

What is public key cryptography? Why is there a need?

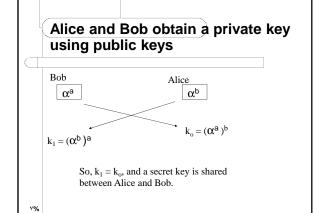
- Asymmetric vs. Symmetric
- Problems solved by public key - Shared secret not needed
 - Authentication
- Trapdoor one-way function
 - Factoring integers
 - Discrete logs
- Slow, power hungry

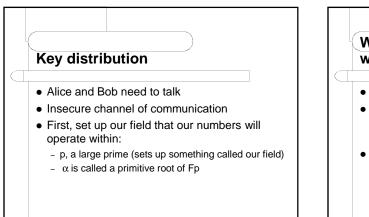
¥ 9/.

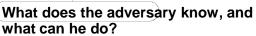
Public Key Cryptosystem Security

- can never provide unconditional security
- Try all possible plaintexts since public key is known
- When you mach with the ciphertext → corresponding plaintext is known

- April 2002, ACM communications
- 1973 James Ellis (British Gov't)
 - "The possibility of non-secret encryption"
 - NSA claims







- Knows α^{a} , α^{b} , α , and p
- So we want to find the key, k
 - $-k = \alpha^{ab}$
 - This is believed to be hard.
- If one knows how to compute discrete logs efficiently, then one can break this scheme (and other schemes based on public key cryptography)

trapdoor one-way function

• one-way function

- easy to compute but hard to invert

-Example:

- Given: $31 = 2^b \mod 127$, Find b?? (DL problem)
- trapdoor function
 - Is one-way function but easy to invert with extra secret knowledge or private info (knowledge of a certain trapdoor)

Overview of Public Key Cryptosystem (PKC)

- Integer factorization problems (RSA)
- Discrete Logarithm problems (Diffie-Helman, ElGamal)
- Elliptic Curve Cryptosystems

Algorithm family	Bit length
Integer Factorization (IF)	1024
Discrete Logarithm (DL)	1024
Elliptic curves (EC)	160
Block cipher	80
Security lev	els of PKCs

Overv	Overview				
• RSA					
– Rive	est, Shamir, Adle	eman, 1977			
• Z _n	,,	, .			
	dular operations	(the expens	sive part)		
– A se	•	ne public ke	y of the receiver,		
– The key		ts the mess	age with his priva		
key	ough, public key is secret but rela cial way		formation, private public key in a		

1.%

PKC Standards IEEE P1363: Comprehensive standard of PKC. Collection of IF, DL and EC, in particular: Key establishment algorithms Key transport algorithms Digital Signature algorithms **PKCS** (Public key cryptography standard) by RSA PKCS #1: RSA Cryptography Standard PKCS #3: Diffie-Hellman key agreement Standard PKCS #13: Elliptic Curve Cryptography Standard

10%

۱٦%

ANSI Banking Standards (ANSI=American National Standards Institute)

- Elliptic curve key agreement and transport protocols X9.63
- Elliptic curve digital signature algorithm (ECDSA) X9.62
 Key management using Diffie-Hellman X9.42
- Key management using Dime-neminan X9.4
 Hash algorithms for RSA X9.32-2
- RSA signature algorithm X9.31-1
- Hash algorithm for RSA X9.30-2
- Digital Signature Algorithm (DSA) X9.30-1
- US Government Standards
- Entity authentication FIPS ????
- Digital Signature Standard (DSA) FIPS 186
- Secure hash standard (SHA-1) FIPS 180-1

18%

RSA

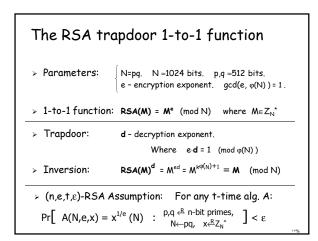
- Most popular PKC
- 1977 Invented at MIT by Rivest, Shamir, Adleman
- Based on Integer Factorization problem
- Each user has public and private key pair.
- Its patent expired in 2000.

