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Abstract: Secret sharing scheme is becoming famous for increasing 

the security to access sensitive information for applications and 

resources that have to be protected by more than one person. It 

divides the secret key into shares, distributed to participants such 

that only subsets of participants can reconstruct the secret key. This 

paper adopts counting-based secret sharing scheme as a promising 

secret sharing technique presented recently. This counting-based 

method works on constructing shares by changing one or two 0-bits 

within the secret key to one at different locations for producing 

needed shares. The combination of selected shares is counting the 

ones in parallel to recover the secret key. This paper proposed 

improving the reliability of this counting-based secret sharing 

scheme by increasing the size of the secret key to 64-bits as 

realistically needed by most applications. The work also improved 

the security of the secret key affecting its shares by adjusting the 

generation algorithm to involve applicable statistical randomness 

tests from NIST 800-22 standard where any unreliable secret key is 

regenerated again whenever needed. The proposal is implemented 

and compared with the original scheme via Java platform modeling 

showing interesting practical remarks providing remarkable 

contributions. 

 
Keywords: information security, secret key generation, secret 

sharing, frequency Monobit test, frequency test within a block. 

 

1. Introduction 

Technological advancement in information technologies, 

communication networks, databases, and multimedia have 

become the nerve of knowledge life, industrial, financials, 

health, and security. Given to the increasing demand for web 

applications and the continuous growth of a number of 

networks users involving Cloud computing, E-Government, 

E-Commerce, E-Business, online banking services, which all 

contain sensitive information, it may be vulnerable to theft or 

access by wrong persons or even destroyed by hackers or 

service providers as non-trusted agencies in many cases. 

Therefore, there is an urgent need for information security 

with its three main components: Confidentiality, Integrity, 

and Availability (CIA) [1].  

Information security is a big challenge in recent years, 

during which security has become the significant aspect of 

protecting from all the threats.  There are several techniques 

of information security which have been proposed to protect 

data from disclosure. Some of them focus on traditional 

encryption to data, which is based on mathematical concepts 

and special arithmetic operations [2], while others focus on 

enhancing the confidentiality of the exchanged data by hiding 

the information in any cover media such as picture, sound, 

and text, known as steganography [3]. In fact, the security 

techniques, i.e. cryptography and steganography, focus on 

the phenomena that one person is in the controlling seat who 

is in charge of the secrecy of information [1]. However, the 

question is what happens when the encrypted or hidden data 

are corrupted, or the secret key is lost. It means that there is 

only security, but there is not reliability. Secret sharing 

considers solving this problem, as it allows to achieve high 

levels of confidentiality and reliability arbitrarily [4]. Secret 

sharing opened the computing filed for several interesting 

applications and resources which requires the security to be 

implemented by several participants, i.e., the security 

decision is shared among a set of participants. 

In the beginning, the primary motivation behind the secret 

sharing was safeguarding cryptographic key from loss [5]. 

Losing a cryptographic key is an equal to data loss, as we 

cannot recover data without the encryption key. Keeping the 

cryptographic key at one location deos not depend on any 

physical or electronic problem, such as loss of key, system 

breakdown, sabotage or sudden death of persons who owns 

the secret key, etc. Losing the key leads to loss of data and 

may make access to the data impossible. Therefore, the 

storing of several key copies, i.e. distributing the 

cryptographic key in various sites, was the solution to 

increase the reliability of security access to systems. 

However, this distribution leads to decreasing confidentiality 

may be  by making the status worst, causing main data to be 

in great risk to be lost, modified, destroyed, or leaking to 

wrong hands. Therefore, secret sharing considers solving this 

problem by achieving high level of confidentiality as well as 

reliability. Another motivation behind the secret sharing is 

the reduction of trust on a single person. The dominance of a 

specific authority avoids individual trusty by keeping the 

secret key by one person to control the secrecy of 

information alone [4]. Therefore, the secret sharing provides 

collective access to the confidential information by making 

the decision collectively and distributing the trust among 

many participants to further enhance the reliability and 

confidentiality. 

To stress on the idea, the secret sharing is considered more 

needed in the areas that have highly sensitive information 

with big impact on decision making [6]. Accordingly, secret 

sharing can be seen via many examples in the real-life. It can 

be essential for opening the vault in central banks, nuclear 

missile launch control, voting systems, sensitive encryption 

keys, and considerable medical agreement. Each of these 
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cases requires access to be collectively agreed upon the 

sensitive information and resources. So, there is a need for 

this secret key to be shared or distributed among a set of 

participants by asking them all or a subset to be available at 

the same time for proper access [1]. 

Secret sharing scheme divides secret among a set of 

participants where that specified set of participants can 

reconstruct the secret. Therefore, the secret sharing scheme 

consists of two phases: the construction-distribution phase, 

and the secret-reconstruction phase. In the construction- 

distribution phase, the secret sharing scheme allows a trusted 

dealer (Algorithm) to generate secret shares by making 

information related to the secret called shares, and then these 

shares are distributed among a set of the participants via 

secure channel where each participant holds one share [7]. In 

the secret-reconstruction phase, the access structure enables a 

qualified subset of participants to collaborate and reconstruct 

the secret by collecting their shares in a specific way [8]. 

Note that secret sharing scheme divides all participants into 

two sets: the set able to retrieve the secret called authorized 

set and another set unable to recover the secret called an 

unauthorized set [9].  

The secret key is considered very secure in secret sharing 

scheme. The system distributes the shares among users, n 

participants, where k or more of the participants (k ≤ n) can 

retrieve the secret key by combining their k shares. The 

authorized set k is a subset of n participants (k out of n), 

considering (n, k) as threshold of secret-sharing scheme. In 

the threshold scheme, an attacker cannot discover the secret 

key, except if he knows at least k shares; knowing less than k 

shares should not reveal any information about the secret key 

[8].  In the secret sharing scheme there are two main 

properties which must be provided for applicability of any 

secret sharing scheme known as recoverability and 

confidentiality as declared below. 

- Recoverability: It is the ability to retrieve the secret by the 

authorized set of participants by combining their secret 

shares. 

- Confidentiality: It is the fact that no shares can lead to 

disclosure of information of the secret key, i.e. stopping 

any intruder attempt to recover the secret key by guessing 

from less than k shares. 

Threshold secret sharing scheme began in 1979 by Shamir 

[6] and Blakley [5] independently. Shamir's scheme depends 

on polynomial interpolation, while Blakley's scheme depends 

on the geometry. Since then many work attempts have been 

proposed to serve secret sharing schemes. Some of them 

handled problems improving Shamir [6] and Blakley [5] 

methods and some others innovated new techniques, all to 

achieve the same principle secret sharing scheme, i.e. by 

various methods, such as Kai Wang [10]; Tassa [11]; 

Herzberg [12]; Komargodski [13]; Bai [14]; Blundo [15]; 

Chi-Sung Laih, Tzonelih Hwang [16], and lately Adnan 

Gutub et al. [1]. This research focuses on Adnan Gutub's 

novel approach of counting-based secret sharing working on 

constructing the shares by changing one or two 0-bits at 

different specific locations within the secret key for 

producing a new share. This counting-based secret sharing 

scheme have been studied due to its wide range of 

applicability to almost all applications as well as its 

simplicity and performance in its running. Hence, the 

combination of shares can be applied by parallel counting the 

ones within selected shares (k shares) to recover the secret 

key. 

