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‘What is public key cryptography?
Why is there a need?
e Asymmetric vs. Symmetric

e Problems solved by public key

-~ Shared secret not needed
— Authentication

e Trapdoor one-way function
- Factoring integers
— Discrete logs

e Slow, power hungry
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Public Key Cryptograbhic Use
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e Secure RPC
o SSL
e Cisco encrypting routers




Public Key Cryptosystem Security

e can never provide unconditional security

 Try all possible plaintexts since public key Is
known

 \When you mach with the cipherte=»
corresponding plaintext is known
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‘Where did public keyf(\:ryptography
come from?

)

e Diffie and Hellman

- Credited with invention (circa 1976)
— One year later, RSA is invented
— April 2002, ACM communications

e 1973 James Ellis (British Gov't)

- “The possibility of non-secret encryption”
- NSA claims
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‘Key distribution

%

e Alice and Bob need to talk
e Insecure channel of communication

e First, set up our field that our numbers will
operate within:
- p, alarge prime (sets up something called our field)
— a is called a primitive root of Fp




“Alice and Bob obtain a private key
using public keys
)

Bob Alice
o2 oP
>< ko = (0@)P
k, = (@P)a i

So, k = k,, and a secret key Is shared
between Alice and Bob.
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‘What does the adverstary know, and

what can he do?

A%

e Knows a2, ab, a, and p
e S0 we want to find the key, k
- k=02
— This is believed to be hard.
e If one knows how to compute discrete logs

efficiently, then one can break this scheme
(and other schemes based on public key

cryptography)




trapdoor one-way function

e one-way function
— easy to compute but hard to invert

— Example:
e Given: 31 = 2mod 127, Find b??DL problem)

e trapdoor function

—|s one-way function but easy to invert with
extra secret knowledge or private info
(knowledge of a certain trapdoor) 9%



Overview

e RSA
- Rivest, Shamir, Adleman, 1977

o /_
—- Modular operations (the expensive part)

- A sender looks up the public key of the receiver,
and encrypts the message with that key

- The receiver decrypts the message with his private
key

— Although, public key is public information, private
key is secret but related to the public key in a

special way
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Owverview of Public Key Cryptosystem (PKC)

» Integer factorization problems (RSA)

* Discrete Logarithm problems (Diffie-Helman,
ElGamal)

» Elliptic Curve Cryptosystems

Algorithm family Bit length

Integer Factorization (IF) 1024

Discrete Logarithm (DI.) 1024
Elliptic curves (EC) 160
Block cipher 80

Security levels of PKCs



PKC Standards

 |EEE P1363: Comprehensive standard of PKC.
Collection of IF, DL and EC, in particular:
— Key establishment algorithms
— Key transport algorithms
— Digital Signature algorithms

« PKCS (Public key cryptography standard) by RSA
— PKCS #1:. RSA Cryptography Standard

— PKCS #3: Diffie-Hellman key agreement Standard
— PKCS #13: Elliptic Curve Cryptography Standard
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PKC Standards

 ANSI Banking Standard®NSI=American National Standards Institute)
— Elliptic curve key agreement and transport pro®®.63
— Elliptic curve digital signature algorithm (ECDSXY.62
— Key management using Diffie-Hellman X9.42
— Hash algorithms for RSA X9.32-2
— RSA signature algorithm9.31-1
— Hash algorithm for RSA X9.30-2
— Digital Signature Algorithm (DSA) X9.30-1

 US Government Standards
— Entity authentication FIPS ?7??
— Digital Signature Standard (DSA) FIPS 186
— Secure hash standard (SHA-1) FIPS 180-1
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The RSA cryptosystem

> First published:

» Scientific American, Aug. 1977.
(after some censorship entanglements)

> Currently the "work horse" of Internet security:
* Most Public Key Infrastructure (PKI) products.
+ SSL/TLS: Certificates and key-exchange.
- Secure e-mail: PGP, Outlook, ...



