Classic Cryptosystems

١

Key Points

Field: set of elements with + & *

- Modular Arithmetic: reduces all numbers to fixed set [0...n-1]
- + GCD: largest positive integer dividing
- Finite Field: finite number of elements
- Order Finite Field: power of a prime Pⁿ where n = integer
- Finite Field: of order p can be defined using normal arithmetic mod p

Modulo Operation

- ✤ Q: What is 12 mod 9?
- A: 12 mod 9 ≡ 3
- Let $a, r, m \in Z$

(Z = set of all integers) and m > 0.

We write

- → $r \equiv a \mod m$ if m-r divides a.
- *m* is called the modulus.
- * *r* is called the remainder.

 $q \cdot a = m - r$ $0 \le r < m$

Ring

✤ Ring Z_m is:

- Set of integers: $Z_m = \{0, 1, 2, ..., m-1\}$

– Two operation: "+" and " $\!\times\!\!\!'$

 $*"+" \rightarrow a + b \equiv c \mod m \ (c \in Z_m)$

 $* "\times" \rightarrow a \times b \equiv d \mod m \ (d \in Z_m)$

• Example:

-
$$m = 7, Z_7 = \{0, 1, 2, 3, 4, 5, 6\}$$

*6 + 5 = 11 mod 7 = 4
*6 × 5 = 30 mod 7 = 2

Ring Z_m Properties & Operations

- Identity: additive '0', multiplicative '1' a+0=a, a×1=a mod m
- Inverse: additive `-a', multiplicative `a⁻¹' a+(-a)=0 mod m, a× a⁻¹ =1 mod m Multiplicative inverse exist if gcd (a,m) = 1
 Ring Addition and Multiplication is: Closed, Commutative, Associative

Division on Ring Z_m

Ring Division: 4/15 mod 26???

- + $4/15 \mod 26 = 4 \times 15^{-1} \mod 26$
- 15⁻¹ mod 26 exist if gcd(15,26)=1

→ 4/15 mod 26 = 4×7 mod 26 = 28 mod 26=2

Note that the modulo operation can be applied whenever we want:

- (a × b) mod m = [(a mod m) × (b mod m)] mod m

Exponentiation in Z_m

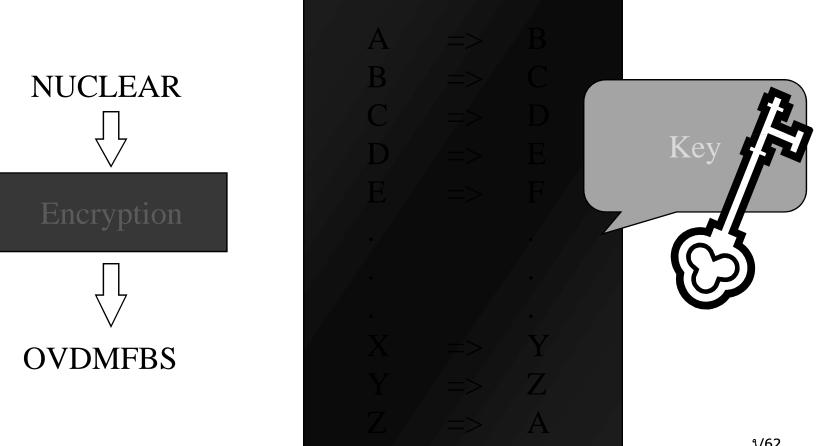
Ring Exponentiation: $3^8 \mod 7 = ???$

- $* 3^8 \mod 7 = 6561 \mod 7$
- → 6561 mod 7 = 2 → 6561=(937×7)+2
- + Or = $3^8 = 3^4 \times 3^4 = 3^2 \times 3^2 \times 3^2 \times 3^2$
- → 3⁸ mod 7 = [(3² mod 7)×(3² mod 7)×(3² mod 7) ×(3² mod 7)] mod 7
- → $3^8 \mod 7 = (2 \times 2 \times 2 \times 2) \mod 7 = 16 \mod 7 = 2$
- Note that ring Z_m (modulo arithmetic) is of central importance to modern public-key cryptography. In practice, the order of the integers involved in PKC are in the range of[2¹⁶⁰, 2¹⁰²⁴]. Perhaps even larger