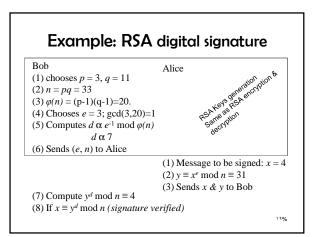
The RSA cryptosystem

- > First published:
 - Scientific American, Aug. 1977. (after some censorship entanglements)
- > Currently the "work horse" of Internet security:
 - Most Public Key Infrastructure (PKI) products.
 - \cdot SSL/TLS: Certificates and key-exchange.
 - Secure e-mail: PGP, Outlook, ...

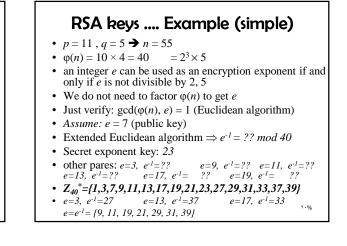
RSA

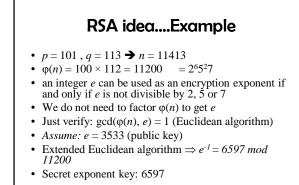
- *Choose: p, q* \in positive distinct *large primes*
- Compute: $n = p \times q$
- $n = \text{encryption/decryption modulus} \rightarrow \text{computations in } Z_n$
- *Compute:* $\varphi(n) = (p 1) (q 1)$
- Choose randomly: $e \in Z_{\varphi(n)}^*$
- \rightarrow gcd($\varphi(n), e$)=1, (*e* has an inverse mod $\varphi(n)$)
- Find $d = e^{-1} = ?? \mod \varphi(n)$
- *Encryption:* $c = x^e \mod n$ where x < n
- *Decryption:* $x = c^d \mod n$
- *n*,*e* are made public but *p*,*q*,*d* are secret



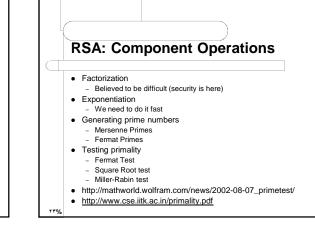


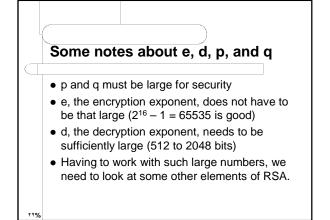
Bob	Alice	
(1) chooses $p = 3, q = 11$		
(2) $n = pq = 33$		
(3) $\varphi(n) = (p-1)(q-1)=20.$		
(4) Chooses $e = 3$; gcd(3,20)=1		
(5) Computes $d \propto e^{-1} \mod \varphi(n)$		
$d \alpha 7$		
(6) Sends (e, n) to Alice		
	(1) Message: $x = 4$	
	(2) $y \equiv x^e \mod n \equiv 31$	
	(3) Sends y to Bob	





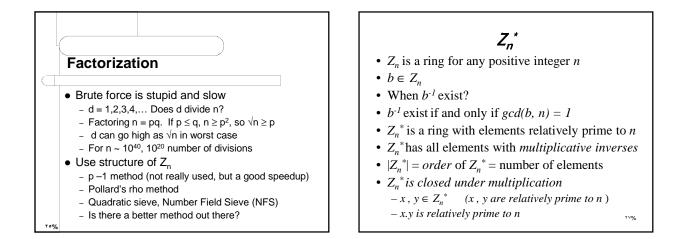
۲۱%





Some Number Theory

۲٤%



Prime Numbers

- **prime number** p: p > 1 and divisible only by 1
- composite number: integer not prime

Prime Number Theorem:

- # of primes in positive integer $x = x / \ln x$
- for x=10¹⁰, # of primes = 434,294,481

Theorem: Every positive integer is a product of primes. This factorization is unique.

• If p is a prime and it divides a product of integers $a \cdot b$

۲٦%

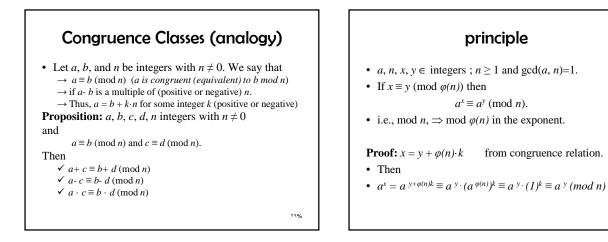
• then either $p \mid a \text{ or } p \mid b$.