RSA

Most popular PKC
1977 Invented at MI'by Rivest,Shamir,Adleman

Based orinteger Factorizatiorproblem
Each user has public and private key pair.

lts patent expired in 2000.
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RSA

Choose: p, d/positive distincarge primes
Compute: n = pxg

N = encryption/decryption modulus computations iz,
Computep(n) =(p-1) (q-1)

Choose randoml e ., Z
- - gcd(n),e)=1, (e has an inverse mag(n))

Findd = el="?? modp(n)

Encryption: c=%¥modn wherex<n
Decryption: x =¢& mod n
n,eare made public buyt,qg,dare secret 1%



The RSA trapdoor 1-to-1 function

> Parameters: N=pq. N =1024 bits. p,q=bl2 bits.
e - encryption exponent. gcd(e, ¢(N))=1.

> 1-to-1 function: RSA(M) = M®* (mod N) where MOZ"

> Trapdoor: d - decryption exponent.
Where eld=1 (mod ¢(N))

> Inversion: RSAM)? = M= = MWL = M (mod N)

> (n,e,1,£)-RSA Assumption: For any t-time alg. A:

1/e ~ p,g R n-bit primes,
= L} <
i ANep) =xe Ny = PR PERTIES T <

A



Example: RSA encryption & decryption

Bob Alice

(1) choosep=3,9g=11

(2)n=pg=33

(3) ¢(n) = (p-1)(9-1)=20.

(4) Chooseeg = 3; gcd(3,20)=1

(5) Computesd a € mode(n)

da7

(6) Sends€, n) to Alice
(1) Messagex = 4
(2)y=x*modn= 31

(7 x = modn = 4 (3) Sends/ to Bob
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Example: RSA digital signature

Bob Alice .
(1) choosep = 3,g=11 RO
(2)n=pg=33 PR
(3) p(n) = (p-1)(a-1)=20. s
(4) Chooseg = 3; gcd(3,20)=1 Qg,‘?‘@@@i\oo
(5) Computesd a €1 mode(n) %’Z@&Q

da 7

(6) Sends€, n) to Alice

(1) Message to be sighed= 4
(2)y=x*modn= 31
(3) Sendx & y to Bob

(7) Computeyd modn= 4

(8) If x=y9modn (signature verified)
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RSA keys .... Example (simple)

pP=11,g=5=2n=55
o(nN)=10x4=40 =2x5

an integeke can be used as an encryption exponent if an
only if eis not divisible by 2, 5

We do not need to factai(n) to gete

Just verify:gcd@(n), €) = 1 (Euclidean algorithm
Assume: & 7 (public key)

Extended Euclidean algorithm e1=?? mod 40
Secret exponent kef3

other parese=3, el=?? e=9, el=?? e=11, e=7??
e=13, el=?? e=17, €= ??  e=19, e= 2?7

Z, ={1,3,7,9,11,13,17,19,21,23,27,29,31,33,37,39}
e=3, el=27 e=13, e=37 e=17, €=33
e=el={9, 11, 19, 21, 29, 31, 39}
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RSA idea....Example

p=101,q= 113 n= 11413
o(n) =100x 112 = 11200 =27

an integee can be used as an encryption exponent if
and only ifeis not divisible by 2, 5 or 7

We do not need to factai(n) to gete
Just verify: gcdg(n), e) = 1 (Euclidean algorithm)
Assume: e 3533 (public key)

Extended Euclidean algorithm el= 6597 mod
11200

Secret exponent key: 6597

ARLY))



Some notes about e, d, p, and @
(
e p and g must be large for security

e e, the encryption exponent, does not have to
be that large (21 — 1 = 65535 is good)

e d, the decryption exponent, needs to be
sufficiently large (512 to 2048 hits)

e Having to work with such large numbers, we
need to look at some other elements of RSA.
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'RSA: Component Opé/rations

e Factorization
— Believed to be difficult (security is here)
e EXponentiation
- We need to do it fast
e Generating prime numbers
-~ Mersenne Primes
- Fermat Primes
e Testing primality
- Fermat Test
—- Square Root test
— Miller-Rabin test

http://mathworld.wolfram.com/news/2002-08-07_primetest/
http://www.cse.litk.ac.in/primality.pdf
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Some Number Theory