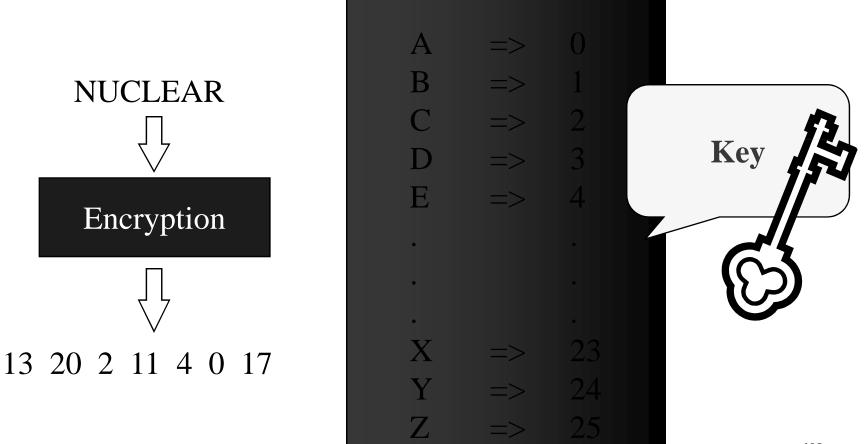
Classic Cryptography

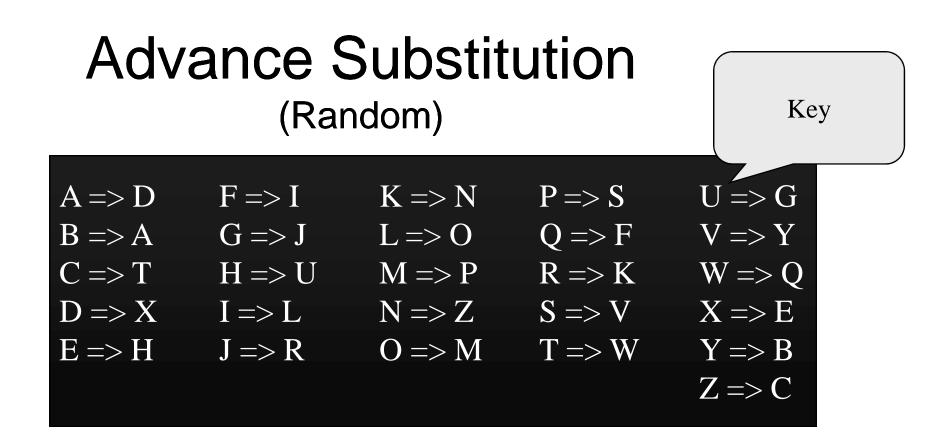
Substitution Transposition Enigma Machine Shift Affine Vigenere Block (Hill) Vernam (one time pad) Stream

Substitution



Substitution





Transposition (Permutation)

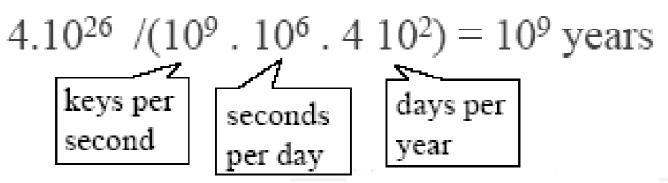
Substitution reserves places But Transposition reserves content

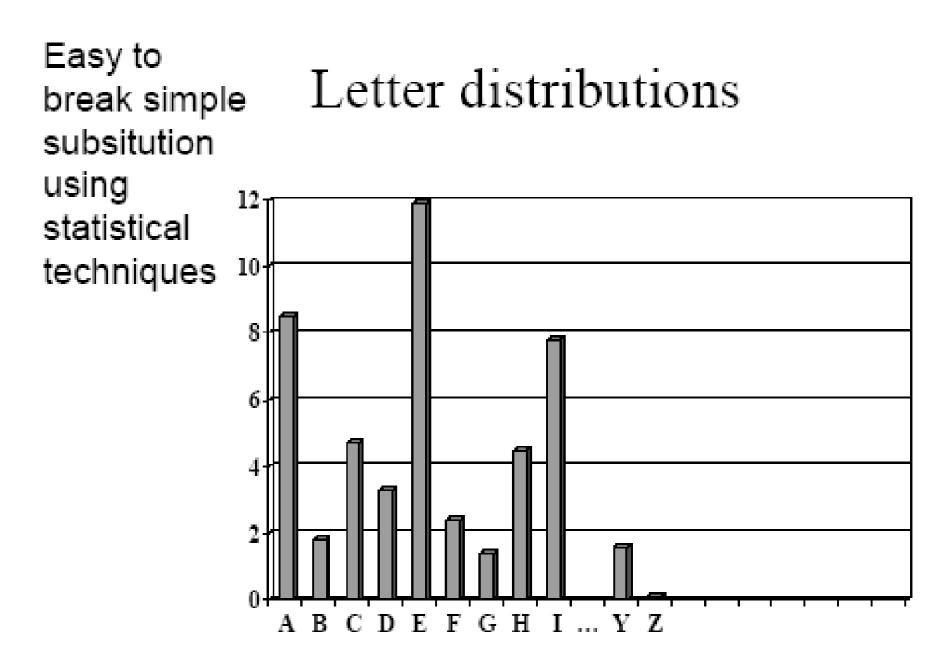
Transposition (Permutation)