Integers: $a > 0 \& p \in prime$

(i) (Fermat's little theorem) ~1600s If gcd(a, p) = 1, then $a^p = a \pmod{p}$ $a^{p-1} = 1 \pmod{p}$

(ii) (Euler's theorem) ~1700s
If r = s mod (p - 1), then a^r = a^s (mod p)
when working modulo a prime p, exponents can be reduced modulo p - 1.

If gcd(a, n)=1, then $a^{\varphi(n)} \equiv 1 \pmod{n}$ where $\varphi(n)$ is defined as *the number of integers* $1 \le a \le n$ such that gcd(a, n)=1 and called as *Euler's* φ -function. $\Rightarrow \varphi(p) = (p-1)$



Division in Congruence Classes

We can divide by $a \pmod{n}$ when gcd(a, n)=1

- Example: Solve $2x + 7 \equiv 3 \pmod{17}$
- Example: Solve $5x + 6 \equiv 13 \pmod{15}$.

Proposition: Suppose gcd(a, n)=1.

- Let *s* and *t* be integers such that $a \cdot s + n \cdot t = 1$.
- Then $a \cdot s \equiv 1 \pmod{n}$
- *s* is called *the multiplicative inverse of a* (mod *n*)

Extended Euclidean algorithm is a fairly efficient method of computing multiplicative inverses in congruence classes.

۳۰%

Example 1: $2^{10} = 1024 \equiv 1 \pmod{11}$

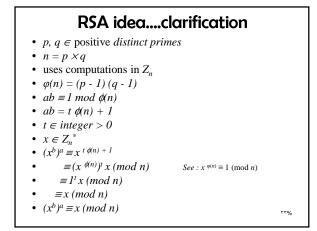
Example 2: Compute $2^{-1} \pmod{11}$. • $2 \cdot 2^9 = 2^{10} \equiv 1 \pmod{11} \Longrightarrow 2^{-1} \equiv 2^9 \pmod{11} \equiv 6 \pmod{11}$.

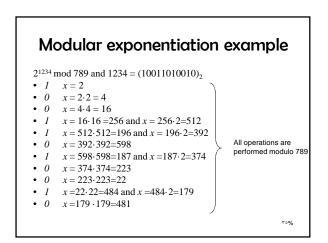
Example 3: $\varphi(10) = \varphi(2 \cdot 5) = (2 - 1) \cdot (5 - 1) = 4$. • {1, 3, 7, 9}

- **Example 4:** Compute 2⁴³²¹⁰ (mod 101)
- We know $2^{100} \equiv 1 \pmod{101} =>$
- $2^{43210} = 2^{432x100+10} = (2^{100})^{432} \cdot 2^{10} \equiv 2^{10} \pmod{101} \equiv 14 \mod{(101)}$.

**%

۳۱%





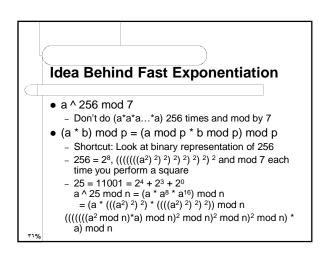
Modular Exponentiation

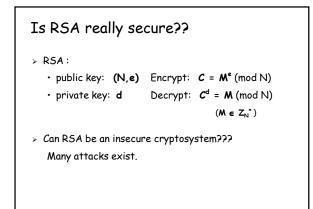
 $x^a \pmod{n}$

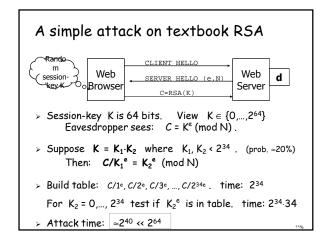
Example: 2¹²³⁴ mod 789,

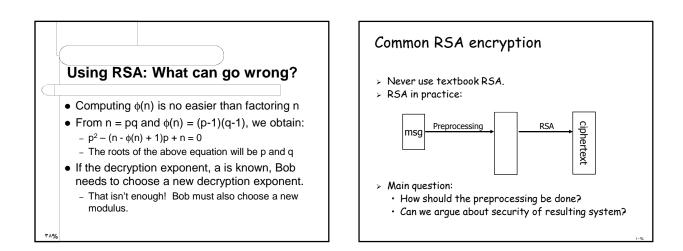
- *Naïve method:* raise 2 to 1234 and then take the modulus.
- Is it practical (possible)?
- Practical method:
- Use binary expansion of the exponent.
- $1234 = (10011010010)_2$

