
Umm Al-Qura University Journal For Engineering and Architecture

A Penalty-Based MOEA/D for Multiobjcetive 0/1 
Knapsack problems

Ahmed Hassan Alhindi

Department of Computer Science,
College of Computer & Information Systems,

 Umm Al-Qura University
Email: alhindi@uqu.edu.sa

Access this article online

Quick Response Code: Website: www.uqu.edu.sa/jea
E-mail: jea@uqu.edu.sa
Table of Contents - Current issue:
 https://uq.sa/CFwcAm

© Umm Al-Qura University Journal for E & A, Vol.9 Issue No.2, pp.19-30 April 2019

Under Legal Deposit No. p- ISSN: 1658-4635 / e- ISSN: 1658-8150



© Umm Al-Qura University Journal For E & A, Vol.9 Issue No.2, pp.19-30 April 2019 

Umm Al-Qura University Journal for E & A, Vol.9, Issue No.2, Rajab 1440, April 2019                                          19

A Penalty-Based MOEA/D for Multiobjcetive 0/1 
Knapsack problems

Ahmed Hassan Alhindi

Department of Computer Science,
College of Computer & Information Systems,

 Umm Al-Qura University
Email: alhindi@uqu.edu.sa

Abstract
The multiobjective evolutionary algorithm based on decomposition (MOEA/D) is a 

generic multiobjective evolutionary optimization algorithm. It decomposes a multiobjec-
tive problem into a number of scalar optimization subproblems with a neighbourhood 
structure and optimizes them simultaneously to approximate the Pareto-optimal set. For 
effective performance of MOEA/D, scalar optimization subproblem has to be able to es-
cape Pareto local optima. In this paper, a penalty method for different subproblems with 
penalizing scheme is proposed (PB-MOEA/D) to overcome this shortcoming. Our experi-
mental results on the multobjetive 0/1 knapsack problem test instances show that subprob-
lems with a penalty method and penalizing scheme yield superior performance over im-
plementations without. This paper argues that a strategy for escaping Pareto local optimal 
solutions is necessary in multiobjective evolutionary algorithms for improving algorithms 
performance. It also explains why PB-MOEA/D performs better.

Keywords: Decomposition, evolutionary multiobjective optimization, self adaptation, 
penalty method, guided local search, local optima, genetic algorithm.

Introduction
A multiobjective optimization problem (MOP) can be stated as follow:

maximize 

subject to                                                                                   
(1)

where x is a potential solution, Ω is the discrete search space and F(x) consists of m 
scalar objective functions f1 (x),…, fm (x). Very often, an improvement in one objective will 
cause a degradation of another. No single solution can optimize all the objectives at the 
same time. A decision maker has to balance these objectives in an optimal way. The con-
cept of Pareto optimality is commonly used to best trade-off solutions.

Given two solutions , y ∈ Ω , x is said to dominate y if and only if fi (x) ≤ fi (y) for 
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every i and fi (x)< fi (y) for at least one index j ∈{1,…,m}. x* is called Pareto optimal 
to (1) if no other solution can dominate x. The set of all the Pareto optimal solutions is 
called the Pareto set (PS), the set {F(x)|x∈PS} is called the Pareto front (PF) [1].

The goal of multiobjective evolutionary algorithms (MOEAs) is to produce a num-
ber of solutions to approximate the PF in a single run [1-3]. Such approximation can be 
very useful for a decision maker to understand their problem and make their final deci-
sion. With Pareto dominance based MOEAs (e.g. [4]) and Hypervolume based MOEAs 
(e.g. [5]), Decomposition based MOEAs (e.g. MOEA/D [6]) have been widely accepted 
as a major approach in the area of multiobjective evolutionary computation.

Multiobjective evolutionary algorithm based on decomposition (MOEA/D) [6] is 
a recent MOEA. Using conventional aggregation approaches, MOEA/D decomposes 
the approximation of the PF into a number of single objective optimization subprob-
lems. The objective of each subproblem is a weighted aggregation of all objectives in 
the MOP under consideration. Neighbourhood relations among these subproblems are 
defined based on the distances among their aggregation weight vectors. Each subprob-
lem is optimized by using information mainly from its neighbouring subproblems. 
Each single objective subproblem plays a crucial role in MOEA/D.

