achieving low reliability of SK and preferably should not

to be used although its percentage is 31%, which is

homogenous to the non-reliable percentage of 37% non-

passing randomness making a challenge to generate preferred

SK secret key sequences.

Figure 6. Practical Optimal Selection for Random Secret Keys Reliability

6. Conclusion

In this work, we have increased reliability to improve the

counting-based secret sharing scheme by increasing the size

of the SK to 64-bits as being practical for real life

applications. We improved the secret sharing algorithm by

making the SK sequence generated and verified for

randomness. It is believed that this secret key SK generation

made intruders guessing difficult to succeed. The study

focused on checking SK randomness to be reliable and

further practically optimal. Therefore, the test depended on

Java Random function generator to produce the pseudo-

random sequence testing for 100 SK samples.

The randomness has been experimented applying two

standard statistical tests from NIST 800-22 suites, Frequency

(Monobit) test and Frequency test within a Block, showing

interesting randomness features. However, it is found that the

best random SK valid to use is when the number of zeros and

ones within it are almost equal, i.e. approaching 32 for our

study 64-bit SK size. Yet, the number of zeros tests are not

enough alone to fully make the system reliable for secret key

in the counting-based secret sharing scheme. It is possible to

find SK containing 32-zeros but lack the optimal distribution

of ones and zeros within the sequence, hence SK is

commonly containing more number of ones or zeros in one

part than another. This challenge justified applying the

frequency test within a block further to the Monobit

frequency test which helped getting more reliable random

secret keys.

The reliability study is assumed to be the highest when SK

achieves both frequency tests together with the significance

level α = 0.8 (i.e., p-value ≥ 0.8); thus, we conclude that SK

Adel Al-Qurashi, Adnan Gutub 99

has high reliability and consider optimized the best to be

used in the counting based secret sharing scheme to construct

secret shares. The analysis and comparisons also considered

different randomly generated SK samples showing medium

and low reliability level interesting outcomes. The research

determined two more levels of significance combing both

reliability randomness tests showing high, medium, and low

preference. The high reliability level sets the focus on

significance α = 0.8 (i.e. p-value ≥ 0.8) which achieved

limited 7% SKs, recommended as fully reliable to be used.

The low level of α = 0.2 or less (i.e. 0.1 < p-value < 0.2) is

achieving low reliability of SK and preferred not to be used

although it's found in large numbers of SKs with percentage

of 31%. The medium level of P-values ranges between 0.8

and 0.2 is holding reasonable reliability and can be

considered as it is found 25% of the SK space.

Future work

We suggest recommendations to improve this paper in the

future by increasing the size of SK to 128-bit. Also, we

recommend applying other statistical tests from NIST 800-22

test suites on the random secret key, for getting on the

optimal, reliable secret key to use in counting-based secret

sharing scheme.

Acknowledgment

I would like to thank my wonderful supervisor Prof. Adnan

Gutub who supported me a lot in accomplishing this humble

work successfully according to his guidance. I consider

myself very lucky, because. I have learned and benefited a lot

from him in the field of scientific research. Also I would like

to thank Umm Al-Qura University for providing me this

golden chance to continue my higher study to get the

Master's Degree in the field of computer studies.

References

[1] A. Gutub, N. Al-Juaid, E. Khan, “Counting-Based Secret

Sharing Technique for Multimedia Applications”,

Multimedia Tools and Applications, Springer, DOI

10.1007/s11042-017-5293-6, pp. 1-29, 2017.

[2] A. Gutub, A. Tenca, “Efficient Scalable VLSI

Architecture for Montgomery Inversion in GF(p)”,

Integration the VLSI Journal, vol. 37, no. 2, pp. 103-

120, 2004.

[3] E. Ahmadoh, A. Gutub, “Utilization of Two Diacritics

for Arabic Text Steganography to Enhance

Performance”, Lecture Notes on Information Theory,

vol. 3, no. 1, pp. 42-47, 2015.

[4] V. P. Binu, A. Sreekumar, Secret Sharing Schemes with

Extended Capabilities and Applications, Diss. Cochin

University of Science and Technology, 2016.