Factorization

e Brute force iIs stupid and slow
- d=1,2,3,4,... Does d divide n?
- Factoringn=pg. Ifp<g,n=p2 sovn=p
- d can go high as vn in worst case
- For n ~ 1049, 10%° number of divisions

e Use structure of Z,
- p —1 method (not really used, but a good speedup)
- Pollard’s rho method
- Quadratic sieve, Number Field Sieve (NFS)

- Is there a better method out there?
YoO0ys




Prime Numbers

e primenumber p: p> 1 and divisible only by 1
e composite number: integer not prime

Prime Number Theorem:
o # of primes In positive integer= X /In X
o for x=10%, # of prime: = 434,294,481

Theorem: Every positive integer is a product of primes.
This factorization is unique.

e If pis aprime and it divides a product of integersb
e then eithep|aorp]|b.
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Z*

n
Z. IS a ring for any positive integer
b Z,
Whenb?exist?

btexistif and only ifgcd(b, n) =1
Z." is a ring with elements relatively primerno
Z.~ has all elements witmultiplicative inverses

n
|Z.| =orderof Z,° = num
Z."is closed under multi

ner of elements

nlication

-x,ydzZ~ (x,y are relatively prime ton

— X.y IS relatively prime to n

YVY0sp



Integers: a> 0 & p Ll prime

(1) (Fermat’s little theorem ~1600s
If gcd(a, p) = 1then
aP = a (mod p)
ab~1 =1 (mod p)

(i) (Euler’'s theorem)~170(s
If r=s mod (p — 1)thena” = as(mod p)

when working modulo a primg exponents can be reduced
modulop - 1.

If gcda, n)=1, thena *™ =1 (modn)

whereop(n) is defined ashe number of integerk< a < n such that
gcda, N=1 and called akuler’'s p-function.= ¢(p) = (p-1)

Y AOp



Congruence Classes (analogy)

e Leta, b, andn be integers witim# 0. We say that
— a=b(modn) (ais congruent (equivalent) to b moy n
— If a- bis a multiple of (positive or negativa)
— Thus,a = Db + k-n for some integek (positive or negative)
Proposition: a, b, ¢, d, nintegers witrn £ 0
and
a=Db (modn) andc=d (modn).
Then
v a+ c=b+ d(modn)
v a- c=b-d(modn)
v a-c=b-d(modn)

Y49



Division in Congruence Classes

We can divide by (modn) when gcd4, n)=1
 Example: Solve 2+ 7= 3 (mod 17)
« Example: Solve %+ 6= 13 (mod 15).

Proposition: Supposegcc(a, n)=1.
 Letsandtbe integers suchthat s+n-t=1.
e Thena:s=1 (modn)

e sis calledthe multiplicative inverse of @nodn)

Extended Euclidean algorithima fairly efficient method of
computing multiplicative inverses in congruence classes.

Y0



principle

e a,Nn, X VyLintegers n>1 and gc, n)=1.
e If x=y(mode(n)) then

a*=a¥ (modn).
e |.e., modn, = modeg(n) In the exponer

Proof: x=y+ ¢(n)-k  from congruence relation.
 Then
o« a¥=avtrink=ay-(arMk=ay-(1)kX=a¥Y(mod n)

Y%



Example
Example 1: 2'10=1024=1 (mod 11)

Example 2. Compute 2 (mod 11).
e 2.2=219=1 (mod 11) =>2=2°(mod 11)= 6 (mod 11).

Example 3: ¢(10) =¢(2:-5) = (2-1) - (5-1) = 4.
e {1,3,7,9}

Example 4. Compute 2°219(mod 101)
e We know 2°°=1 (mod 101) =>
e 243210 P432x100 +10= (2100432, 210 = 210 (mod 101)= 14 mod (101).