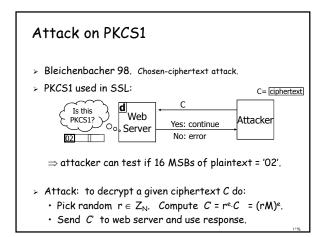
۳:%

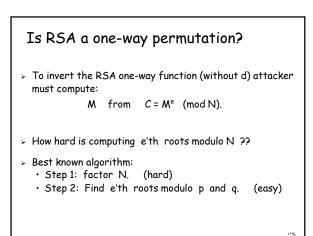


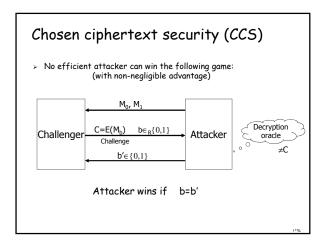










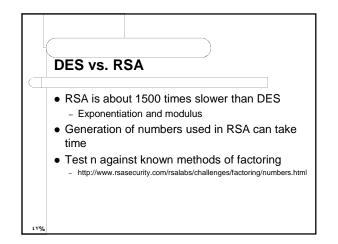


Shortcuts?

- Must one factor N in order to compute e'th roots? Exists shortcut for breaking RSA without factoring?
- > To prove no shortcut exists show a reduction:
 - Efficient algorithm for e'th roots mod N
 - \Rightarrow efficient algorithm for factoring N.
 - Oldest problem in public key cryptography.
- > Evidence no reduction exists: (BV'98)
 - "Algebraic" reduction \Rightarrow factoring is easy.
 - Unlike Diffie-Hellman (Maurer'94).

RSA With Low public exponent

- To speed up RSA encryption (and sig. verify)
 use a small e. C = M^e (mod N)
- > Minimal value: e=3 (gcd(e, $\varphi(N)$) = 1)
- Recommended value: e=65537=2¹⁶+1
 Encryption: 17 mod. multiplies.
- > Several weak attacks. Non known on RSA-OAEP.
- <u>Asymmetry of RSA:</u> fast enc. / slow dec.
 ElGamal: approx. same time for both.



Implementation attacks

- > Attack the implementation of RSA.
- Timing attack: (Kocher 97)
 The time it takes to compute C^d (mod N)
 can expose d.
- Power attack: (Kocher 99)
 The power consumption of a smartcard while it is computing C^d (mod N) can expose d.
- Faults attack: (BDL 97)

 A computer error during C^d (mod N) can expose d.
 OpenSSL defense: check output. 5% slowdown.

Key lengths

 Security of public key system should be comparable to security of block cipher.
 NIST:

$\frac{Cipher \ key-size}{\leq 64 \ bits}$

- 80 bits 128 bits 256 bits (AES)
- <u>Modulus size</u> 512 bits. 1024 bits 3072 bits. <u>15360</u> bits
- ≻ High security ⇒ very large moduli. Not necessary with Elliptic Curve Cryptography.

key length for secure RSA

- key length for secure RSA transmission is typically 1024 bits. 512 bits is now no longer considered secure.
- > For more security or if you are paranoid, use 2048 or even 4096
- > With the faster computers available today, the time taken to encrypt and decrypt even with a 4096-bit modulus really isn't an issue anymore.
- In practice, it is still effectively impossible for you or I to crack a message encrypted with a 512-bit key.
- An organisation like the NSA who has the latest supercomputers can probably crack it by brute force in a reasonable time, if they choose to put their resources to work on it.
- > The longer your information is needed to be kept secure, the longer the key you should use.

p & q generation recommendationTo generate the primes p and q, generate a random number of bit length b/2 where b is the required bit length of n; set the low bit (this ensures the number is odd) and set the *two* highest bits (this ensures that the high bit of n is also set); check if prime; if not, increment the number by two and check again. This is p. Repeat for q starting with an integer of length b-b/2. If p<q, swop p and q (this only matters if you intend using the CRT form of the private key). In the extremely unlikely event that p = q, check your random number generator. For greater security, instead of incrementing by 2, generate another random number each time.