Arguably, different scalar optimization subproblems are responsible for different 
part of the PF, therefore, incorporating information collected at different search stag-
es could improve the algorithm performance. When some subproblems trapped in a 
local optimal region, altering their objective functions by means of penalty (posting 
constraint) is required for helping these subproblems escape from the trapped region.

Penalty approach has proven to be very efficient and effective for changing the cost 
function (i.e. modification of the landscape structure) in an online manner to escape 
from the local optima [7-10]. Some advanced local search methods, such as guided local 
search (GLS) [7], adopt the penalty approach to escape local optima and obtained good 
solutions. In GLS, when the search get trapped in a local optimal solutions, the objec-
tive function is modified by means of penalties and thus the search can be guided out 
of the attraction region of this local solution. Using the GLS idea, this paper proposes 
to use a penalty method for subproblems in MOEA/D and dynamically modifying their 
cost function based on their previous performances. The resultant algorithm, called PB-
MOEA/D, is compared with original MOEA/D proposed in [6] on combinatorial 0/1 
Multiobjective Knapsack benchmark problems [11]. Our results indicate that penalty 
approach improves the performance of MOEA/D significantly.

Review on MOEA/D
There are several variants of MOEA/D. In this paper, we use the original MOEA/D 

[6] with the weighted sum approach. The MOEA/D requires N evenly spread weight 
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vectors λ1,…, λN to decompose (1). Each weight vector λ satisfies ∑ i
m  

=1 λi =1and λi ≥ 0 
for all i=1,…,m. Then, the problem of approximation of the PF of (1) can be decom-
posed into N scalar optimization subproblems and the objective function of the ithe 
maximization subproblem is:

maximize 

                                                                                              

 (2)

During the search, MOEA/D maintains:
1- A population of  N points x1,…,xN ∈ Ω , where xi is the current solution to the 

i the subproblem;
2- FV 1,…,FV N, where FV i is the Function value of solution x i.
3- EP, external archive contains all the non-dominated solutions found so far.

At the beginning, MOEA/D initializes each subproblem i with solution x i 
weight vector λ i and the neighbourhood B(i) of its λi for i =1,…,N, which formed 
by the indexes of its T closest neighbours in B. The Euclidean distance is used to 
measure closeness between any (subproblems’) weight vectors.

At each generation, MOEA/D does the following:

A Penalty Method for MOEA/D
In combinatorial optimization problems, a solution often consists of defined proper-

ties that belong to the problem under consideration. Those properties are called features 
and are used to distinguish between solutions with different characteristics. Note that 
solutions features were originally introduced in GLS [7]. For clarity, we assume that 
the search space is Ω ∈{0,1}n, although our approach can be generalized to other search 
spaces. We will give the idea and details of the proposed method for the 0/1 MOKP.

In MOEA/D, a new solution generated for a subproblem is very likely to be better, 

For each subproblem i=1,…, Ndo
   Step 1: Search for Solutions 

(a) Randomly select two indexes l,k from B(i)
(b) Apply genetic operators on x l, x k to generate a new solution y, 

then, repair y if necessary, and compute F(y)
   Step 2: Update Solutions 

(a) For each index j ∈ B (i), if g ws (y│λ j)≤ g ws (x j│λ j), then set x j = 
y and FV j = F(y).

(b) Remove from EP all the vectors dominated by F(y). Add F(y) 
to EP if not vectors in EP dominated F(y).
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but may be is close (in the same basin or plateaus) to its parent since the genetic oper-
ator does not utilize any global information gathered during the search. Penalty meth-
ods iteratively extract/collect/gather information from the previous search and posting 
constraints which modify the landscape and guide the search out of local optima and 
towards promising areas in the search space. For example, if a subproblem reaches a 
local optimum then an assumption can be made that the global optimum is unlikely to 
reside in the surrounding area. Constraints could then be introduced that exclude this 
area from being searched in future iterations. The idea behind the proposed penalty 
method is t7o utilize the global information and location information of the features 
gathered during the search to overcome the shortcoming of original MOEA/D.

