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"What is public key criptography?
Why is there a need?

RSA d \

e Asymmetric vs. Symmetric
e Problems solved by public key
- Shared secret not needed
- Authentication
e Trapdoor one-way function
- Factoring integers
- Discrete logs
e Slow, power hungry

Number Theory
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Public Key Cryptosystem Security

“Public Key Cryptographic Use
. ubl y “ryptograph | ¢ can never provide unconditional security

e Secure RPC * Try all possible plaintexts since public key is
e SSL known
e Cisco encrypting routers * When you mach with the ciphertes

corresponding plaintext is known
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“Where did public key cryptography ( )
come from? Key distribution
] | ] |
e Diffie and Hellman e Alice and Bob need to talk
- Credited with invention (circa 1976) e Insecure channel of communication

- One year later, RSA is invented o First, set up our field that our numbers will
- April 2002, ACM communications operate within:

e 1973 James Ellis (British Gov't) - p, alarge prime (sets up something called our field)
- “The possibility of non-secret encryption” - «ais called a primitive root of Fp
- NSA claims

29 1%




L/Alice and Bob obtain a private key
using public keys

] |

Bob Alice

k,= (02)P
k = (@P)? o

So, k = k,, and a secret key is shared
between Alice and Bob.
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. What does the adversary know, and
what can he do?

- |

e Knows a2, a?, a, and p

e So we want to find the key, k

_ k=oqab
- This is believed to be hard.

e If one knows how to compute discrete logs
efficiently, then one can break this scheme
(and other schemes based on public key
cryptography)
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trapdoor one-way function

« one-way function
—easy to compute but hard to invert
—Example:
« Given: 31 = 2mod 127, Find b??DL problem)

« trapdoor function

—Is one-way function but easy to invert with
extra secret knowledge or private info
(knowledge of a certain trapdoor) %
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Overview

o RSA
- Rivest, Shamir, Adleman, 1977
o7,
- Modular operations (the expensive part)
- A sender looks up the public key of the receiver,
and encrypts the message with that key
- The receiver decrypts the message with his private
key
- Although, public key is public information, private
key is secret but related to the public key in a
special way

1.9

Overview of Public Key Cryptosystem (PKC)

« Integer factorization problems (RSA)

* Discrete Logarithm problems (Diffie-Helman,
ElGamal)

* Elliptic Curve Cryptlosystems

Algorithm family Bit length

Seccurity levels of PKCs

Integer Factorization (IF) 1024

Diserete Logarithm (DL) 1024

Elliptic curves (EC) 160
Block cipher 80 n

PKC Standards

« |EEE P1363: Comprehensive standard of PKC.
Collection of IF, DL and EC, in particular:
— Key establishment algorithms
— Key transport algorithms
— Digital Signature algorithms
« PKCS (Public key cryptography standard) by RSA
— PKCS #1: RSA Cryptography Standard
— PKCS #3: Diffie-Hellman key agreement Standard
— PKCS #13: Elliptic Curve Cryptography Standard




PKC Standards

ANSI Banking Standard@NsSI=American National Standards Institute)
— Elliptic curve key agreement and transport prok®x9.63
— Elliptic curve digital signature algorithm (ECDSXP.62
— Key management using Diffie-Hellman X9.42
— Hash algorithms for RSA X9.32-2
— RSA signature algorithm X9.31-1
— Hash algorithm for RSA X9.30-2
— Digital Signature Algorithm (DSA) X9.30-1

US Government Standards
— Entity authentication FIPS ??7??

— Digital Signature Standard (DSA) FIPS 186
— Secure hash standard (SHA-1) FIPS 180-1
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The RSA cryptosystem

> First published:
- Scientific American, Aug. 1977.

(after some censorship entanglements)

> Currently the "work horse” of Internet security:
* Most Public Key Infrastructure (PKT) products.
+ SSL/TLS: Certificates and key-exchange.
+ Secure e-mail: PGP, Outlook, ...

RSA

Most popular PKC
1977 Invented at MIT by Rivest,Shamir,Adlemg

Based orinteger Factorizatiorproblem
Each user has public and private key pair.