COMPUTER ENGINEER Encryption Cipher text COM **PUT** CPEEIE.OURNNR.MT GE . ER ENG I NE ER

Security

- there are n! different substitutions on an alphabet with n letters
- · there are n! different transpositions of n letters
- n=26: n!=403291461126605635584000000 = 4 . 10^{26} keys
- trying all possibilities at 1 nanosecond per key requires....





Breaking a Monoalphabetic Substitution

X ydis pq yjc xzpvpyw ya icqdepzc ayjceq xq A tact is the ability to describe others as

yjcw qcc yjcuqcvrcq. they see themselves.

> Xzexjxu Vpsdavs Abraham Lincoln

Character Frequency: c-10, y-8, q-7, x-6, j-5, p-5, v-4, d-3 a-3, e-3, z-3, s-2, u-2, w-2, i-1, r-1 Alphabet frequency: e t a o i n s r h l d c u m f p g w y b v k x j q Z/62

Enigma Machine

Germany- World War 1

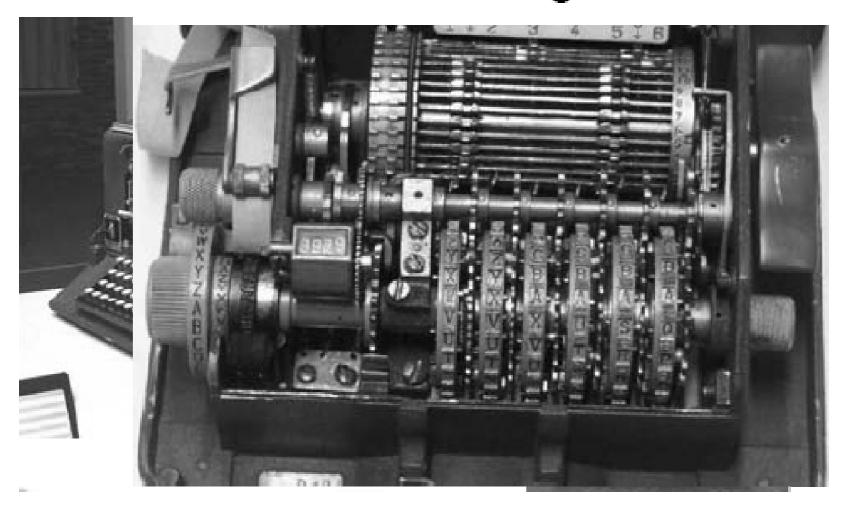
Encryption: Keys are typed in normally

Machine output: Cipher text encrypted message typed on paper

Decryption: Normal typing cipher text – Machine output: Plain text on paper

Keys: Mechanical rotors

Wheel Cipher Mechanical: Hagelin C38



Shift Cipher Analysis

Alphabet letters are <u>substituted</u> by numbers:

Α	В	С	D	E	F	G	Н	Ι	J	K	L	Μ
0	1	2	3	4	5	6	7	8	9	10	11	12
Ν	0	Ρ	Q	R	S	Т	U	V	W	X	Y	Z
13	14		16			19	20		22		24	25

- Ring: Z_{26} $x = plaintext \ k = key$ - $E_k(x) = x + k \mod 26$ (Encryption) - $D_k(x) = x - k \mod 26$ (Decryption)
- Caser Cipher: k = 3