[5] G. R. Blakley, “Safeguarding cryptographic keys”,

Proc. of AFIPS National Computer Conference, vol. 48,

pp. 313-317, 1979.

[6] A. Shamir, “How to share a secret”, Communications of

the ACM 22, vol. 22, no. 11, pp. 612- 613, 1979.

[7] K. Alaseri , A. Gutub, “Merging Secret Sharing within

Arabic Text Steganography for Practical Retrieval”,

IJRDO - Journal of Computer Science and

Engineering, vol. 4, no. 9, 2018.

[8] S. Iftene, “Secret Sharing Schemes with Applications in

Security Protocols”, Sci. Ann. Cuza Univ, vol. 16, pp.

63-96, 2006.

[9] K. Kaya, “Threshold Cryptography with Chinese

Remainder Theorem”, Diss. PhD thesis, Bilkent

University, Department of Computer Engineering, 2009.

[10] K. Wang, X. Zou,Y. Sui, “A Multiple Secret Sharing

Scheme based on Matrix Projection”, Proc. of the 33rd

Annual IEEE International Computer Software and

Applications Conference, pp. 400-405, 2009.

[11] T. Tassa, “Hierarchical threshold secret sharing”,

Journal of Cryptology, vol. 20, no. 2, pp. 237–264,

2007.

[12] A. Herzberg, S. Jarecki, K. Hugo, M. Yung, “Proactive

Secret Sharing Or: How to Cope With Perpetual

Leakage”, Proceedings of the 15th Annual International

Cryptology Conference on Advances in Cryptology

(CRYPTO '95), London, UK: Springer-Verlag, pp. 339–

352, 1995.

[13] I. Komargodski, A. P. Cherniavsky, “Evolving Secret

Sharing: Dynamic Thresholds and Robustness”, Theory

of Cryptography Conference, Springer, Cham, pp.379 –

393, 2017.

[14] L. Bai, X. Zou, “A proactive secret sharing scheme in

matrix projection method”, International Journal of

Security and Networks, vol. 4, no. 4, pp. 201-209, 2009.

[15] C. Blundo, A. Cresti, A. De Santis, U. Vaccaro, “Fully

dynamic secret sharing schemes”, Theoretical Computer

Science, vol. 165, pp. 407-440, 1996.

[16] C. S. Laih, L. Harn, J. Y. Lee, T. Hwang, “Dynamic

Threshold Scheme Based on the Definition of Cross-

Product in an N-Dimensional Linear Space”,

Proceedings of Advances in Cryptology (CRYPTO),

Lecture Notes in Computer Science, vol. 435, pp. 286-

298, 1990.

[17] G. S. Simmons, An introduction to shared secret and/or

shared control schemes and their application,

Contemporary cryptology, 1992.

[18] A. Castiglione, A. De Santis, B. Masucci, “Hierarchical

and shared key assignment”, 17th IEEE International

Conference on Network-Based Information Systems

(NBiS), pp. 263-270, 2014.

[19] C. Asmuth, J. Bloom, “A modular approach to key

safeguarding”, IEEE transactions on information

theory, vol. 29, no. 2, pp. 208-210, 1983.

[20] K. Ikake, “Random number generator”, U.S. Patent, no.

7,124,157, 2006

[21] A. Rukhin et al, “A statistical test suite for random and

pseudorandom number generators for cryptographic

applications”, Booz-Allen and Hamilton Inc., McLean

VA, 2001.

[22] L. Liang, Testing Several Types of Random Number

Generator, The Florida State University, 2012.

100 Reliable Secret Key Generation For Counting-Based Secret Sharing

[23] W. Janke, “Pseudo random numbers: Generation and

quality checks”, Lecture Notes John von Neumann

Institute for Computing, vol. 10, p. 447, 2002.

[24] Random (Java Platform SE 8), Java Platform Standard

Edition 8 Documentation. Available:

https://docs.oracle.com/javase/8/docs/api/java/util/Rand

om.html.

[25] R. Smaliukas, Block Cipher and Non-Linear Shift

Register Based Random Number Generator Quality

Analysis, Vilnius University Institute of Mathematics

and Informatics, 2015.

Adel Al-Qurashi, Adnan Gutub 101