Its patent expired in 2000.

The RSA trapdoor 1-to-1 function

> Parameters: N=pg. N=1024 bits. p,q=512 bits.
e - encryption exponent. gcd(e, 9(N) )=1.

» 1-to-1function: RSA(M) = M® (modN) where MOZ\'

> Trapdoor: d - decryption exponent.
Where ed=1 (mod $(N))

> Inversion: RSAM)® = M= = MO =\ (mod N)

> (net.£)-RSA Assumption: For any t-time alg. A:

— /e . P,g R n-bit primes,
Pl ANex) =xe () + P4 TOEITeS ] o

RSA

¢ Choose: p, q7/positive distinclarge primes

e Compute: n = pxq

® N = encryption/decryption modulus computations irz,
* Computexp(n) = (p-1) (q-1)

* Choose randomly: é/Z,,’

+ - gcdp(n),e)=1, (e has an inverse mag(n))
e Findd = e1=?? modp(n)

e Encryption: c=Xmodn wherex<n
» Decryption: x=¢&modn
* n,eare made public byt,q,dare secret 1%

Example: RSA encryption & decryption

Bob Alice

(1) choosep=3,q=11

(2)n=pq=33

(3)p(n) = (p-1)(0-1)=20.

(4) Choosee = 3; gcd(3,20)=1

(5) Computesl a e modg(n)

da?7

(6) Sends&, n) to Alice
(1) Messagex= 4
(2)y=x*modn= 31
(3) Sendy to Bob

(7)x=y*modn= 4

1A%
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Example: RSA digital signature RSA keys .... Example (simple)
e p=11,g=52>n=55
Bob Alice « ¢(n)=10x4=40 =3x5
(1) choosep=3,q=11 ¥ o : .
@)n=pq _% 5 9= &‘@jﬂ‘?@ ¢ an integere can be used as an encryption exponent iffand
=pg= g tege De L
(3) () = (p-1)(q-1)=20. e*e'i;‘*e(\ . \c;\r/]lydlf eis not (:jIVISI]Eﬂe by 2,5
(4) Chooses = 3; ged(3.20)=1 %“$e°?o° e do qot need to factgi(n) to g_ete _
(5) Computes! o € modp(n) %&&Q\\ « Just verify: gcdg(n), €) = 1 (Euclidean algorithm)
da7 & « Assume: & 7 (public key)
(6) Sendsé, n) to Alice « Extended Euclidean algorithe 1= ?? mod 40
(1) Message to be signeds 4 ¢ Secret exponent keg3
(2)y=x*modn =31 « other parese=3, el=?? e=9, el=?? e=11, e=??
(3) Sendx & y to Bob e=13, el=?? e=17, el= ?? e=19, el= ??
(7) Computef modn = 4 y o Z,5={1,3,7,9,11,13,17,19,21,23,27,29,31,33,37,39}
(8) If x=yd modn (signature verified) . . e=3, el=27 e=13, €=37 e=17, =33
* e=el={9, 11, 19, 21, 29, 31, 39}
RSA idea...Example
. p=101.,q= 1139 n= 11413 - Some notes about e, d, p, and ‘q
e ¢(n) =100x 112 =11200 =%?7 C
* an integere can be used as an encryption exponent fif e p and g must be large for security

and only ifeis not divisible by 2, 5 or 7 e e, the encryption exponent, does not have to
* We do not need to factai(n) to gete be that large (216 — 1 = 65535 is good)
 Just verify: gcdg(n), €) = 1 (Euclidean algorithm) -
. ; e d, the decryption exponent, needs to be
* Assume: e 3533 (public key) ficiently | 512 to 2048 bit
» Extended Euclidean algorithm e'= 6597 mod sufficiently large ( 0 its)
11200 e Having to work with such large numbers, we

» Secret exponent key: 6597 need to look at some other elements of RSA.

Yrop.