In PB-MOEA/D, a set of features is defined to characterise solutions and allow us 
to constraint them. A feature (featurei) can be any solution property and should has the 
following component;

• A cost function ci , usually defined by the objective function.
• A penalty pi , initially set to 0 and used to penalize occurrences of the feature in 
local optima. (i.e., indicate its attractiveness)
• An indicator function, Ii (x), indicating whether the feature is present in a solution 
x or not as follows:

                                                                                                       (3)

Since each subproblem has different search direction (i.e., weight vector), we use 
different feature set for each subproblem. The reason behind using different feature 
set is that each set of feature for each subproblem has different cost functions and 
different penalty values.

In PB-MOEA/D, the use of penalties are twofold:Firstly, altering the scalar 
objective function of subproblems. Secondly, bias genetic operators in order to 
regularise producing of spring.

Let the search space be Ω ∈ {0,1}n. In the following, we present the main components 
of  PB-MOEA/D.

Augmented Cost Function
Following the idea of GLS, the PB-MOEA/D replaces the main cost function gws 

with an augmented cost function h to guide the search out of local optima. The idea 
behind it is to make a local optimum most costly than the surrounding search space, 
where the feature are not present. The scalar optimization problem in PB-MOEA/D 
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is in the form:

                                                                                               (4)

where x is a candidate solution, g^ws is the original scalarizing objective function 
of the subproblem, i ranges over all the features in FS, p_i is the penalty of feature i, I_i 
is the indicator function given in Eq.(3), and δ is the parameter that controls the degree 
of diversity of the search. The higher the value of δ the more divers the search will be. 
The δ parameter can be dynamically calculated as a function of a local optimum and the 
average number of features present by the following formula:

                                                                                                                 (5)

where cost is the objective function of the problem, x’ is the local optimum, M is 
the number of features presented in x’, and α is a tuning parameter ∈ [0,1].

Guided Reproduction
Beside the augmented cost function, PB-MOEA/D adapts the reproduction cycle of 

the original MOEA/D [6] to use the information provided by the penalty operator of the 
features. The idea behind that is to influence the random selection of parents’ features 
by their penalty.
For subproblem i, the guided reproduction of the child y = (y1,…,y2) ∈ {0,1}n will be as 
follow:

1- Randomly select two neighbouring subproblems l,k from its neighbourhood B(i).
2- For each feature j in {1,2,…,n} do

a. Sum 

b.  Randomly generate an integer rand uniformly from [0,sum-1]. Then set

                                                                                            (6)

3- Compute F(y)
In the above steps, each feature i in the solution x l competes against the corresponding 

feature in x k for a place in the child. This competition is a weighted random selection, 
influenced by the penalty pj

l  and pj
k of the respective features; thus the “lighter” feature 

will have a greater chance to propagate its information to the child.
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Selective Penalty Modifications
During the evolution, when subproblem trapped at a local optimum x’ the PB-

MOEA/D penalizes (increment the penalty of the feature) its unfavourable/undesirable 
features. These are all the features present in x’ which have maximum utility, U (x , j), 
which defined as:

                                                                                                       (7)

the idea is to penalize features, which have high costs first, such that they can be 
avoided in future search. In PB-MOEA/D, if a subproblem has not been updated for a 
specific number if iterations, we conclude that it has trapped in a local optimum.

Structure of PB-MOEA/D
The flow of PB-MOEA/D is presented below.

Step1: Initialization
Step 1.1 Compute the Euclidean distances between any two weight vectors and 

then find the T closest weight vectors to each weight vector. For each i =1,…,N, set 
B(i) = i 1,…,i T where λi1 ,…,λ iT are the T closest weight vectors to λ^i.

Step 1.2 Generate an initial population x1,…,xN by uniformly randomly sam-
pling from the search space.

Step 1.3 Set EP = ϕ.

Step 2:   For each subproblem i=1,…, N do
Step 2.1 Search for solutions

1. Randomly Select two indexes l,k from B (i)
 2. Generate a new solution y from xl and xk following the steps in Sec 

3.2, repair y if necessary and compute F( y). 
Step 2.2 Update solutions
1. For each index j ∈ B(i), if h( y│λ j ) ≤ h(x jλ j ), then set FV j = F ( y).
2. Remove from EP all vectors dominated by F( y). Add F ( y). to EP if 

no vectors in EP dominated F ( y).
Step 2.3 Penalize Features 
1. If the penalization condition is not met, go to Step 2.
2. For each feature j presents in the solution xi, calculate its utility 

using Eq.7.
3. Find and penalize the largest utility feature. 

