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What is public key cryptography?
Why is there a need?

� Asymmetric vs. Symmetric
� Problems solved by public key

– Shared secret not needed
– Authentication

� Trapdoor one-way function
– Factoring integers
– Discrete logs

� Slow, power hungry
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Public Key Cryptographic Use

� Secure RPC
� SSL

� Cisco encrypting routers
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Public Key Cryptosystem Security Public Key Cryptosystem Security 

• can never provide unconditional security 

• Try all possible plaintexts since public key is 
known

• When you mach with the ciphertext �

corresponding plaintext is known

٥%

Where did public key cryptography 
come from?

� Diffie and Hellman
– Credited with invention (circa 1976)
– One year later, RSA is invented
– April 2002, ACM communications

� 1973 James Ellis (British Gov’t)
– “The possibility of non-secret encryption”
– NSA claims
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Key distribution

� Alice and Bob need to talk
� Insecure channel of communication

� First, set up our field that our numbers will 
operate within:
– p, a large prime (sets up something called our field)
–  α is called a primitive root of Fp
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Alice and Bob obtain a private key 
using public keys

αa αb

Bob Alice

ko = (αa )b
k1 = (αb )a

So, k1 = ko, and a secret key is shared 
between Alice and Bob.
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What does the adversary know, and 
what can he do?

� Knows αa, αb, α, and p
� So we want to find the key, k

– k = αab

– This is believed to be hard.

� If one knows how to compute discrete logs 
efficiently, then one can break this scheme 
(and other schemes based on public key 
cryptography)
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trapdoor onetrapdoor one--way function way function 

• one-way function
– easy to compute but hard to invert 

– Example:
• Given: 31 = 2b mod 127, Find b?? (DL problem)

• trapdoor function
– Is one-way function but easy to invert with 

extra secret knowledge or private info 
(knowledge of a certain trapdoor) 
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Overview

� RSA
– Rivest, Shamir, Adleman, 1977

� Zn
– Modular operations (the expensive part)
– A sender looks up the public key of the receiver, 

and encrypts the message with that key
– The receiver decrypts the message with his private 

key
– Although, public key is public information, private 

key is secret but related to the public key in a 
special way

١١%

Overview of Public Key Cryptosystem (PKC)Overview of Public Key Cryptosystem (PKC)

• RSA
– factoring large integers 

• Merkle-Hellman Knapsack
– difficulty of the subset sum problem 
– Most of the various knapsack systems have been shown to be insecure 

• McEliece
– based on algebraic coding theory (decoding a linear code) 

• ElGamal
– discrete logarithm problem for finite fields 

• Chor-Rivest
– A modification to “knapsack” type system to make it secure

• Elliptic Curve
– discrete logarithm problem
– modifications of ElGamal Cryptosystem but on elliptic curves rather than 

finite fields
– smaller keys than most public-key cryptosystems ١٢%

PKC Standards

• IEEE P1363: Comprehensive standard of PKC. 
Collection of IF, DL and EC, in particular:
– Key establishment algorithms

– Key transport algorithms

– Digital Signature algorithms

• PKCS (Public key cryptography standard) by RSA
– PKCS #1: RSA Cryptography Standard

– PKCS #3: Diffie-Hellman key agreement Standard

– PKCS #13: Elliptic Curve Cryptography Standard
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PKC Standards

• ANSI Banking Standards (ANSI=American National Standards Institute)
– Elliptic curve key agreement and transport protocols X9.63
– Elliptic curve digital signature algorithm (ECDSA) X9.62
– Key management using Diffie-Hellman X9.42
– Hash algorithms for RSA X9.32-2
– RSA signature algorithm X9.31-1
– Hash algorithm for RSA X9.30-2
– Digital Signature Algorithm (DSA) X9.30-1

• US Government Standards
– Entity authentication FIPS ????
– Digital Signature Standard (DSA) FIPS 186
– Secure hash standard (SHA-1) FIPS 180-1
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The RSA cryptosystem

� First published: 

• Scientific American, Aug. 1977.
(after some censorship entanglements)

� Currently the “work horse” of Internet security:

• Most Public Key Infrastructure (PKI) products.

• SSL/TLS:  Certificates and key-exchange.

• Secure e-mail: PGP, Outlook, …
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RSA

• Most popular PKC

• 1977 Invented at MIT by Rivest,Shamir,Adleman

• Based on Integer Factorizationproblem

• Each user has public and private key pair.