This counting-based secret sharing scheme simplicity and 

practicality come from the method low mathematical 

operations usage, i.e. when constructing shares until 

retrieving the secret key, as well as its achievement of 

reasonable level of security, as will be stressed upon later in 

this work. Accordingly, in this paper, we have proposed 

improving the reliability of the counting-based secret sharing 

scheme by increasing the size of the secret key to 64-bit and 

applying two statistical tests on the generated secret key 

checking randomness of the shares and secret key sequence. 

This strategy allows getting the optimal reliability of secret 

key and constructing its shares contributing to the 

improvement of the security system. 

The main objectives of this reliable secret key generation 

study can be stated in three points. 

- increasing the reliable secret key size to 64-bits to male it 

suitable for real-life applications. 

- testing the security of the reliable secret key as randomly 

generated via passing NIST RNG testing.  

- verifying whether the reliable secret key is able to serve 

the number of users being capable to produce enough 

trustworthy shares.  

The paper has been organized as follows. Section 2 covers 

the related works about secret sharing schemes. Section 3 

presents specific background about the counting-based secret 

sharing scheme. We cover generating the shares and 

retrieving the secret key via clarification examples. Section 4 

presents our proposal modeling the reliable secret key 

selection within counting-based secret sharing. Section 5 

discusses comparisons and result analysis. The final section, 

Section 6, includes the conclusion and the recommendations 

of this study. 

2. Related Work 

In the literature, there are many researches who discussed 

Threshold Secret Sharing Schemes from several aspects. For 

example, Shamir's Threshold Secret Sharing Scheme is the 

first scheme for secret sharing proposed by Adi Shamir in 

1979 [6]. It is based on Lagrange interpolation polynomial. 

To get (t, n) threshold scheme, D pick a random (t-1) degree 

polynomial q(×) = a0 + a1× + …… + at-1×t-1  in which a0 is the 

secret  and  , where p is a prime number. 

Dealer generates n shares Si = q(i)………. Sn = q(n) and then 

distribute them to the participants by channel secure. By 

selecting any subset t of those Sn values, we can construct the 

polynomial by Lagrange interpolation and recover the secret, 

but cannot calculate the secret with (t-1) participants. 

Shamir's threshold scheme has some features that makes it 

secure. The size of shares does not override the size of the 

secret key. Also, the scheme is to be expandable, i.e. when t 

is fixed, the shares can be dynamically deleted or added 

without impact on the other shares. The system can have 
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some changes within the shares without alteration of the 

secret key as well as without needing to generatie new shares 

to the participants. Shamir's scheme is thought to be a 

hierarchical scheme, by which it can provide each participant 

with a various number of shares based on their importance 

inside the organization [6].  

In Blakley's scheme [5], the system is dependent on 

geometry to achieve a (t, n) threshold, the secret is 

represented as a point P in the vector space , and n shares 

are distinct (t-1) dimensional hyperplanes that pass through 

this point p that contain the secret, where (t−1)-dimensional 

hyperplane is a set of form:{ ( ,…., )  |  

+… =  } where  ,…,  and  are arbitrary points of 

the field . The secret can be obtained by intersecting t 

hyperplanes at P, whereas fewer than t hyperplanes will 

intersect only in some subspace containing P. Thus fewer 

than t participants are able to recover the subspace, but 

cannot recover the secret correctly. In fact, Blakley’s scheme 

is not preferred due to the fact that unauthorized group of 

participants may know partial information of the subspace 

containing the secret making them able to guess the secret. 

The scheme is then improved by Simmons [17] to make it 

acceptable using affine space instead of vector space.  

However, in multi-level organizations, there is the need to 

share secret among all the members of the organization in 

hierarchically structured groups, where members from 

different levels have varying powers and as such, they need 

to factor in the powers in sharing the information [18]. 

Sharing of information is based on a predetermined sequence 

of threshold requirements. Such thresholds require the 

presence of a member with a higher power to enhance the 

organization's secret, as in Tamir-Tassa's Hierarchical Secret 

Sharing in [11]. Tamir-Tassa's introduced the perfect secret 

sharing scheme to solve users’ problem in their threshold 

secret sharing scheme, where the secret is shared among a 

group of users into their levels. This proposal uses 

polynomial derivatives to generate lesser shares for 

participants of lower levels, compared with Shamir’s scheme 

in which the secret is represented as the free coefficient of 

some polynomial. Thus, the secret is reconstructed in this 

scheme by using Birkhoff interpolation as discussed to assign 

identities of the participants from the underlying finite field 

[11]. 

Based on Herzberg et al. [12], the proactive secret sharing 

scheme is a game changer in secret sharing. Traditionally 

secret sharing schemes relied on fixed shares. However, in 

long-lived and sensitive secrets, this approach is not 

sufficient, as attackers may gain access to enough shares to 

reach the set threshold before the life of the secret is over. A 

proactive scheme of secret sharing solves this situation by 

periodically renewing shares. This is done without changing 

the secret being protected. If an attacker has accessed to any 

portion of the shares using the old information, the 

information becomes useless as soon as an update is done. In 

this scheme, an attacker has limited time to break into k 

locations before an update occurs [12]. 

Bai et al. [14] improved Shamir’s single-secret sharing 

scheme to a multiple-secret sharing scheme using matrix 

projection. They proposed a proactive secret sharing scheme 

method to renew (n) secret shares periodically in a (k, n) 

threshold-based secret sharing scheme without changing the 

secret or reconstructing the secret to generating new shares.  

Also, he presented a distributed proactive secret sharing 

scheme for the matrix projection secret sharing scheme.  

Note that, his technique cannot reveal the secrets from (k) 

shares by adversaries when new mixed shares with past and 

present are updated (i.e., this method is protected against the 

passive attacks) [14]. 

In Asmuth-Bloom Secret Sharing Scheme [19], the scheme 

uses an ascending sequence for a set of pair wise co-prime 

positive integers (x0< x1< x2< ..<xn, where x0>K is a prime), 

are chosen such that: . Asumuth-

Bloom scheme works on chooses secret K as a random 

integer from x0, and then n shares are constructed as Si = (K 

+ r * x0) mod xi, for all (1 ≤ i ≤ n) where r is a positive 

integer generated randomly such that K + r * x0 x0 . xk. 

Given k various shares S1; S2,… ,SK, the secret K is retrieved 

as K=  S0 mod x0, , where x0 is the unique solution of the 

system of congruencies using Chinese remainder theorem 

CRT [19]. 

A Fully Dynamic Secret Sharing Schemes was presented 

by Blundo et al [15]. They presented a study with different 

access structures and proposed that a dealer enables a 

particular set of users to reconstruct different secrets by 

sending the same broadcast message to all users. This 

approach is based fully on information-theoretic without any 

computational assumption, i.e. the security of the scheme is 

unconditional. Also, the model appears both the size of 

shares held by users and the size of the broadcast message 

based on the defined size of the secret. 