Caesar Shift

PLAINTEXT CIPHERTEXT PLAINTEXT CIPHERTEXT a b c d e f g h i j k l m D E F G H I J K L M N O P n o p q r s t u v w x y z Q R S T U V W X Y Z A B C

Hello There \rightarrow khoor wkhuh

Shift Cipher Example

- + Assume: key k = 17
- ✤ Plaintext: X = A T T A C K = (0, 19, 19, 0, 2, 10).
- Ciphertext: Y = (0+17 mod 26, 19+17 mod 26,...)
- Y = (17, 10, 10, 17, 19, 1) = R K K R T B

Attacks on Shift Cipher

- 1. Exhaustive Search:
 - Try all possible keys. |K|=26.
 - Nowadays, for moderate security,

 $|K| \geq 280 ,$

- recommended security $|K| \ge 2100$.
- 2. Letter frequency analysis (Same plaintext maps to same ciphertext)

Affine Cipher

Algorithm:

- *Encryption:* $E_k(x) = y = \alpha \cdot x + \beta \mod 26$.
- ★ Key: $k = (\alpha, \beta)$ where $\alpha, \beta \in \mathbb{Z}_{26}$
- Key space = $26 \cdot 26 = 676$ Possibilities

Key Space??? are they all possible?

Example:

$$k = (\alpha, \beta) = (13, 4)$$

$$\star \text{ INPUT} = (8, 13, 15, 20, 19)$$

$$\star \text{ Y} = (4, 17, 17, 4, 17) = \text{ERRER}$$

$$\star \text{ ALTER} = (0, 11, 19, 4, 17)$$

$$\star \text{ Y} = (4, 17, 17, 4, 17) = \text{ERRER}$$

No one-to-one map within plaintext and ciphertext.

What went wrong?

• *Decryption:*
$$D_k(x) = x = \alpha^{-1} \cdot y + \gamma$$

Affine Cipher Analysis

Key Space:

- Since α⁻¹ has to exist, only selected integers in Z₂₆ are useful
 .e.g. gcd(α, 26) = 1. → {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}
- ✤ Therefore, the key space has $12 \cdot 26 = 312$ candidates.

Attack types:

- 1. Ciphertext only: exhaustive search or frequency analysis
- 2. *Known plaintext:* two letters in the plaintext and corresponding ciphertext letters would be sufficient to find the key.

Example : plaintext: IF=(8, 5) and ciphertext PQ=(15, 16)

- $8 \cdot \alpha + \beta \equiv 15 \mod 26$
- $5 \cdot \alpha + \beta \equiv 16 \text{ mod } 26 \qquad \rightarrow \alpha = 17 \text{ and } \beta = 9$

What happens if we have only one letter of known plaintext?

- 3. *Chosen plaintext:* Chose A and B as the plaintext. The first character of the ciphertext will be equal to $0 \cdot \alpha + \beta = \beta$ and the second will be $\alpha + \beta$.
- 4. Chosen ciphertext : Chose A and B as the ciphertext.

Vigenere Cipher

Vigenere Cipher encrypts m alphabetic characters at a time

- each plaintext element is equivalent
 to m alphabetic characters
- key K is a keyword that associate with an alphabetic string of length m

Example

m = 5; *K* = (2, 8, 15, 7, 20). *P* = 4,5,2,8,11,2,14,20,1,2,4,5,16

Encryption:

4	5	2	8	11	2	14	20	1	2	3	4	5	16
2	8	15	7	20	2	8	15	7	20	2	8	15	7
6	13	17	15	31	4	22	9	8	22	5	12	20	23

Vigenere Cipher Secrecy

- → number of possible keywords of length $m \rightarrow 26^m$
- If m = 5, then the keyspace has size exceeding 1.1 × 10⁷.
- This is already large enough to preclude exhaustive key search by hand (but not by computer).
- having keyword length m, an alphabetic character can be mapped to one of m possible alphabetic characters (assuming that the keyword contains m distinct characters).
- Such a cryptosystem is called *polyalphabetic*.
- In general, cryptanalysis is more difficult for polyalphabetic than for monoalphabetic cryptosystems.

Vigenere Cipher Attack

 observe two identical segments in Ciphertext each of length at least three, then there is a good chance that they do correspond to identical segments of plaintext.

Block ciphers

Substitution ciphers: changing one letter in the plaintext changes exactly one letter in the ciphertext.