• Its patent expired in 2000.
١٦%

RSA
• Choose: p, q ∈ positive distinctlarge primes

• Compute: n = p × q 
• n = encryption/decryption modulus → computations in Zn

• Compute: φ(n) = (p - 1) (q - 1)
• Choose randomly: e ∈ Zφ(n)

*

• → gcd(φ(n),e)=1, (e has an inverse mod φ(n))
• Find d = e-1 = ?? mod φ(n) 

• Encryption: c = xe mod n where x < n
• Decryption: x = cd mod n
• n,eare made public butp,q,dare secret

١٧%

The RSA trapdoor 1-to-1 function

� Parameters: N=pq.    N ≈1024 bits.    p,q ≈512 bits.

e – encryption exponent.    gcd(e, ϕ(N) ) = 1 .

� 1-to-1 function: RSA(M) = Me (mod N)     where  M∈ZN
*

� Trapdoor: d – decryption exponent.

Where    e⋅d = 1   (mod ϕ(N) )

� Inversion: RSA(M)
d

= Med = Mkϕ(N)+1 = M (mod N)

� (n,e,t,ε)-RSA Assumption:    For any t-time alg. A:

Pr[ A(N,e,x) = x
1/e

(N)   :                ] < εp,q ← n-bit primes,

N←pq,   x←ZN
*

R

R ١٨%

Example: RSA encryption & decryption

Alice

(1) Message: x = 4
(2) y ≡ xe mod n ≡ 31
(3) Sends y to Bob

Bob
(1) chooses p = 3, q = 11
(2) n = pq = 33
(3) φ(n) = (p-1)(q-1)=20.
(4) Chooses e = 3; gcd(3,20)=1
(5) Computes d α e-1 mod φ(n)

d α 7
(6) Sends (e, n) to Alice

(7) x ≡ yd mod n ≡ 4
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Example: RSA digital signature

Alice

(1) Message to be signed: x = 4
(2) y ≡ xe mod n ≡ 31
(3) Sends x & y to Bob

Bob
(1) chooses p = 3, q = 11
(2) n = pq = 33
(3) φ(n) = (p-1)(q-1)=20.
(4) Chooses e = 3; gcd(3,20)=1
(5) Computes d α e-1 mod φ(n)

d α 7
(6) Sends (e, n) to Alice

(7) Compute yd mod n ≡ 4
(8) If x ≡ yd mod n (signature verified)

٢٠%

RSA keys …. Example (simple)RSA keys …. Example (simple)
• p = 11 , q = 5 � n = 55 
• φ(n) = 10 × 4 = 40 = 23 × 5
• an integer e can be used as an encryption exponent if and 

only if e is not divisible by 2, 5
• We do not need to factor φ(n) to get e
• Just verify: gcd(φ(n), e) = 1 (Euclidean algorithm) 
• Assume: e= 7 (public key)
• Extended Euclidean algorithm ⇒ e-1 = ?? mod 40
• Secret exponent key: 23
• other pares: e=3,  e-1=?? e=9,  e-1=?? e=11,  e-1=??

e=13,  e-1=?? e=17,  e-1= ?? e=19,  e-1= ??
• Z40

*={1,3,7,9,11,13,17,19,21,23,27,29,31,33,37,39}
• e=3,  e-1=27 e=13,  e-1=37    e=17,  e-1=33 

e=e-1= {9, 11, 19, 21, 29, 31, 39}

٢١%

RSA idea….ExampleRSA idea….Example

• p = 101 , q = 113 � n = 11413 
• φ(n) = 100 × 112 = 11200 = 26527
• an integer e can be used as an encryption exponent if 

and only if e is not divisible by 2, 5 or 7
• We do not need to factor φ(n) to get e
• Just verify: gcd(φ(n), e) = 1 (Euclidean algorithm) 
• Assume: e= 3533 (public key)
• Extended Euclidean algorithm ⇒ e-1 = 6597 mod 

11200
• Secret exponent key: 6597

٢٢%

Some notes about e, d, p, and q

� p and q must be large for security
� e, the encryption exponent, does not have to 

be that large (216 – 1 = 65535 is good)

� d, the decryption exponent, needs to be 
sufficiently large (512 to 2048 bits)

� Having to work with such large numbers, we 
need to look at some other elements of RSA.