'RSA: Component Opéyrations
d |

Factorization
- Believed to be difficult (security is here)

Exponentiation

- Weneed to do it fast Some N umber Theory
Generating prime numbers

- Mersenne Primes

- Fermat Primes

Testing primality

- Fermat Test

- Square Root test

~ Miller-Rabin test
http://mathworld.wolfram.com/news/2002-08-07_primetest/
http://www.cse.iitk.ac.in/primality. pdf ve9p

Yrop




\ Factorization

e Brute force is stupid and slow
- d=1,2,34,... Does d divide n?
- Factoringn=pg. Ifp<qg,n=p? sovn=p
- dcan go high as vn in worst case
- For n ~ 10, 10%° number of divisions
e Use structure of Z,
- p—1 method (not really used, but a good speedup)
- Pollard’s rho method
- Quadratic sieve, Number Field Sieve (NFS)
- Is there a better method out there?

Yoo
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Prime Numbers
e primenumber p: p> 1 and divisible only by 1
« composite number: integer not prime

Prime Number Theorem:
« # of primes in positive integer=x/In x
o for x=10, # of primes = 434,294,481

Theorem: Every positive integer is a product of primes,
This factorization is unique.

¢ If pis a prime and it divides a product of integersb
« then eithep|aorp|b.

Y96

zZ’
» Z,is aring for any positive integer
« bOZ,
* Whenblexist?
 blexistif and only ifgcd(b, n) = 1
» Z,is aring with elements relatively primero
 Z, has all elements witmultiplicative inverses
* [Z]| =orderof Z,;" = number of elements
» Z'is closed under multiplication
-x,y0ZzZ; (x,y are relatively prime to n
—X.y is relatively prime to n

Integers: a> 0 & p U1 prime

(i) (Fermat's little theorem) ~1600s
If gcd(a, p) = 1 then
aP=a (mod p)
aP1=1 (mod p)

(ii) (Euler’s theorem)~1700s
If r=s mod (p — 1)thena’ = as(mod p)

when working modulo a primg exponents can be reduced
modulop - 1.

If gcd(a, n)=1, thena *™ = 1 (modn)
whereg(n) is defined ashe number of integerk< a < n such that
gcda, n=1 and called aBuler'sgp-function.2 ¢(p) = (p-1)

YA%

Congruence Classes (analogy)

« Leta, b, andn be integers witlm # 0. We say that
— a=b(modn) (ais congruent (equivalent) to b mod n
— if a- bis a multiple of (positive or negative)
— Thus,a=b + k-nfor some integek (positive or negative)
Proposition: a, b, ¢, d, nintegers wittn # 0
and
a=b (modn) andc=d (modn).
Then
v' a+ c=b+d(modn)
v a-c=b-d(modn)
v a-c=b-d(modn)

a9

Division in Congruence Classes

We can divide by (modn) when gcd4, n)=1
* Example: Solve 2+ 7= 3 (mod 17)
« Example: Solve $+ 6= 13 (mod 15).

Proposition: Suppose gcd( n)=1.

¢ Letsandt be integers such that s+n-t=1.
¢ Thena:s=1 (modn)

¢ sis calledthe multiplicative inverse of @nodn)

Extended Euclidean algorithm is a fairly efficienetimod of
computing multiplicative inverses in congruencessés.
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principle

* a,n xy0Ointegers n>1 and gcd{, n)=1.
e If x=y (mod¢(n)) then

ax=a’ (modn).
* i.e., modn, = mod ¢(n) in the exponent.

Proof: x=y +¢(n)-k  from congruence relation.
* Then
o a*=avyrik=3ay.(arMk=ay-(1)k=aY(mod n)

Example
Example 1: 219=1024= 1 (mod 11)

Example 2: Compute 2 (mod 11).
e 2:2=210=1 (mod11)=>2=2°(mod 11)= 6 (mod 11).