Evolving Secret Sharing Dynamic Thresholds and 

Robustness presented by Komargodski et al. [13] depended 

on proposing an efficient scheme for secret sharing among an 

unlimited number of participants, where only subsets of (k) 

participants can recover the secret. They evolved their 

method to resolve the problem of an efficient scheme for the 

dynamic threshold access structure. The method considered 

the size of qualified groups increasing as the number of 

participants increases which showed how to translate any 

scheme for k-threshold into the scheme which is robust. This 

secret sharing system had security incompatibility such that 

its secret can be recovered even if some participants have 

incorrect shares [13]. 

3. Overview on Counting-Based Secret 

Sharing Scheme 

The counting-based secret sharing scheme works by 

generating all the possible shares from the secret key (SK) 

[1]. It is mainly using two methods, namely 1-bit and 2-bit 

methods, which both work in different styles. The generated 

shares can be denoted by A having the same size as the SK 

secret key. This scheme only chooses n shares as being 

useful, i.e., n out of A shares are found to be suitable, while 

the remaining shares should be ignored. It is important to 

consider these n shares from the beginning to correctly 

distribute them among participants in secure way by 
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authentic channel or trusted dealer. Note that these applicable 

n of A shares are selected accurately to be combined with 

each other to reconstruct SK fulfilling the counting-base 

reconstruction strategy. However, in case one or more of n 

shares are absent or unavailable, SK cannot be regenerated. 

Thus, subset of k shares is to be assigned of n, where k≤ n is 

able to reconstruct SK. This counting-based secret sharing 

scheme can be classified as (n, k) threshold scheme. It is to 

be mentioned that the security of the system relies 

tremendously on the difficulty of reconstructing SK from 

shares found to be less than k [1]. 

This section will introduce the original two methods of 

shares generation, 1-bit and 2-bit methods, which are 

affecting the pool A consisting acceptable and unacceptable 

shares.  Then, the secret key SK retrieval from secret shares 

will be briefly presented clarifying the counting-based secret 

sharing approach. A clarification example is provided to 

elaborate the idea covering different cases of real applicable 

scenarios. 

3.1 Generating Shares via 1-Bit Method 

Secret shares generating via the 1-bit method depend mainly 

on the zero bits within SK. This 1-bit method generates all 

possible A shares based on the number of zeros found within 

SK, i.e. shares cannot be more than the number of zeros.  

This method works on selecting one zero from a specific 

position of SK and then flipping it to one to produce a valid 

share. Note that every time in generating the new shares, we 

must select the different location not previously chosen for 

producing another share and so forth. 

The following example clarifies the 1-bit method to 

generate shares, where we proposed a simple example of 

SK= [1 0 0 1 0 0 1 0] as presented in Table 1. Note that in 

this example, SK has 5 zeros, so it generates five shares by 

changing one zero at a time, as in highlighted cells in Table 

1. This method is considered simple to implement, fast to 

run, confirmed as reliable, and all shares are useful when 

performing the combination in parallel, but it has a drawback 

where it gives a limited number of shares produced. 

 

Table 1. Example of the 1-Bit method shares construction 

 
 

3.2 Generating Shares via 1-Bit Method 

The 2-bit method is a modification to increase the numbers 

of shares generation described by means of the 1-bit method. 

The 2-bit method can be used alone or as an extension with 

the 1-bit method to increase the numbers of shares. This 2-bit 

method depends on changing two zeros within SK to 

generate extra possible shares. The method scans SK for 

zeros, whenever two zeros are found, they can be flipped 

providing a probable share to be used. Not all generated 2-bit 

shares can be useful since some that are generated do not 

fulfilling the counting-based secret key SK reconstruction 

strategy.   

For our example of SK= [1 0 0 1 0 0 1 0] , we can flip the 

first zero with second zero to generate a new share as shown 

in Table 2. Similarly, we can flipp the first zero with third 

zero to generate more new shares and so on. These 

applicable 2-bits shares are used in addition to the 1-bits 

shares for generating all the possible shares A within SK. 

Table 2 illustrates a modified example of Table 1 showing 

extra shares of 6 to15 added over the 1-bit method as an 

extension. The number of shares generated by this 2-bit 

method is 10, i.e. by flipping two different zeros every time 

within different positions. Therefore, the total shares 

generated by combining the two methods for SK= [1 0 0 1 0 

0 1 0] are 15 shares, A=15 shares. Note that the 2-bit method 

enhances the 1-bit method and increases the number of 

shares produced for SK. However, not all these A shares are 

useful. It is found that many shares are not suitable to 

reconstruct SK, this factor forces us to verify the validity of 

needs A to generate n suitable shares. So, n out of A shares 

are to pass the testing to reconstruct SK before using them to 

ensure the applicability before distributing among the 

participants. 

  

Table 2. Example of the 2-Bit & 1-Bit methods shares 

construction 

 
 

3.3 Secret Key Retrieval from Secret Shares 

As discussed before, the counting-based secret sharing 

scheme cannot use all A shares to recover SK. Only selected 

n shares are to be reliable and acceptable for distribution to 

participants. Therefore, n shares need to be tested to make 

sure of their validity before their usage as set of authorized 

participants shares, i.e. good to retrieve SK. Nevertheless, in 

case that one or more of participant's shares are found absent, 

SK cannot be recovered. Consequently, a subset of n which 

is used as prerequisite to reconstruct SK must be provided as 

k shares. This subset k is less than or equal to n (k ≤ n) and 

preserving the same condition of it cannot recover SK if the 

shares are less than k inputted. After determining n shares 

and making sure of their validity, the application defines a 

value of k out of n to be used as threshold of available true 

users’ shares in parallel for SK regeneration. Accordingly, 

the k shares are mapped in parallel within the system and the 
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parallel bits are counted. If the counting output from shares 

parallel combination for all bits in any column equals the 

value of k or more, then the resulted bit is one otherwise the 

resulted bit is zero, and so on. These resulted bits are 

combined and compared with original SK, i.e. to check the 

validity of the shares for SK secret key reconstruction. The 

reader is referred to a study [1] for more in-depth elaboration 

on the philosophy behind this counting-based secret sharing 

scheme. 

 

3.2.1 Clarification Examples 

The following examples focus on the counting based secret 

sharing idea and its SK secret key proper generation. The 

examples illustrate different cases for utilization of shares to 

clarify SK retrieval method and possible challenges to be 

addressed. The example is made simple with the same 8-bits 

SK size used in Table 1 for clarification purpose. The 

research will show a real-life application using 64-bits key as 

studied later. Recall SK= [1 0 0 1 0 0 1 0] as introduced in 

Table 1 and the shares generated by 1-bit and 2-bit methods 

exist in Table 2 assuming the number of selected shares to be 

given to users as n=8, as follows: 

 

 

Case 1:  Situation of Combining Shares = k 

In this case, it is assumed that k=4 and the number of 

shares = k. This case is considered valid. Thus, the shares are 

combined as in Table 3. 

 

Table 3.  The Example of the Situation of Combining Shares 

= k 

 
 

Consider the counting result row which counts the ones 

within every column. SK reconstruction is performed by 

assigning value one whenever counting column result ≥k, 

otherwise a zero is placed in that location. Thus, the retrieved 

outcome of the combination process equals hexadecimal 

value 92 which is correct as SK=92. 