٢٣%

RSA: Component Operations

� Factorization
– Believed to be difficult (security is here)

� Exponentiation
– We need to do it fast

� Generating prime numbers
– Mersenne Primes
– Fermat Primes

� Testing primality
– Fermat Test
– Square Root test
– Miller-Rabin test

� http://mathworld.wolfram.com/news/2002-08-07_primetest/
� http://www.cse.iitk.ac.in/primality.pdf ٢٤%

Some Number TheorySome Number Theory
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Factorization

� Brute force is stupid and slow
– d = 1,2,3,4,… Does d divide n?
– Factoring n = pq.  If p ≤ q, n ≥ p2, so √n ≥ p
– d can go high as √n in worst case
– For n ~ 1040, 1020 number of divisions

� Use structure of Zn
– p –1 method (not really used, but a good speedup)
– Pollard’s rho method
– Quadratic sieve, Number Field Sieve (NFS)
– Is there a better method out there? ٢٦%

Prime Numbers
• prime number p: p > 1 and divisible only by 1 
• composite number: integer not prime 

Prime Number Theorem: 
• # of primes in positive integer x = x / ln x 
• for x=1010, # of primes = 434,294,481

Theorem: Every positive integer is a product of primes. 
This factorization is unique.

• If p is a prime and it divides a product of integers a · b
• then either p | a or p | b.

٢٧%

ZZnn
**

• Zn is a ring for any positive integer n
• b ∈ Zn

• When b-1 exist?
• b-1 exist if and only if gcd(b, n) = 1
• Zn

* is a ring with elements relatively prime ton
• Zn

* has all elements withmultiplicative inverses
• |Zn

*| = order of Zn
* = number of elements

• Zn
* is closed under multiplication

– x , y ∈ Zn
* (x , y are relatively prime to n)

– x.y is relatively prime to n 
٢٨%

Integers: Integers: aa > > 00 & & pp ∈∈ primeprime

(i) (Fermat’s little theorem) ~1600s
If gcd(a, p) = 1, then

ap = a (mod p)
ap−1 = 1 (mod p)

(ii) (Euler’s theorem) ~1700s
If r = s mod (p − 1),then ar = as (mod p)

when working modulo a prime p, exponents can be reduced 
modulo p − 1.

If gcd(a, n)=1, then a φ(n) ≡ 1 (mod n)
where φ(n) is defined as the number of integers 1≤ a ≤ n such that 

gcd(a, n)=1 and called as Euler’s φ-function. � φ(p) = (p-1)

٢٩%

Congruence Classes (analogy)

• Let a, b, and n be integers with n ≠ 0. We say that
→ a ≡ b (mod n) (a is congruent (equivalent) to b mod n) 
→ if a- b is a multiple of (positive or negative) n.
→ Thus, a = b + k·n for some integer k (positive or negative)

Proposition: a, b, c, d, n integers with n ≠ 0
and 

a ≡ b (mod n) and c ≡ d (mod n).
Then 

� a+ c ≡ b+ d (mod n)
� a- c ≡ b- d (mod n)
� a · c ≡ b · d (mod n)

٣٠%

Division in Congruence Classes

We can divide by a (mod n) when gcd(a, n)=1
• Example: Solve 2x + 7 ≡ 3 (mod 17)
• Example: Solve 5x + 6 ≡ 13 (mod 15).

Proposition: Suppose gcd(a, n)=1. 
• Let s and t be integers such that a · s + n · t = 1. 
• Then a · s ≡ 1 (mod n)
• s is called the multiplicative inverse of a (mod n)

Extended Euclidean algorithm is a fairly efficient method of 
computing multiplicative inverses in congruence classes.
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principle

• a, n, x, y ∈ integers ; n ≥ 1 and gcd(a, n)=1.

• If x ≡ y (mod φ(n)) then 

ax ≡ ay (mod n).

• i.e., mod n, ⇒ mod φ(n) in the exponent.

Proof: x = y + φ(n)·k from congruence relation.

• Then

• ax = a y+φ(n)k≡ a y . (a φ(n))k ≡ a y . (1)k ≡ a y (mod n)

٣٢%

ExampleExample

Example 1: 210 = 1024 ≡ 1 (mod 11)

Example 2: Compute 2-1 (mod 11).
• 2·29 = 210≡ 1 (mod 11) => 2-1 ≡ 29 (mod 11) ≡ 6 (mod 11).

Example 3: φ(10) = φ(2·5) = (2-1) · (5-1) = 4.
• {1, 3, 7, 9}

Example 4: Compute 243210(mod 101)
• We know 2100≡ 1 (mod 101) =>
• 243210= 2432x100 +10= (2100)432·210≡ 210 (mod 101) ≡ 14 mod (101).