Example 3: ¢(10) =¢(2:5) = (2-1) - (5-1) = 4.
« {1,3,7,9}

Example 4: Compute 23219(mod 101)
e We know 2%=1 (mod 101) =>
. 243210: 2432)(100 +10= (2100)432. 2105 210 (mOd 101); 14 mod (101

Yo%

RSA idea....clarification
* p, q//positivedistinct primes
e N=pxq
* uses computations i),
coM=@P-1H@-1)
e ab =1 mod¢gn)
e ab=tg¢gn)+1
* t Jinteger >0
e X[OZ
. (Xb)a =xt ¢n)+1
. =(x 4M)tx (mod n) See : %™ = 1 (modn)
. =1'x (mod n)
e =x(modn)
e (XP)2=x (mod n)

Modular Exponentiation

x2(modn)
Example: 21234mod 789,

» Naive methodraise 2 to 1234 and then take
the modulus.

« Is it practical (possible)?

* Practical method

» Use binary expansion of the exponent.
1234 = (10011010019)

AR

Modular exponentiation example

21234mod 789 and 1234 = (10011010040)
X=2

x=22=4

x=4.4=16

x= 1616 =256 and= 256-2=512
x=512-512=196 andl= 196-2=392
X=392.-392=598 All operations are
x=598-598=187 anxl=187.2=374 (  Performedmoduio 789
x= 374.374=223

x= 223.223=22

X=22-22=484 and =484-2=179
x=179 -179=481

e o o o o o o o o o o
OrPOOFrROFrRPFPROOR

-
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‘Idea Behind Fast Expanentiation

1%

e a” 256 mod 7
- Don’tdo (a*a*a...*a) 256 times and mod by 7
e (a*b)mod p = (amod p *b mod p) mod p
- Shortcut: Look at binary representation of 256
- 256 =28, (((((((@® ® ?) 2) & 2) 2) 2 and mod 7 each
time you perform a square
- 25=11001=24+2%+2°
a”25modn=(a*ad*al®)modn
=(@* (@22 * ((((2*) 2 ?) 3)) mod n
((((((t@2 mod n)*a) mod n)2 mod n)2 mod n)2 mod n) *
a) mod n




Is RSA really secure??

> RSA:
- publickey: (N,e) Encrypt: € = M®(mod N)
- private key: d Decrypt: €¢ = M (mod N)
Mmozy)

> Can RSA be an insecure cryptosystem???
Many attacks exist.
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Using RSA: What can go wrong?
- |
e Computing @(n) is no easier than factoring n
e From n = pq and @n) = (p-1)(g-1), we obtain:
-pP=(n-@n+1p+n=0
- The roots of the above equation will be p and q
e If the decryption exponent, a is known, Bob
needs to choose a new decryption exponent.

- Thatisn't enough! Bob must also choose a new
modulus.

YAY

A simple attack on textbook RSA

% CLIENT HELLO
Web Web
« SERVER HEILO (e N) | d
e OolBrowser| :|

CRSACK) Server

» Session-key Kis 64 bits. View K O{0,..,26%}
Eavesdropper sees:  C = K*(mod N).

> Suppose K = K[, where K;, K,<23*.
Then:  C/K;® = K,* (mod N)

(prob. =20%)

> Build table: c¢/1¢,¢/2¢,¢/3¢, .., c/23% . time: 234
For K,=0,.., 2% testif K,® isintable. time: 23434

> Attack time: | =240 « 264

Common RSA encryption

> Never use textbook RSA.
> RSA in practice:

Preprocessing RSA

msg

Xauaydn

> Main question:
+ How should the preprocessing be done?
+ Can we argue about security of resulting system?

Attack on PKCS1

> Bleichenbacher 98. Chosen-ciphertext attack.

» PKCS1used in SSL: C= [ciphertext]

dW b :
Oo, Ser(\a/er Yes: continue Attacker

@1 No: error

= attacker can test if 16 MSBs of plaintext = '02".

» Attack: to decrypt a given ciphertext C do:
+ Pick random r 0 Z,. Compute C' =relC = (rM)e.
+ Send C' to web server and use response.

Chosen ciphertext security (CCS)

» No efficient attacker can win the following game:
(with non-negligible advantage)

Attacker wins if b=b'

Mo, My
Decryption
Challenger sza(l::l:;e {0 | Attacker gfgcrn\a/%?l)B
b'O{0.1} - *




Is RSA a one-way permutation?

> To invert the RSA one-way function (without d) attacker
must compute:

M  from C=Me (modN).