YY00



RSA idea....clarification

P, g L/positivedistinct primes
nN=pxg
uses computations i,
p(n)=(P-1)(q-1)
ab =1 mod¢n)
ab=t¢gn)+1
t L integer >0
X [1Z,
(Xb)a =xt ¢gn) +1

=(x 4M)tx (mod n) See : %™ = 1 (modn)

=1'x (mod n)

=X (mod n)

(xP)2 =x (mod n)

YY%



Modular Exponentiation

X2 (modn)
Example: 21234mod 789,

e Naive methodraise 2 to 1234 and then take
the modulus

 Is it practical (possible)?

* Practical method

e Use binary expansion of the exponent.
e 1234 = (10011010019)

Y00



Modular exponentiation example

21234mod 789 and 1234 = (10011010040)

e 1

[ ]
ol NeolNoel el N el

X=2 \
X=2:-2=4

X=4-4=16

X=16-16 =256 ang= 256-2=512
X=512z-51z=196andx = 19¢€¢-2=392
X= 392-392=598

X=598-598=187 anxl=187-2=374
X=374-374=223

X=223-223=22

X=22-22=484 and =484-2=179

’

X=179 -179=481

All operations are
performed modulo 789

Yo0p



‘Idea Behind Fast Eprnentiation

Y100

e a” 256 mod 7
- Don’t do (a*a*a...*a) 256 times and mod by 7

e (a*b)modp=(amodp*bmodp) modp

— Shortcut: Look at binary representation of 256

—- 256 =28, (((((((a%) ?) 2) 2) 2) ) ) 2 and mod 7 each
time you perform a square

- 25=11001=24+23+ 20
a”"25modn=(a*a®*al®) modn

=(a* (((a%) ) ?) * ((((@) #) ) ?)) mod n

(((((((@® mod n)*a) mod n)?> mod n)? mod n)? mod n) *

a) mod n



Is RSA really secure??

> RSA:
+ public key: (N,e) Encrypt: € = M® (mod N)
- private key: d Decrypt: €* = M (mod N)
M OZy)

> Can RSA be an insecure cryptosystem???
Many attacks exist.



\\Using RSA: What can/go wrong?
<f

e Computing @(n) Is no easier than factoring n
e From n = pqg and ¢@(n) = (p-1)(g-1), we obtain:
- p*=(n-¢n)+1)p+n=0
- The roots of the above equation will be p and g
e If the decryption exponent, a is known, Bob
needs to choose a new decryption exponent.

- That isn’t enough! Bob must also choose a new
modulus.
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A simple attack on textbook RSA

CLI ENT HELLO

Web |  oerer IO (e | WED | ¢

Browser Server
C=RSA( K) :

> Session-key Kis 64 bits. View K J{0,..,25%}
Eavesdropper sees: C = K* (mod N).

> Suppose K = K;[K, where K;, K,<23* . (prob.=20%)
Then: C/K:® = K,* (mod N)

> Build table: ¢/1e, ¢/2¢, ¢/3¢, .. C/23% . time: 234
For K,=0,.., 23 testif K,° isin table. time: 23434

> Attack time: =240 <« 264




Common RSA encryption

> Never use textbook RSA.
> RSA in practice:

Preprocessing_> RSA

msg

IXauydid

> Main question:
* How should the preprocessing be done?
- Can we argue about security of resulting system?



Attack on PKCS1

> Bleichenbacher 98. Chosen-ciphertext attack.

> PKCS1 used in SSL:

d )
Ool, Server

C

C=|ciphertext

Yes: continue

Attacker

No: error

= attacker can test if 16 MSBs of plaintext = ‘02",

» Attack: to decrypt a given ciphertext C do:
» Pick random r 0 Z. Compute C =rel€ = (rM)s.
- Send C' to web server and use response.



Chosen ciphertext security (CCS)

> No efficient attacker can win the following game:
(with non-negligible advantage)

. Mo, M,
_ Decryption
Challenge o
o . © #£C
< [{0,1}

Attacker wins if b=b’

£Y04



Is RSA a one-way permutation?