٣٣%

RSA idea….clarificationRSA idea….clarification
• p, q ∈ positivedistinct primes
• n = p × q
• uses computations in Zn

• φ(n) = (p - 1) (q - 1)
• ab ≡ 1 mod φ(n)
• ab = t φ(n) + 1
• t ∈ integer > 0
• x ∈ Zn

*

• (xb)a ≡ x t φ(n) + 1

• ≡ (x φ(n))t x (mod n) See : x φ(n) ≡ 1 (mod n)

• ≡ 1t x (mod n)
• ≡ x (mod n)
• (xb)a ≡ x (mod n)

٣٤%

Modular Exponentiation

xa (mod n)
Example: 21234mod 789,
• Naïve method:raise 2 to 1234 and then take 

the modulus. 
• Is it practical (possible)?
• Practical method: 
• Use binary expansion of the exponent.
• 1234 = (10011010010)2

٣٥%

Modular exponentiation example

21234mod 789 and 1234 = (10011010010)2

• 1 x = 2
• 0 x = 2·2 = 4
• 0 x = 4·4 = 16
• 1 x = 16·16 =256 and x = 256·2=512
• 1 x = 512·512=196 and x = 196·2=392
• 0 x = 392·392=598
• 1 x = 598·598=187 and x =187·2=374
• 0 x = 374·374=223
• 0 x = 223·223=22
• 1 x =22·22=484 and x =484·2=179
• 0 x =179 ·179=481

All operations are
performed modulo 789

٣٦%

Idea Behind Fast Exponentiation

� a ^ 256 mod 7
– Don’t do (a*a*a…*a) 256 times and mod by 7

� (a * b) mod p = (a mod p * b mod p) mod p
– Shortcut: Look at binary representation of 256
– 256 = 28, (((((((a2) 2) 2) 2) 2) 2) 2) 2 and mod 7 each 

time you perform a square
– 25 = 11001 = 24 + 23 + 20

a ^ 25 mod n = (a * a8 * a16) mod n
= (a * (((a2) 2) 2) * ((((a2) 2) 2) 2)) mod n

(((((((a2 mod n)*a) mod n)2 mod n)2 mod n)2 mod n) * 
a) mod n
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Is RSA really secure??

� RSA :

• public key:   (N,e) Encrypt:   C = Me (mod N)

• private key:  d Decrypt:   Cd = M (mod N)

(M ∈∈∈∈ ZN
* )

� Can RSA be an insecure cryptosystem???

Many attacks exist.

٣٨%

Using RSA: What can go wrong?

� Computing φ(n) is no easier than factoring n
� From n = pq and φ(n) = (p-1)(q-1), we obtain:

– p2 – (n - φ(n) + 1)p + n = 0
– The roots of the above equation will be p and q

� If the decryption exponent, a is known, Bob 
needs to choose a new decryption exponent.
– That isn’t enough!  Bob must also choose a new 

modulus.

٣٩%

A simple attack on textbook RSA

� Session-key  K is 64 bits.     View   K ∈ {0,…,264}
Eavesdropper sees:    C = Ke (mod N) .

� Suppose   K = K1⋅⋅⋅⋅K2 where   K1, K2 < 234 .   (prob. ≈20%)

Then:    C/K1
e = K2

e (mod N)

� Build table:   C/1e, C/2e, C/3e, …, C/234e .   time:  234

For  K2 = 0,…, 234 test if  K2
e is in table.   time: 234⋅34

� Attack time:   ≈240  << 264

Web
Browser

Web
Server

CLIENT HELLO

SERVER HELLO (e,N) d

C=RSA(K)

Rando
m

session-
key K

٤٠%

Common RSA encryption

� Never use textbook RSA.
� RSA in practice:

� Main question:
• How should the preprocessing be done?
• Can we argue about security of resulting system?

msg
Preprocessing

cip
h
e
rte

x
t

RSA

٤١%

Attack on PKCS1

� Bleichenbacher 98.  Chosen-ciphertext attack.

� PKCS1 used in SSL:

⇒ attacker can test if 16 MSBs of plaintext = ’02’.

� Attack:  to decrypt a given ciphertext C do:

• Pick random  r ∈ ZN.   Compute  C’ = re⋅C   = (rM)e.

• Send  C’  to web server and use response.

AttackerWeb
Server

dIs this
PKCS1?

ciphertextC=

C

Yes: continue

No: error02

٤٢%

Chosen ciphertext security (CCS)

� No efficient attacker can win the following game:
(with non-negligible advantage)

AttackerChallenger

M0, M1

b’∈{0,1}

Attacker wins if    b=b’

C=E(Mb)     b∈R{0,1}
Challenge

Decryption 
oracle

≠C
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Is RSA a one-way permutation?