Case 2:  Situation of Combining Shares > k. 

In this case, it is assumed that k=4, and the number of 

shares is greater than k.  Thus, this case is considered valid 

even if the number of shares is more than k. The shares are 

combined with the condition that the counting result of bits is 

greater than or equal to k, as in Table 4. 

 

Table 4. The Example of the Situation of Combining Shares 

> k 
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Note, in this case, the number of shares is more than k. So, 

if the counting result of bits in one column ≥ k, then it gives 

one, otherwise, zero is placed in that location. Thus, the 

hexadecimal outcome of the combination process is 92, i.e. 

as needed SK=92. 

Case 3:  Situation of Combining Shares < k. 

In this case, assuming k=4, and a number of shares is less 

than k, thus it is considered unable to retrieve SK. As 

needed, it cannot recover the SK secret key as the number of 

shares be less than k, as in Table 5. 

 

Table 5. The Example of the Situation of Combining Shares 

< k 

 
 

Note that in this case, the number of shares is less than k. 

Thus, the outcome of the combination process is 00 ≠ 

SK=92, which is exactly as required. 

Case 4:  Situation of Involving Intruder False Share 

Assume an intruder inserts a false share in the same 

scenario of Case 1, i.e. k=4, and a number of shares = k, but 

one of the shares (or more) is falsely inserted by an intruder, 

as in Table 6. 

 

Table 6. The Example of the Situation of Involving one 

Intruder as False Share 

 
 

This case is depicted to be invalid, where all the shares are 

valid except the false one marked as FSh of hexadecimal 

value 89. Thus, the outcome of the combination process is 80 

≠ SK=92, confirming the system security validity. 

Assume the same case of intruder inserting false shares but 

more than one, namely FSh1 and FSh2, as in Table 7.  

 

Table 7. The Example of the Situation of Involving Intruder 

Multi False Shares 

 
 

These two false shares involvement result in invalid SK as 

needed. Thus the outcome of the combination process is 

found to be 00 ≠ SK=92 that verifies the scheme security 

strength. 

 

4. The Proposed Reliable Secret Key Selection 

This paper is proposed to improve the original counting-

based secret sharing scheme though increasing the reliability 

of the secret key selection process. The aim is to increase the 

shares space applying the method on secret key of size SK 

64-bits compared to the original scheme of small SK as for 

clarifying the idea of counting-based secret sharing. The 

original method depends on the simple variant sizes of SK, 

i.e. SK=4-bits, SK=5-bits, SK=6-bits, SK=8bits, and SK=12-

bits. These sizes are not realistic to be used in real-life 

applications. So, we proposed to study the SK binary format 

of 64-bits allowing the scheme to be adopted in reality 

password numbers, such as: SK= [10110010 00110101 

01101101 00110001 00110110 00110011 01100110 

01110010] and are represented in Hex as SK= [B2 35 6D 31 

36 33 66 72].  

Recall the principle phenomena of SK secret key in 

counting-based secret sharing scheme to be unknown to all 

participants. Only the system dealer (Algorithm) is to know 

the SK secret key. This means that the SK secret key 

sequence should be random and preferred impossible to be 

guessed or predicted. This difficulty of guessing the random 

secret key sequence by intruders is the main block assuring 

secrecy of the system. So, the system dealer (Algorithm) 

generates SK secret key with its size 64-bit using Random 

Number Generators (RNGs), i.e. to produce pseudo-random 

SK secret key. Therefore, we assume an RNG is used at the 

beginning to provide SK followed by security verification 

before producing the shares, as algorithm flow graph shown 

in Figure 1. The SK secret key generated by RNG needs to 

be verified to be realistic. This SK sequence should be 

random and possible to provide number of shares enough for 

the users, which is a process needed before selecting the 

shares by the 1-bit and 2-bits methods. To check the 

randomness of SK in this proposed scheme, we will rely on 

applying two statistical standard tests from NIST 800-22 

suites to test the randomness of SK. The aim is getting a 

reliable random SK secret key. This proposed method 

introduced the new reliable counting-based secret sharing 

scheme, as depicted in Figure 1. 

In this new approach, we tested the modified algorithm 

using an Intel processor Core i7 PC with speed 2.90 GHz, 

RAM 16 GB, 64-bit operating system. Also, we depended on 

NetBeans IDE platform version 8.9 as our programming 

environment for simulating of the counting-based secret 

sharing scheme via Java language platform. This platform is 

used for simulating the two RNG tests of NIST 800-22 which 

are Frequency (Monobit) test and Frequency test within a 

block to provide reliable SK results. In addition, we 

depended on database of MySQL Workbench version 6.3 as 

our storage memory to keep the results and we link them with 

NetBeans IDE.  Extracting the results have been performed 

by accessing the database MySQL Workbench and then 

exporting data to Excel program for analysis and 

comparison. 

 

92 Reliable Secret Key Generation For Counting-Based Secret Sharing



 

 
Figure 1. Proposed Modified Counting-Based Secret 

Sharing 

4.1 Generating Reliable Random Secret Key 

Random numbers are basically known as sequence of 

numbers that are almost unpredictable in nature. It is 

assumed to be generated through Random number generator 

(RNG) which provide random sequence of numbers having 

no particular order or pattern to form them [20]. In the 

literature, there are two basic types of random number 

generators used to produce random sequences, True Random 

Number Generator (TRNG), Pseudo-Random Number 

Generator (PRNG) [21]. 

 

4.1.1 True Random Number Generator (TRNG) 

TRNG is an electronic piece that plugs into a computer and 

produces random numbers from a physical process, rather 

than computer programs [21]. TRNG uses a non-

deterministic source (i.e., the entropy source) to produce 

randomness and often depends on measuring the 

unpredictable process of microscopic phenomena that 

generate random noise signals, such as thermal noise, 

atmospheric noise, the photoelectric effect, the quantum 

effects in a semiconductor, etc. The outputs of these random 

processes are assumed completely unpredictable, it may be 

used directly as a random number or may be supplied as a 

seed into a pseudo-random generator (PRNG). In fact, the 

generation of high-quality random numbers is considered 

unrealistic, too much time-consuming, making TRNG 

undesirable when a large quantity of random numbers is 

needed. So the research always recommends to use 

pseudorandom number generators to generate large number 

of random numbers [22].  

 

4.1.2 Pseudo-Random Number Generator (PRNG) 

PRNG is an algorithm used to produce a sequence of 

numbers which it is not truly random, but its properties are 

closer to the properties of sequences of random numbers 

[22]. PRNG depends on an initial value, called a seed to 

generate multiple pseudo-random numbers. This seed should 

be random and unpredictable. So the pseudo-random 

numbers of a PRNG are deterministic, i.e., all true 

randomness is confined to seed generation. The pseudo-

random numbers are periodicity which is a desirable feature 

for several applications, like simulations of stochastic 

processes, statistical sampling and performance assessment 

of computer algorithms and Monte Carlo simulation. PRNG 

is important in several fields for its speed in random number 

generation compared to TRNGs which are comparatively 

slow [23]. 