> To invert the RSA one-way function (without d) attacker
must compute:

M from C=M* (modN).

> How hard is computing e'th roots modulo N ??

> Best known algorithm:
+ Step 1: factor N. (hard)
+ Step 2: Find e'th roots modulo p and q. (easy)



Shortcuts?

> Must one factor N in order to compute e'th roots?
Exists shortcut for breaking RSA without factoring?

> To prove no shortcut exists show a reduction:

- Efficient algorithm for e'th roots mod N
— efficient algorithm for factoring N.
- Oldest problem in public key cryptography.

> Evidence no reduction exists: (BV'98)
+ "Algebraic” reduction = factoring is easy.
+ Unlike Diffie-Hellman (Maurer'94).
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RSA With Low public exponent

> To speed up RSA encryption (and sig. verify)
use a small e. C = M¢ (mod N)

> Minimal value: e=3  (gcd(e, $(N) ) =1)
> Recommended value: e=65537=216+1

Encryption: 17 mod. multiplies.

» Several weak attacks. Non known on RSA-OAEP.

> Asymmetry of RSA: fast enc. / slow dec.
* ElGamal: approx. same time for both.




Implementation attacks

» Attack the implementation of RSA.

> Timing attack: (Kocher 97)
The time it takes to compute ¢? (mod N)
can expose d.

> Power attack: (Kocher 99)
The power consumption of a smartcard while
it is computing C° (mod N) can expose d.

> Faults attack: (BDL 97)
A computer error during ¢? (mod N)
can expose d.

OpenSsSL defense: check output. 5% slowdown.



DES vs. RSA
:
e RSA is about 1500 times slower than DES
- Exponentiation and modulus
e Generation of numbers used in RSA can take
time
e Test n against known methods of factoring

- http://www.rsasecurity.com/rsalabs/challenges/factoring/numbers.html
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Key lengths

> Security of public key system should be
comparable to security of block cipher.

NIST:

Cipher key-size Modulus size

< 64 bits 512 bits.
80 bits 1024 bits
128 bits 3072 bits.
256 bits (AES) 15360 bits

> High security = very large moduli.
Not necessary with Elliptic Curve Cryptography.



key length for secure RSA

key length for secure RSA transmission is typically 1024 bits. 512 bits
is now no longer considered secure.

For more security or if you are paranoid, use 2048 or even 4096

With the faster computers available today, the time taken to encrypt
and decrypt even with a 4096-bit modulus really isn't an issue
anymore.

In practice, it is still effectively impossible for you or I to crack a
message encrypted with a 512-bit key.

An organisation like the NSA who has the latest supercomputers can
probably crack it by brute force in a reasonable time, if they choose
to put their resources to work on it.

The longer your information is needed to be kept secure, the longer
the key you should use.
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‘Key Distribution

Oh%

e Then hard problem for symmetric (secret) key
ciphers

e Transmitting a private key on an insecure
channel

- Asymmetric system solves problem



D & g generation recommendation

X1

To generate the primes p and g, generate a random number of bit
length b/2 where b is the required bit length of n;

set the low bit (this ensures the number is odd) and set the two
highest bits (this ensures that the high bit of n is also set);

check if prime; if not, increment the number by two and check
again. This is p.

Repeat for g starting with an integer of length b-b/2.

If p<q, swop p and q (this only matters if you intend using the CRT
form of the private key).

In the extremely unlikely event that p = g, check your random
number generator.

For greater security, instead of incrementing by 2, generate
another random number each time.



e & d recommendation
<f

e In practice, common choices for e are 3, 17 and 65537
(2"16+1).

e These are Fermat primes and are chosen because
they make the modular exponentiation operation faster.

e Also, having chosen e, it is simpler to test whether
gcd(e, p-1)=1 and gcd(e, g-1)=1 while generating and
testing the primes.

e Values of p or g that fail this test can be rejected there
and then.

e To compute the value for d, use the Extended
Euclidean Algorithm to calculate d = e”-1 mod phi (this
IS known as modular inversion).
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