� To invert the RSA one-way function (without d) attacker 
must compute:

M    from     C = Me (mod N).

� How hard is computing  e’th roots modulo N ??

� Best known algorithm:   
• Step 1:  factor  N.     (hard)
• Step 2:  Find  e’th  roots modulo  p  and  q.     (easy)

٤٤%

Shortcuts?

� Must one factor N in order to compute e’th roots?

Exists shortcut for breaking RSA without factoring?

� To prove no shortcut exists show a reduction:

• Efficient algorithm for e’th roots mod N

⇒ efficient algorithm for factoring  N.

• Oldest problem in public key cryptography.

� Evidence no reduction exists: (BV’98)

• “Algebraic” reduction  ⇒ factoring is easy.

• Unlike Diffie-Hellman (Maurer’94).

٤٥%

RSA With Low public exponent

� To speed up RSA encryption (and sig. verify) 

use a small   e. C = Me (mod N)

� Minimal value:   e=3 ( gcd(e, ϕ(N) ) = 1)

� Recommended value:   e=65537=216+1

Encryption:  17 mod. multiplies.

� Several weak attacks.   Non known on RSA-OAEP.

� Asymmetry of RSA: fast enc. / slow dec.

• ElGamal:   approx. same time for both.

٤٦%

Implementation attacks

� Attack the implementation of RSA.

� Timing attack:  (Kocher 97)
The time it takes to compute   Cd (mod N)
can expose   d.

� Power attack:  (Kocher 99)
The power consumption of a smartcard while 
it is computing  Cd (mod N)   can expose  d.

� Faults attack:  (BDL 97)
A computer error during   Cd (mod N)  
can expose   d.   

OpenSSL defense:  check output. 5% slowdown.

٤٧%

DES vs. RSA

� RSA is about 1500 times slower than DES
– Exponentiation and modulus

� Generation of numbers used in RSA can take 
time

� Test n against known methods of factoring
– http://www.rsasecurity.com/rsalabs/challenges/factoring/numbers.html

٤٨%

Key lengths

� Security of public key system should be 
comparable to security of block cipher.

NIST:
Cipher key-size Modulus size

≤ 64 bits 512 bits.
80 bits 1024 bits
128 bits 3072 bits.
256 bits (AES) 15360 bits 

� High security  ⇒ very large moduli.

Not necessary with Elliptic Curve Cryptography.
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key length for secure RSA

� key length for secure RSA transmission is typically 1024 bits. 512 bits 
is now no longer considered secure. 

� For more security or if you are paranoid, use 2048 or even 4096 

� With the faster computers available today, the time taken to encrypt 
and decrypt even with a 4096-bit modulus really isn't an issue 
anymore. 

� In practice, it is still effectively impossible for you or I to crack a 
message encrypted with a 512-bit key. 

� An organisation like the NSA who has the latest supercomputers can 
probably crack it by brute force in a reasonable time, if they choose 
to put their resources to work on it. 

� The longer your information is needed to be kept secure, the longer 
the key you should use.

٥٠%

Key Distribution

� Then hard problem for symmetric (secret) key 
ciphers

� Transmitting a private key on an insecure 
channel
– Asymmetric system solves problem

٥١%

p & q generation recommendation

� To generate the primes p and q, generate a random number of bit 
length b/2 where b is the required bit length of n; 

� set the low bit (this ensures the number is odd) and set the two
highest bits (this ensures that the high bit of n is also set); 

� check if prime; if not, increment the number by two and check 
again. This is p. 

� Repeat for q starting with an integer of length b-b/2. 
� If p<q, swop p and q (this only matters if you intend using the CRT 

form of the private key). 
� In the extremely unlikely event that p = q, check your random 

number generator. 
� For greater security, instead of incrementing by 2, generate 

another random number each time. 

٥٢%

e & d recommendation

� In practice, common choices for e are 3, 17 and 65537 
(2^16+1). 

� These are Fermat primes and are chosen because 
they make the modular exponentiation operation faster. 

� Also, having chosen e, it is simpler to test whether 
gcd(e, p-1)=1 and gcd(e, q-1)=1 while generating and 
testing the primes. 

� Values of p or q that fail this test can be rejected there 
and then.

� To compute the value for d, use the Extended 
Euclidean Algorithm to calculate d = e^-1 mod phi (this 
is known as modular inversion).