In this proposed scheme, we depended on PRNG function 

from Java program to generate the pseudo-random number 

for SK. This Java program provides support to generate 

random numbers primarily through (java.util.Random 

classes) [24]. The random function will generate a set of 

random bits based on the required 64-bits range intended as 

reliable size of SK. Therefore, these pseudo-random numbers 

of secret keys that are produced by the random function are 

subject to statistical tests verification which aim to emphasize 

the randomness of the secret key sequence. Reliable SK is 

then used to construct shares via the 1-bit and 2-bit methods, 

i.e. based on the number of zeros existed as shown earlier in 

Fig 1. 

 

4.2 Statistical RNG Tests 

Statistical tests provide a mechanism for comparing and 

evaluating the sequence of bits as making standard decisions 

to determine the sequence randomness. The tests aim to try to 

verify that the random sequence of bits does not follow a 

definite pattern or specific order and it cannot be described 

as a probabilistic property [21].  There are a large number of 

probable statistical tests, each of them is evaluating the 

existence or non-existence of a pattern by a certain way. If 

RNG testing outcomes is found acceptable, then it will 

indicate that the sequence is applicably random to be 

accepted [25]. Statistical tests are formulated to test a 

specific null hypothesis (H0). In this paper, the null 

hypothesis indicates that SK sequence is being tested as 
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random. If this case is not achieved, the hypothesis requests 

an alternative hypothesis (Ha) as set, which indicates that SK 

sequence is non-random. When any statistical test is applied, 

a decision or conclusion is obtained that accepts or rejects 

the null hypothesis, i.e. whether the generated SK is 

considered acceptably random or not. The possible outcome 

of the statistical hypothesis testing, either accept H0 

assuming the secret key is random, or reject H0 asking for 

the secret key to be regenerated again. This rejected decision 

is called Type I error. 

The possibility of Type I error is usually called the level of 

significance of the test denoted as α. That means α is the 

probability that the test will reference the SK sequence as 

non-random when it indeed is random. The reason may be 

that SK sequence holds non-random properties even when 

being the generator as pretended reliably good. 

The statistic test is used to compute a P-value that 

determines the force of the evidence against the null 

hypothesis. Hence, P-value is the probability that RNG 

would have generated SK sequence less random than the 

sequence tested. If a P-value for a test converges to 1, then 

SK sequence seems to be perfect close to applicable 

randomness. Otherwise, if P-value test indicates value near 

zero, then SK sequence seems to be completely non-random. 

To be realistic, the system needs to decide an acceptable 

range for P-value to consider SK randomness acceptable, 

which is decided by significance level α. This significance 

level α is our realistic threshold that can determine the 

realistic tests within the range [0.01 or 0.001]. If (P-value ≥ 

α), we consider the null hypothesis as accepted, i.e., SK 

sequence assumed to be random. If (P-value < α), we 

conclude that the null hypothesis is rejected and α indicates 

the probability of Type I error, i.e., SK sequence seems to be 

non-random. We decided to accept 1% as the level of 

significance α, so the test specified in this study needs 0.01 

minimum to be accepted. This made the reality acceptance 

rate to be of 1 SK from 100 SK, which insured reliable 

security. The system is tuned to only allow for a P-value ≥ 

0.01, pretending the secret key would be considered random 

(reliable) with a confidence of 99.9%. Accordingly, we chose 

two applicable NIST 800-22 standard tests, namely the 

frequency (Monobit) test and the frequency test within a 

block, to determine whether SK is reliable in terms of 

randomness [21], as introduced next. In fact, the reason to 

choose these two tests is to emphasize considering all the bits 

(frequency Monobit test) as well as portions of blocks 

(frequency test within a block) having reliable number of 

ones and zeros. For this case, the number of zeros within SK 

shouldn't be much more than the number of ones, where it 

can be observed clearly through previous elaboration shares 

example of Table 2. On the other hand, as the number of 

ones increases within SK, the number of shares generated 

reduces and makes a different contradicting variable, which 

may lead to unacceptable reliability identifying SK as invalid 

to be used, too.  

Our work selected the applicable two tests for verifying 

randomness of SK which have been implemented within the 

proposed system providing reliable remarks. 

 

4.2.1 Frequency (Monobit) Test 

The Frequency (Monobit) test focuses on testing the 

proportion of ones and zeros for the entire sequence of the 

SK secret key. This test works on determining whether the 

numbers of ones and zeros in a sequence are nearly equal. In 

fact, all tests within NIST 800-22 standard depend on the 

passing of this Monobit test, i.e., the success of this test gives 

reliability evidence for the existence of randomness in the SK 

secret key sequence and allows for possible success of the 

other test. If this test fails, the generated SK is rejected, as 

shown in Figure 1. 

 

4.2.2 Frequency Test within a Block 

Frequency test within a block is sub-derived from the 

previous Monobit test to further stress on security reliability. 

This test asks for diving the sequence (SK) into M-bit blocks. 

The focus then, becomes on the proportion of ones within 

this M-bit blocks. It works on determining whether the 

frequency of ones in any block is approximately M/2, 

nominating the sequence of the secret key in accepted 

reliability randomness. It is assumed as for the reason to 

choose Frequency Test within a Block to give homogenous 

distribution closer to equal among ones and zeros within SK 

to insure its fairness. This test checks for cases where any 

part of SK is containing more number of ones or zeros than 

the others. Therefore, failing this test makes the probability 

of guessing SK from generated shares high and then leads to 

low reliability. 

These two tests are ready tools libraries provided by 

NIST. We applied them within our modified secret sharing 

procedure aiming to calculate the P-value, i.e. to determine 

randomness and then to enable us to acquire the reliable 

secret key. To summarize, if P-value ≥ 0.01 then SK 

indicates that the sequence is reliably random and the SK 

secret key is valid to use for constructing shares. Otherwise, 

the secret key is not-secure to use and the algorithm (Figure 

1) asks for new SK to be generated. 

5. Comparison and Analysis 

The proposed reliable counting-based secret sharing system 

is implemented via Java platform. This model results are 

analyzed at each stage to verify its contribution. We show 

remarks of the statistical tests applied to SK to acquire 

reliability within the secret key in order to proceed further 

within the process (Figure 1) to construct the shares. We 

studied the proportion of ones and zeros in SK based on the 

statistical tests to determine preferred SK secret key to be 

used. Therefore, our analytical study has been based on 

random samples of SK, which are generated by Random 

Function within our Java program generating series of 

pseudo-random bits, as observed in Table 8. These pseudo-

random samples of SK have been subjected to the two 

statistical tests from NIST 800-22 suites, i.e. the frequency 

(Monobit) test and the frequency test within a block, in order 

to experiment their randomness. We simulated these two 

tests applied on the samples to get the P-value per SK which 

determines whether the sequence for SK is random or non-
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random, then sorted them as presented in Table 8. To 

simplify readability, Table 8 random SKs have been listed 

from SK1 to SK63 as providing reliable randomness, while the 

non-random samples of SKs, generated by the same Java 

Random Function, have been sorted as SK64 to SK100 to 

prove possible non-random results. 