> How hard is computing e'th roots modulo N ?2?

> Best known algorithm:
+ Step 1: factor N. (hard)
+ Step 2: Find e'th roots modulo p and q. (easy)

Shortcuts?

> Must one factor N in order to compute e'th roots?
Exists shortcut for breaking RSA without factoring?

» To prove ho shortcut exists show a reduction:
+ Efficient algorithm for e'th roots mod N
= efficient algorithm for factoring N.
+ Oldest problem in public key cryptography.

» Evidence no reduction exists: (BV'98)
+ “Algebraic” reduction = factoring is easy.
+ Unlike Diffie-Hellman (Maurer'94).

RSA With Low public exponent

> To speed up RSA encryption (and sig. verify)
useasmall e. C = Me (mod N)
> Minimal value: e=3  (gcd(e, o(N))=1)
> Recommended value: e=65537=216+1
Encryption: 17 mod. multiplies.

v

Several weak attacks. Non known on RSA-OAEP.

Asymmetry of RSA: fast enc. / slow dec.
+ ElGamal: approx. same time for both.

v

Implementation attacks

> Attack the implementation of RSA.

> Timing attack: (Kocher 97)
The time it takes to compute c? (mod N)
cah expose d.

> Power attack: (Kocher 99)
The power consumption of a smartcard while
it is computing € (mod N) can expose d.

> Faults attack: (BDL 97)
A computer error during C? (mod N)
can expose d.

OpenssL defense: check output. 5% slowdown.

s

DES vs. RSA
| |
e RSA is about 1500 times slower than DES
- Exponentiation and modulus
e Generation of numbers used in RSA can take
time
e Test n against known methods of factoring
- http://www.rsasecurity.com/rsalabs/challenges/factoring/numbers.htm|

£V

Key lengths

> Security of public key system should be
comparable to security of block cipher.
NIST:

Cipher key-size Modulus size

< 64 bits 512 bits.
80 bits 1024 bits
128 bits 3072 bits.
256 bits (AES) 15360 bits

> High security = very large moduli.
Not necessary with Elliptic Curve Cryptography.

4/12/2014
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key length for secure RSA

key length for secure RSA transmission is typically 1024 bits. 512 bits
is how no longer considered secure.

v

> For more security or if you are paranoid, use 2048 or even 4096

> With the faster computers available today, the time taken to encrypt
and decrypt even with a 4096-bit modulus really isn't an issue
anymore.

> Inpractice, it is still effectively impossible for you or I to crack a
message encrypted with a 512-bit key.

> Anorganisation like the NSA who has the latest supercomputers can
probably crack it by brute force in a reasonable time, if they choose
to put their resources to work on it.

» The longer your information is needed to be kept secure, the longer
the key you should use.
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“Key Distribution

0.9

e Then hard problem for symmetric (secret) key
ciphers

e Transmitting a private key on an insecure
channel
- Asymmetric system solves problem

/' ~

p & g generation recommendation

-l |

e To generate the primes p and ¢, generate a random number of bit
length b/2 where b is the required bit length of n;

e set the low bit (this ensures the number is odd) and set the two
highest bits (this ensures that the high bit of n is also set);

e check if prime; if not, increment the number by two and check
again. This is p.

e Repeat for g starting with an integer of length b-b/2.

e |f p<qg, swop p and q (this only matters if you intend using the CRT
form of the private key).

e Inthe extremely unlikely event that p = g, check your random
number generator.

e For greater security, instead of incrementing by 2, generate
another random number each time.

2104
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e & d recommendation

°Y0p

In practice, common choices for e are 3, 17 and 65537

(2°16+1).

e These are Fermat primes and are chosen because
they make the modular exponentiation operation faster.

e Also, having chosen e, it is simpler to test whether

gcd(e, p-1)=1 and gcd(e, g-1)=1 while generating and

testing the primes.

Values of p or q that fail this test can be rejected there

and then.

e To compute the value for d, use the Extended

Euclidean Algorithm to calculate d = e*-1 mod phi (this

is known as modular inversion).