- This greatly facilitates finding the key using frequency analysis.
- Block ciphers: prevents this by encrypting a block of letters simultaneously.
- Many of the modern (symmetric) cryptosystems are block ciphers.
- DES operates on 64 bits of blocks
- ✤ AES uses blocks of 128 bits (192 and 256 are also possible).

Example: Hill Cipher (1929)

• The key is an $n \times n$ matrix whose entries are integers in Z_{26} .

Block cipher: Hill cipher

Encryption: vector-matrix multiplication

• Example: Let n=3, key matrix 'M' be $M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 11 & 9 & 8 \end{pmatrix}$ assume the plaintext is ABC=(0,1,2)

 $(0,1,2) \times \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 11 & 9 & 8 \end{pmatrix} \equiv (26,23,22) \mod 26 = (0,23,22) \Rightarrow AXW(ciphertext)$

Decryption: $(22 \ 5 \ 1)$ $(0,23,22) \times \begin{pmatrix} 22 \ 5 \ 1 \\ 6 \ 17 \ 24 \\ 15 \ 13 \ 1 \end{pmatrix} \equiv (468,677,574) \mod 26 = (0,1,2) \Rightarrow ABC(plain - text)$

Hill Cipher

If we change one letter in the plaintext, all the letters of the ciphertext will be affected.

Example:

Let the plaintext be ABB instead of ABC then the ciphertext is

$$(0,1,1) \times \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 11 & 9 & 8 \end{pmatrix} \equiv (15,14,14) \mod 26 = (15,14,14) \Rightarrow POO(ciphertext)$$

Another Example

Use Key:

$$M = \begin{pmatrix} 6 & 24 & 1 \\ 13 & 16 & 10 \\ 20 & 17 & 15 \end{pmatrix}$$

Decryption Key:

$$N = \begin{pmatrix} 8 & 5 & 10\\ 21 & 8 & 21\\ 21 & 12 & 8 \end{pmatrix}$$

Hill Cipher Attack

- Ciphertext:
 - Hill Cipher is more difficult to break with a ciphertext-only attack.
- Plaintext + Ciphertext:
 - 1. Opponent has determined the value of *m*
 - 2. Compute the key

Properties of Good Cryptosystems

- Diffusion: one character change in the plaintext should effect as many ciphertext characters as possible.
- Confusion: The key should not relate to the ciphertext in a simple way.

Shannon (1949)

One-Time Pad (Vernam Cipher)

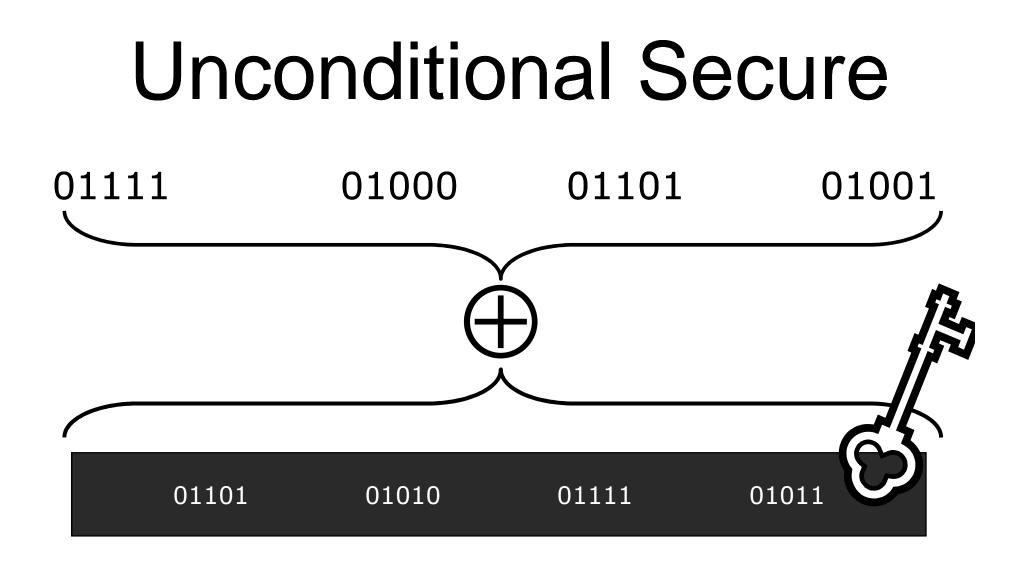
- Vernam in 1918, proposed the one-time pad, which is a provably secure cryptosystem.
- Messages are represented as a binary string (a sequence of 0's and 1's using a coding mechanism such as ASCII coding.)
- The key is a truly random sequence of 0's and 1's of the same length as the message.
- ★ The encryption is done by adding the key to the message modulo 2, bit by bit as exclusive OR, ⊕ (XOR).