 

Table 8. Randomness Tests for Generated Secret Keys 

ID 
Secret Key 

for Hex 
Num of 

Zeros 

Frequency Test Frequency Test within a 

Block 

  P-value Result P-value Result 

k1 11F24EDB5DF13604 32 1 Rand 0.25807 Rand 

Sk 2 E05E7C3FCDA5279C 28 0.317311 Rand 0.84799 Rand 

Sk 3 8EFACEEB0BDE0163 29 0.453255 Rand 0.169963 Rand 

Sk 4 C6C9D03A54DBD908 34 0.617075 Rand 0.423763 Rand 

Sk 5 40514DFCB317682A 35 0.453255 Rand 0.377154 Rand 

Sk 6 179BF475C4D6F891 29 0.453255 Rand 0.891292 Rand 

Sk 7 4BEA6A76C0F2D525 31 0.802587 Rand 0.799347 Rand 

Sk 8 B1E3258E374F319E 30 0.617075 Rand 0.927926 Rand 

Sk 9 1499C854EF674C59 33 0.802587 Rand 0.377154 Rand 

Sk10 6A09BB374A03CF49 33 0.802587 Rand 0.29423 Rand 

Sk11 15CBB4CAC20FD5E4 32 1 Rand 0.981012 Rand 

Sk12 A782CDCF42CE9ABD 29 0.453255 Rand 0.29423 Rand 

Sk13 9C15E6DA1482F44F 33 0.802587 Rand 0.580338 Rand 

Sk14 9C2FEF5B68A5A89E 28 0.317311 Rand 0.525883 Rand 

Sk15 64367EA57FC03EBD 27 0.2113 Rand 0.169963 Rand 

Sk16 77DDC689112BDF0E 29 0.453255 Rand 0.169963 Rand 

Sk17 D5C1B2C4261A9601 38 0.133614 Rand 0.525883 Rand 

Sk18 FA17B82397CC052F 31 0.802587 Rand 0.691937 Rand 

Sk19 DE613179549D2FB2 30 0.617075 Rand 0.746837 Rand 

Sk20 CC02DD9120213D41 40 0.0455 Rand 0.040971 Rand 

Sk21 BE28FA3B385DB570 29 0.453255 Rand 0.377154 Rand 

Sk22 8C91AD930A2E4110 40 0.0455 Rand 0.258077 Rand 

Sk23 2F5FDE8C2DBFF627 23 0.024449 Rand 0.169963 Rand 

Sk24 ED509BC4962D794A 32 1 Rand 0.636031 Rand 

Sk25 75F95277FC2ADE0D 26 0.133614 Rand 0.258077 Rand 

Sk26 91DA68DE69A09CDE 31 0.802587 Rand 0.473485 Rand 

Sk27 2D68073619A89E36 35 0.453255 Rand 0.956905 Rand 

Sk28 12AB8D9B6799EE97 28 0.317311 Rand 0.636031 Rand 

Sk29 EF30BC41756093AD 32 1 Rand 0.146798 Rand 

Sk30 D21A3312F010CF2E 36 0.317311 Rand 0.33393 Rand 

Sk31 C48733170FC20E2E 35 0.453255 Rand 0.992708 Rand 

Sk32 8640BF06FB1A507E 33 0.802587 Rand 0.008289 Rand 

Sk33 FD32F2DA9E368C43 29 0.453255 Rand 0.473485 Rand 

Sk34 1CB8189CE132DCA8 36 0.317311 Rand 0.84799 Rand 

Sk35 76BB881970120FEA 34 0.617075 Rand 0.423763 Rand 

Sk36 C96FCAC7237B8F51 28 0.317311 Rand 0.636031 Rand 

Sk37 91B36CE1950CECC0 35 0.453255 Rand 0.691937 Rand 

Sk38 D407141615A0C1DC 39 0.080118 Rand 0.580338 Rand 

Sk39 854B78391A5F4DA3 32 1 Rand 0.934358 Rand 

Sk40 3B6C9DA2EBF3BA21 28 0.317311 Rand 0.423763 Rand 

Sk41 FFCA398066C2572D 31 0.802587 Rand 0.095765 Rand 

Sk42 C201036AD7494BFB 34 0.617075 Rand 0.079196 Rand 

Sk43 FA7191C146461C4E 35 0.453255 Rand 0.799347 Rand 

Sk44 D8ADC09623105CE6 36 0.317311 Rand 0.423763 Rand 

Sk45 A2DA40516B7E00F4 36 0.317311 Rand 0.029084 Rand 

Sk46 FCA881B7ED86B8D9 29 0.453255 Rand 0.29423 Rand 

Sk47 C69C682CA1ECB562 34 0.617075 Rand 0.927926 Rand 

Sk48 6CF10AEF913CCECB 29 0.453255 Rand 0.377154 Rand 
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Sk49 962D32681FDD2968 33 0.802587 Rand 0.799347 Rand 