Step 3:  Termination: if a problem specific stopping condition is met, stop and 
output EP. Otherwise, go to Step 2.
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To search for new solutions, Step 2 uses the augmented cost function h instead of the 
main cost function g. For generating a new solution, Step 2.1 calls the Guided Repro-
duction to generate a solution y and the update the neighbouring solutions and external 
population EP in step 2.2. When the penalization condition is met, Step 2.3 computes 
the utility for each feature presents in the optimal solution xiof subproblem i. Then, the 
feature with the maximum utility is penalize.

4. Experimental Studies
4.1. The 0-1 Multiobjective Knapsack Problem (MOKP)

Given a set of n items and a set of m knapsacks, with 
pij  ≥ 0  the profit of item j in knapsack i,     
wij ≥ 0  the weight of item j in knapsack i,     
ci = capacity of the knapsack i,

The 0-1 multi-objective knapsack problem (MOKP) can be stated as follows:

maximize 
                                                                                                             

 (7)

subject to     
                                                                                                               

(8)

                                    
xi = 1 means that item i is selected and inserted into all the knapsacks. The 0-1 

multi-objective knapsack problem is classified as an N P - hard problem and can be 
used to model different forms of applications in resource allocation [1]. When m = 1, it 
is reduced to the 0-1 single knapsack problem.

4.2. Experimental Settings
 � For generating new solutions, PB-MOEA/D used the guided reproduction operator 

described in (3.2), while MOEA/D used the conventional reproduction in [6].
 � The value of N and H in bother algorithms for each test instance are listed in Table 1.
 � Features and their costs in PB-MOEA/D: a possible feature to consider for MOKP 

could be items. The cost of a feature is the weight-to-profit  ration over the all the 
objectives.     
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 � Repair method for MOKP: we use the repair method of Jaszkiewicz, which is the 
same as in [6].
 � Stopping condition: both algorithms stop after N×500 function evaluations.
 � Other control parameters in PB-MOEA/D: α=0.01 and T=10, which is the same for MOEA/D.

Table 1 Parameter settings of the MOEA/D for the nine test instances of the 0-1 
knapsack problem. m is the number of knapsacks, and n is the number of items.

Instance
Parameter Setting 

for
M N H N
2 250 149 150
2 500 199 200
2 750 249 250
3 250 25 351
3 500 25 351
3 750 25 351
4 250 12 455
4 500 12 455
4 750 12 455

Performance metrics:
The following performance index is used in assessing the performance of the 

algorithms in out experimental studies.

Inverted Generational Distance (IGD-metric)[14]

The IGD from the Pareto-optimal front  PF* to the non-dominated solutions set P found 
so far is defined as:

instance MOEA/D PB-MOEA/D hm n mean stdev mean stdev

2
250 46.85 4.6 25.94 1.74 1
500 118.55 10.5 39.40 2.58 1
750 322.15 22.9 86.48 5.84 1

3
250 125.20 8.37 57.57 2.41 1
500 335.63 19.51 116.94 6.58 1
750 603.53 27.50 181.40 10.62 1

4
250 200.50 4.64 114.5 2.6 1
500 521.14 16.47 240.6 5.5 1
750 967.74 30.75 381.1 7.6 1

Table 2: The IGD statistics of the final approximation obtained by the two methods.
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(9)

where d(x, P) is the minimum Euclidean distance between x and each element in P. The 
smaller the value of IGD, the closer the solutions are to the Pareto-optimal front; for example, 
IGD=0 indicates that all the solutions generated are in the Pareto-optimal front. Likewise, 
the higher the value of IGD obtained, the farther the set of non-dominated solutions is from 
the Pareto-optimal front.

Results
PB-MOEA/D is tested on the 0/1 multiobjective knapsack problem. The inverted 

generational distance (IGD) performance measure is used. The IGD measures both 
the convergence as well as the diversity among the solutions. Both MOEA/D and PB-
MOEA/D are implemented in Java. 

We conducted a parameter sensitivity investigation of T for PB-MOEA/D using six 
different values (10, 20, 30, 40, 50, and 60). By observing the mean of IGD values over 
30 runs, we can conclude that the PB-MOEA/D is not very sensitive to the setting of T 
to most of the instances. We should point out that a large value of T could increase the 
computation overhead in allocation of individual solutions to subproblems.