One-time pad

- Secret-key encryption scheme (symmetric)
 - Encrypt plaintext by XOR with sequence of bits
 - Decrypt ciphertext by XOR with same bit sequence
- ✤ Scheme for pad of length n
 - Set P of plaintexts: all n-bit sequences
 - Set C of ciphertexts: all n-bit sequences
 - Set K of keys: all n-bit sequences
 - Encryption and decryption functions

 $encrypt(key, text) = key \oplus text$ (bit-by-bit)

 $decrypt(key, text) = key \oplus text$ (bit-by-bit)



00010

Copher???0010 ۳٦/62

Vernam scheme: perfect secrecy

- general: C = (P + K) mod 26; P = (C K) mod 26
 with C, P, K ∈ [0,25]; A=0, B=1, ..., Z=25
- consider ciphertext C= XHGRQ
 - with key AAAAA P = XHGRQ
 with key VAYEK P = CHINA
 - with key EZANZ P = TIGER
 - ...
 - with key ZZZZZ P = YIHSR
- conclusion: for every 5-character plaintext there is a 5-character key which maps the ciphertext to that plaintext

Evaluation of one-time pad

- Advantages
 - Easy to compute encrypt, decrypt from key, text
 - As hard to break as possible
 - This is an information-theoretically secure cipher
 - Given ciphertext, all possible plaintexts are equally likely, assuming that key is chosen randomly
- Disadvantage
 - Key is as long as the plaintext
 - How does sender get key to receiver securely?

Idea for stream cipher: use pseudo-random generators for key...

Randomness & Pseudo-randomness

Randomness: Closely related to unpredictability

- **Pseudo-randomness :** PR sequences appears random to a computationally bounded adversary
- Cryptosystems need random unpredictable numbers for
- One-time pad
- Secret key for DES, AES, etc.
- + Primes p, q for RSA
- Private key for ECC
- Challenges used in challenge based identification systems

True random number generation (RNG)

Requires a naturally occurring source of randomness (randomness exists in the nature)

- Hardware based random number generators (RNG)
 exploit the randomness which occurs in some physical phenomena
 - Elapsed time between emission of particles during radioactive decay
 - Thermal noise from a semiconductor diode or resistor
 - Frequency instability of a free running oscillator
 - The amount which a metal insulator semiconductor capacitor is charged during a fixed period of time.
- The first two are subject to observation and manipulation by adversaries.

Software base RNG

- 1. The system clock
- 2. Elapsed time between keystrokes or mouse movement
- 3. Content of input/output buffer
- 4. User input
- 5. OS values such as system load and network statistics.
- ✤ All of them are subject to observation and manipulation.
- Individually these sources are very "weak".
- The randomness can be increased by combining the outputs of these sources using a complex mixing function (e.g. hashing the concatenation of the output bits).
- Still, not quite secure!

Pseudorandom number generation

- A pseudorandom number generator (PRNG) is a deterministic algorithm, which, given a truly random binary sequence of length k (random seed), outputs a binary sequence of length l >> k which "appears" to be random.
- The output of a PRNG is not random. However, it is impractical (improbable) for a anyone (adversary) to distinguish a pseudorandom sequence from a truly random sequence of the same length.
- ✤ No practical test to check if a sequence is truly random.
- Thus, we can't define exactly what the pseudo randomness.
- Golomb's postulates was one of the first attempt to establish necessary conditions for a periodic sequence to look random. It has only historical importance nowadays.
- However, more recent attempts may not offer a more thorough conditions.

Statistical Tests for Pseudo-randomness

- 1. Frequency test (mono bit test):
- ✤ # of 1s and 0s must be approximately the same
- 2. Poker test
- A sequence is divided into k non-overlapping segments of length m.
- This test determines if the segments of length *m* each appear approximately the same number of times.
- 3. Runs Test
- Determines if the # of runs of various lengths is similar to those of truly random sequences
- 4. Long run test
- The long run test is passed if there are no runs of length 34 or more.