Sk50 9A292DF2C52B71E9 31 0.802587 Rand 0.992708 Rand 

Sk51 ED8D3C2B25C3A749 31 0.802587 Rand 0.891292 Rand 

Sk52 D2617CE1CF8C88E2 33 0.802587 Rand 0.691937 Rand 

Sk53 E49864EC2AD4EBB3 31 0.802587 Rand 0.799347 Rand 

Sk54 58CBAA2C311F2762 34 0.617075 Rand 0.927926 Rand 

Sk55 7393A2892CEE41D1 34 0.617075 Rand 0.636031 Rand 

Sk56 3B4E38EE12A63A5C 32 1 Rand 0.746837 Rand 

Sk57 11E69633E9CC53B0 33 0.802587 Rand 0.891292 Rand 

Sk58 214AB18A73EEAAF0 33 0.802587 Rand 0.691937 Rand 

Sk59 3D0B7B463472783F 30 0.617075 Rand 0.636031 Rand 

Sk60 1C87B2247D964FB6 31 0.802587 Rand 0.691937 Rand 

Sk61 70D6872AD85DC6A5 32 1 Rand 0.981012 Rand 

Sk62 559AA8174F5E7E92 30 0.617075 Rand 0.84799 Rand 

Sk63 B24FD832373B1887 32 1 Rand 0.84799 Rand 

Sk64 FDEFD7BA9F9A6EFF 16 0.000063 Non-Rand 0.004734 Non-Rand 

Sk65 FFEDDFA7B7FFAFF3 12 0.000001 Non-Rand 0.000305 Non-Rand 

Sk66 CDBDF8DA7BFAF7FD 17 0.000177 Non-Rand 0.034554 Rand 

Sk67 AEBFF65DEE1FECFD 18 0.000465 Non-Rand 0.05723 Rand 

Sk68 FFFF8E7BBF3CDD6F 15 0.000021 Non-Rand 0.000829 Non-Rand 

Sk69 24032040A016808C 49 0.000021 Non-Rand 0.008289 Non-Rand 

Sk70 352600002840EBA2 45 0.001154 Non-Rand 0.001229 Non-Rand 

Sk71 D080004051083316 48 0.000063 Non-Rand 0.003238 Non-Rand 

Sk72 6C18208801521202 48 0.000063 Non-Rand 0.009964 Non-Rand 

Sk73 0000530500C02710 51 0.000002 Non-Rand 0.000076 Non-Rand 

Sk74 0819005080400321 52 0.000001 Non-Rand 0.000456 Non-Rand 

Sk75 0000181811082B01 52 0.000001 Non-Rand 0.000135 Non-Rand 

Sk76 A0080A19B611000B 46 0.000465 Non-Rand 0.009964 Non-Rand 

Sk77 528800B138D07000 46 0.000465 Non-Rand 0.009964 Non-Rand 

Sk78 00210C00C0481209 52 0.000001 Non-Rand 0.000456 Non-Rand 

Sk79 4512A40B00300005 49 0.000021 Non-Rand 0.002674 Non-Rand 

Sk80 0080600040000401 58 0 Non-Rand 0.000001 Non-Rand 

Sk81 1400268832043A01 48 0.000063 Non-Rand 0.004734 Non-Rand 

Sk82 8110528A4410AA14 46 0.000465 Non-Rand 0.040971 Rand 

Sk83 0880092E44100030 51 0.000002 Non-Rand 0.000557 Non-Rand 

Sk84 0001007081021108 54 0 Non-Rand 0.000039 Non-Rand 

Sk85 0080090062000081 56 0 Non-Rand 0.000002 Non-Rand 

Sk86 FFF7B6A42BBF3DFF 17 0.000177 Non-Rand 0.000829 Non-Rand 

Sk87 3F771FB7FEFCEF95 17 0.000177 Non-Rand 0.024434 Rand 

Sk88 FFAF6EE515FDFFFD 15 0.000021 Non-Rand 0.000373 Non-Rand 

Sk89 7FDDA4FFAAD7DFFF 15 0.000021 Non-Rand 0.000249 Non-Rand 

Sk90 F6EE7FD5FAEFB7FE 14 0.000007 Non-Rand 0.004734 Non-Rand 

Sk91 D66BBCF7F926FF77 19 0.001154 Non-Rand 0.017152 Rand 

Sk92 96DC3E55FDDEDBBD 21 0.00596 Non-Rand 0.169963 Rand 

Sk93 BEC2EDBDFDBF73F2 19 0.001154 Non-Rand 0.034554 Rand 

Sk94 11ACFFAF7FAEFF1E 20 0.0027 Non-Rand 0.001495 Non-Rand 

Sk95 4D97711FDBFF7CFB 20 0.0027 Non-Rand 0.040971 Rand 

Sk96 FF3316FF24F90CB9 26 0.133614 Rand 0.003238 Non-Rand 

Sk97 C47D2E76EFDBE7FF 19 0.001154 Non-Rand 0.01196 Rand 

Sk98 7B9DEBB7DFFC5ACB 19 0.001154 Non-Rand 0.092806 Rand 

Sk99 66279B37FA7BEDFF 20 0.0027 Non-Rand 0.05723 Rand 

Sk100 7108E8604000E92A 44 0.0027 Non-Rand 0.009964 Non-Rand 

 

 
5.1 Selecting Reliable SK Based on Frequency Test 

Frequency (Monobit) test focuses on the proportion of ones 

and zeros for the entire SK sequence. The numbers of ones 
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and zeros in a sequence are to be verified closer to equal. So, 

this test results in Table 8 compute the absolute value of the 

sum of ones and zeros Sn within SK sequence. Where, ones 

represented for +1 and zeros for -1, and then the resulting 

absolute value of the sum of ones and zeros in SK is divided 

by the square root of the size of SK sequence of 64 bits. 

Then, we will get on the test statistic value Sobs= . As 

mentioned earlier, the level of significance α determined in 

Frequency (Monobit) test is 0.01. Accordingly, the 

computation of P-value through erfc (denoting to the 

complementary error function), gives P-value = erfc ( ). 

Accepting H0 if the P-value ≥ α then SK would be 

considered reliably random. This test has been applied to the 

100 sample of SK, where p-value has been calculated per SK 

based on the proportion of ones and zeros in the entire SK 

sequence. When the number of ones and zeros is close to 

equal, they will cancel each other. Thus that test statistic 

result will be almost 0 and the P-value will be equal to one. 

That means that this SK is perfectly random based on this 

test and valid to use as the reliable secret key in the counting-

based secret sharing scheme. 

In fact, the counting-based secret sharing scheme depends 

on the number of zeros within the secret key to construct 

secret shares. Since the proposed SK size in counting-based 

secret sharing scheme is 64 bit, then the equal point in this 

test between ones and zeros within SK sequence is 32, and 

the P-value indicates to 1. It means that the SK which 

contains 32 zeros, will be perfectly random and reliable. The 

population of testing P-values of SKs can be shown in Figure 

2 below. 

 

 
Figure 2. P-value Distribution of Randomness Applying 

Monobit Frequency Test 

 

Consider Figure 3, observing the random samples of secret 

keys passed the frequency test, i.e. having p-value > 0.01, we 

will determine the reliable random secret key as valid to use 

in counting-based secret sharing scheme. 

 
Figure 3. Secret Keys Reliability Based on Frequency Test 

 

In Figure 3, we have assumed that if P-value ≥ 0.8, i.e. 

when the number of zeros within SK equals 31, 32 & 33, 

then the random secret key has a high level of reliability to 

be used, as the case in (sk1, sk7, sk9, sk10, sk11, sk13, sk18, sk24, 

sk26, sk29, sk32, sk39, sk41, sk49, sk50, sk51, sk52, sk53, sk56, sk57, 

sk58, sk60, sk61& sk63). Similarly, if the P-value < 0.2, as the 

number of zeros within SK equals 26, 25, 24, 23, 40,39 & 

38, then the secret keys hold a low level of reliability and are 

not advisable to be used, as the case in (sk17, sk20, sk22, sk23, 

sk25& sk38). As for, the remaining of secret keys in which P-

values are range between 0.8 and 0.2 they hold a medium 

level of reliability and can be used. 

 

5.2 Selecting Reliable SK Based on Frequency Test 

within a Block 

Frequency test within block focuses on the proportion of 

ones within M-bit blocks, and through determining whether 

the frequency of ones in an M-bit block approaching of M/2 

until as would be the secret key is accepted as randomness. 

This test works on partitioning SK sequence into N= [ ] 
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non-overlapping blocks, where n indicates the length of SK 

and m the number of bits within a block. Any unused bits are 

discarded. In this frequency test within a block, the null 

hypothesis H0 defines that SK sequence is random. The 

alternative hypothesis Ha is SK sequence that is non-random. 

Test statistic χ
2

 computes the proportion πi of ones in each 

block, i.e., the number of ones within the block is divided by 

m. The test statistic χ
2

 is represented in the equation: 

. 

Recall the level of significance α as determined before in 

this study to be as 0.01. Accordingly, we can compute the P-

value through IGAMC (denoting to Incomplete Gamma 

Function), where P-value = IGAMC (N/2, χ2/2). 

Accordingly, accepting H0 if the P-value ≥ α then SK would 

be considered random. Reject H0 if the P-value < α then SK 

would be considered non-random. The testing P-values of 

SKs can be shown in Figure 4 below. 