Figure 1: Convergence graphs in terms of mean of IGD obtained by MOEA/D and 
PB-MOEAD for all the MOKP instances.

(9)
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The comparison, in terms of the IGD metric, between the original MOEA/D and the 
proposed PB-MOEA/D are presented in Figure 1 and Table 2. The t-test at the 5% signifi-
cance level has conducted to compare the final IGD values obtained by the two methods. 
Note that h=1 in Table 1 means that the difference is significance and h=0 implies that the 
t-test cannot detect a significance difference. It is clear from Table 2 that the quality of the 
final solutions obtained by PB-MOEA/D is significantly better that the original MOEA/D 
on all the instances. Figure 1 also indicates that the proposed PB-MOEA/D converges 
faster than the original MOEA/D on all the instances.

α is a major control parameter in PB-MOEA/D because it provides a means to con-
trol the influence of the information on the search process. To study the sensitivity of 
the performance to α in PB-MOEA/D, we have tested different settings of α in the im-
plementation of PB-MOEA/D for knapsack instance 750-2. All the parameter settings 
are the same as in section 4.2 except the settings of α. As clearly shown in Figure 2, 
PB-MOEA/D performs very well with α from 0.01 to 0.3 on knapsack instance 750-2. 
Figure 2 also reveals that PB-MOEA/D does not work well on the same instance when 
α > 0.3. This is because large α will increase the influence of information which led to 
solely remove the penalised features from the solution and the information (which may 
be wrong) will fully determine the search.
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Conclusion 
In this paper, a penalty approach with a penalizing scheme was integrated with MOEA/D. We have 

shown that the penalization scheme is necessary for improving the algorithm performance since collect-
ing information were needed during the different search stages. Our experimental results on the multi-
objective 0/1 knapsack problem test instances indicated that the proposed PB-MOEA/D outperforms the 
original MOEA/D.
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الملخص:

ـــوع  ـــاء. هـــذا الن ـــم الأحي ـــروف في عل ـــزاوج المع ـــدأ الت ـــا عـــى مب ـــة عمله ـــد في طريق ـــة تعتم ـــات التطوري الخوارزمي

ـــاد  أفضـــل  ـــدف لإيج ـــي  ته ـــة الت ـــائل أو المشـــاكل البحثي ـــد في حـــل المس ـــأداء جي ـــوم ب ـــا يق ـــا م ـــات غالب ـــن الخوارزمي م

ـــل و البحـــث عنهـــا  ـــة بـــن البدائ ـــة المفاضل ـــارات المتاحـــة للمشـــكلة. ســـهولة وصعوب ـــة بـــن الخي حـــل مـــن خـــال المفاضل

ـــول  ـــن الحل ـــث ع ـــة في البح ـــه صعوب ـــة تواج ـــث التطويري ـــات البح ـــا. خوارزمي ـــراد حله ـــكلة الم ـــة المش ـــى طبيع ـــد ع تعتم

ـــن  ـــى. م ـــرى أو العظم ـــق الصغ ـــات بالمناط ـــرف في الرياضي ـــي تع ـــة  والت ـــاط الحرج ـــق  في النق ـــد تعل ـــا ق ـــث أنه حي

ـــي  ـــة والت ـــات التطوري ـــدى الخوارزمي ـــل اح ـــن عم ـــدف إلى تحس ـــث يه ـــذا البح ـــكلة ه ـــذه المش ـــى ه ـــب ع ـــل التغل أج

ـــتخدام  ـــق اس ـــن طري ـــك ع ـــيم، وذل ـــى التقس ـــدة ع ـــداف و المعتم ـــددة الأه ـــة متع ـــات التطوري ـــم الخوارزمي ـــرف باس تع

ـــذه  ـــار ه ـــم اختب ـــد ت ـــن فق ـــذا التحس ـــدوى ه ـــة ج ـــة. ولدراس ـــة الغرام ـــرف بدال ـــي تع ـــة والت ـــرق الرياضي ـــدى الط اح

الخوارزميـــة عـــى احـــدى المشـــاكل المعروفـــة في هـــذا المجـــال وتعـــرف باســـم مشـــكلة الحقيبـــة. نتائـــج التجـــارب 

المعمليـــة اظهـــرت تحســـن ملحـــوظ في أداء الخوارزمية. 