 

 
Figure 4. P-value Distribution of Randomness Applying the 

Frequency Test Within Block 

 

Figure 4 results generated are from testing the 100 samples 

of SKs, where SK length is 64-bit (n=64), and the number of 

bits within a block is 8-bit (M=8). Observe that all the points 

that represent acceptable SKs, i.e. from SK1 to SK63 (Table 

8), are located above the level of significance α (i.e., all p-

values ≥ 0.01). Hence, these secret keys considered are 

random. That means accepting the null hypothesis H0 is that 

SK is random. Through Figure 4, there are many SKs that 

have not overridden the frequency test within a block, as 

listed in Table 8 which are (sk64, sk65, sk68, sk69, sk70, sk71, 

sk72, sk73, sk74, sk75, sk76, sk77, sk78, sk79, sk80, sk81, sk83, sk84, 

sk85, sk86, sk88, sk89, sk90, sk94, sk96, sk100). That means that 

these SK secret keys are not-random (i.e., all p-values < 

0.01). Consequently, the null hypothesis H0 is rejected and 

Ha hypothesis is accepted alternative as that the SK is non-

random. Note that, some of SKs have overridden the test as 

in Table 8, i.e. (sk66, sk67, sk82, sk87, sk91, sk92, sk93, sk95, sk97, 

sk98& sk99). These SKs appear to have acceptable 

randomness while not passing the Monobit test, due to the 

reason of holding some of random properties when divided 

into small blocks.  

Figure 5 represents random samples of SKs which passed 

the frequency test within a block having p-value ≥ 0.01. 

These samples determine the reliable random SK secret key 

valid to use in counting-based secret sharing scheme. The 

test represents great importance to get on distributing the bits 

to be ones and zeros within SK as closer to equal 

percentages.  

Figure 5 also shows SKs for different higher P-value ≥0.8. 

The secret key has a high level of reliability as common case 

in (sk2, sk6, sk8, sk11, sk27, sk31, sk34, sk39, sk47, sk50, sk51, sk54, 

sk57, sk61, sk62& sk62).  Controversially, if the P-value ≤ 0.2, 

for secret key holding low level of reliability is not advisable 

to use, as the case in (sk3, sk15, sk16, sk20, sk23, sk29, sk32, sk41, 

sk42 & sk45).  Acceptable usage can be for the remaining P-

values range between 0.8 and 0.2 holding medium level of 

reliability. 

 
Figure 5. Random Secret Keys Reliability Based on Frequency Test within Block 
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5.3 Practical Reliable Secret Key Selection 

The randomness frequency tests alone are not enough for SK 

practicality. The tests are limited to compute the proportion 

of ones and zeros within SK sequence which tends to 

converge. Therefore, having SK with passing statistical test 

values, i.e., P-value ≈1, can lack the optimal distribution of 

ones and zeros within the sequence, i.e. degrading the 

optimal reliability. It can be observed as part of SK 

containing more number of ones or zeros than other parts. 

Accordingly, higher P-value is recommended to avoid this 

problem. We found that any SK passed both tests and having 

P-value for both tests greater than or equal to 0.8, i.e. P-value 

≥ 0.8, considers the selection practically optimal for the 

reliable secret key, which is preferred to be used in the 

counting-based secret sharing scheme. Combining both tests 

within one graph can give proper indication. Consider Figure 

6, the F-test denotes Monobit frequency test and the F-Test 

within Block denotes the other frequency test within a block 

showing the SKs passing with high P-values, as the case in 

(sk11, sk39, sk50, sk51, sk57, sk61, sk63,), where their P-value ≥ 

0.8. These SKs above 0.8 can be considered preferred 

selection for the reliable secret key although they are found 

only 7% of the SK generated. 

Figure 6 show that some of SKs have achieved their P-

value ≥ 0.8 in one test, but less in the other one and vice 

versa. Therefore, any SK passing 0.8 only with one test is not 

considered preferred optimal selection although considered 

reliable, as the case in (sk1, sk2, sk6, sk7, sk8, sk9, sk10, sk13, 

sk18, sk24, sk26, sk27, sk29, sk31, sk32, sk34, sk41, sk47, sk52, sk53, 

sk54, sk56, sk58, sk60, sk62), representing 25% of the generated 

SKs. The low level of α = 0.2 or 0.1 (i.e. 0.1 < p-value < 0.2) 

is achieving low reliability of SK and preferably should not 

to be used although its percentage is 31%, which is 

homogenous to the non-reliable percentage of 37% non-

passing randomness making a challenge to generate preferred 

SK secret key sequences. 

 

 
Figure 6. Practical Optimal Selection for Random Secret Keys Reliability 

6. Conclusion 

In this work, we have increased reliability to improve the 

counting-based secret sharing scheme by increasing the size 

of the SK to 64-bits as being practical for real life 

applications. We improved the secret sharing algorithm by 

making the SK sequence generated and verified for 

randomness. It is believed that this secret key SK generation 

made intruders guessing difficult to succeed. The study 

focused on checking SK randomness to be reliable and 

further practically optimal. Therefore, the test depended on 

Java Random function generator to produce the pseudo- 

random sequence testing for 100 SK samples.  

The randomness has been experimented applying two 

standard statistical tests from NIST 800-22 suites, Frequency 

(Monobit) test and Frequency test within a Block, showing 

interesting randomness features. However, it is found that the 

best random SK valid to use is when the number of zeros and 

ones within it are almost equal, i.e. approaching 32 for our 

study 64-bit SK size. Yet, the number of zeros tests are not 

enough alone to fully make the system reliable for secret key 

in the counting-based secret sharing scheme. It is possible to 

find SK containing 32-zeros but lack the optimal distribution 

of ones and zeros within the sequence, hence SK is 

commonly containing more number of ones or zeros in one 

part than another. This challenge justified applying the 

frequency test within a block further to the Monobit 

frequency test which helped getting more reliable random 

secret keys.  

The reliability study is assumed to be the highest when SK 

achieves both frequency tests together with the significance 

level α = 0.8 (i.e., p-value ≥ 0.8); thus, we conclude that SK 
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has high reliability and consider optimized the best to be 

used in the counting based secret sharing scheme to construct 

secret shares. The analysis and comparisons also considered 

different randomly generated SK samples showing medium 

and low reliability level interesting outcomes. The research 

determined two more levels of significance combing both 

reliability randomness tests showing high, medium, and low 

preference. The high reliability level sets the focus on 

significance α = 0.8 (i.e. p-value ≥ 0.8) which achieved 

limited 7% SKs, recommended as fully reliable to be used. 

The low level of α = 0.2 or less (i.e. 0.1 < p-value < 0.2) is 

achieving low reliability of SK and preferred not to be used 

although it's found in large numbers of SKs with percentage 

of 31%. The medium level of P-values ranges between 0.8 

and 0.2 is holding reasonable reliability and can be 

considered as it is found 25% of the SK space.  

Future work 

We suggest recommendations to improve this paper in the 

future by increasing the size of SK to 128-bit. Also, we 

recommend applying other statistical tests from NIST 800-22 

test suites on the random secret key, for getting on the 

optimal, reliable secret key to use in counting-based secret 

sharing scheme. 
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