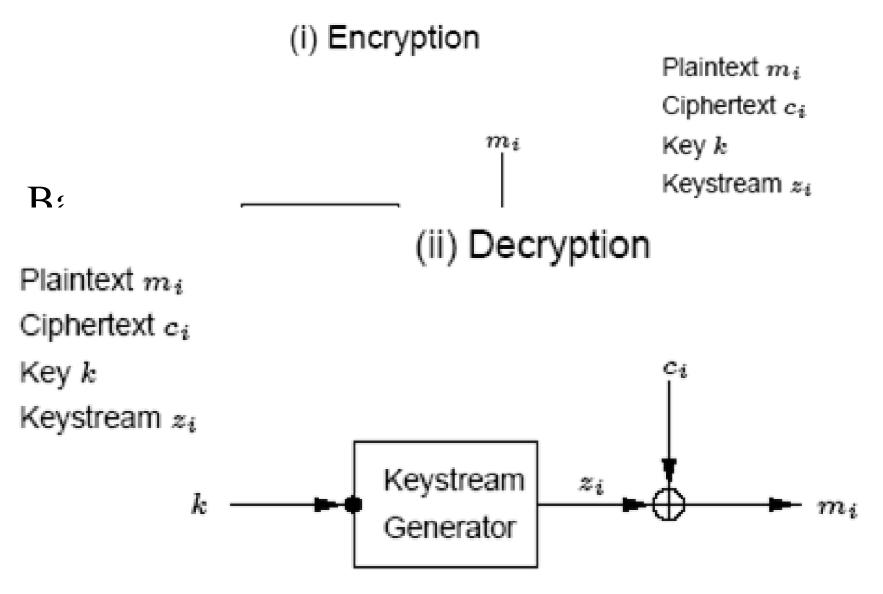
Stream Ciphers

Basic Idea

- Block ciphers: $y = y_1 y_2 y_3 = E_K(x_1) E_K(x_2) E_K(x_3)$
- Stream cipher: $y = y_1 y_2 y_3 = E_{z1}(x_1)E_{z2}(x_2)E_{z3}(x_3)$
- Stream cipher Key: $z_i = f(K, x_1, x_2)$
- block cipher can be a special case of a stream cipher where the key-stream is constant

Binary Stream

- Stream ciphers are often described in terms of binary alphabets
- the encryption and decryption operation are just addition modulo 2
- exclusive-or operation: XOR ' \oplus '
- implemented very efficiently in hardware



• Decryption : $m_i = c_i \oplus z_i \ i = 1, 2, 3, 4...$

Stream Cipher

- Drawback :
 - Key-stream should be as long as plain-text.
 - Key distribution & Management difficult.
- Solution :
 - Stream Ciphers (in which key-stream is generated in pseudo-random fashion from relatively short *secret key*.)

Stream ciphers

• Randomness :

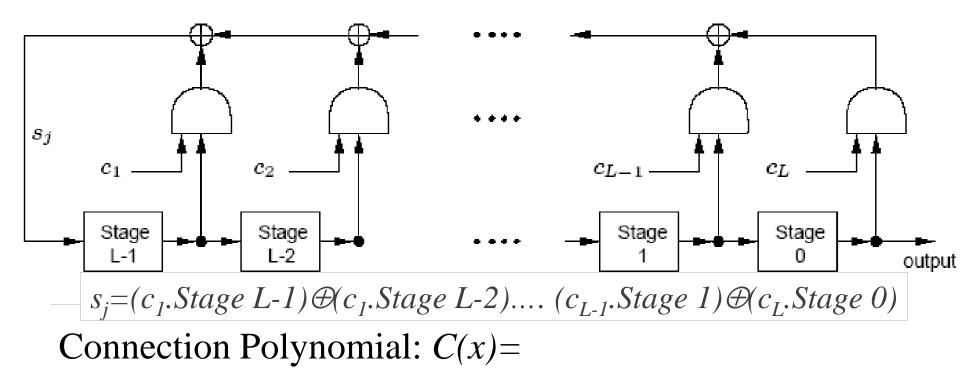
- Closely related to *unpredictability*.

- Pseudo-randomness :
 - PR sequences appears random to a computationally bounded adversary.
 - Stream Ciphers can be modeled as Finitestate machine.

Linear Feedback Shift Register (LFSR)

- Well-suited for hardware implementation
- Very low implementation costs
- Produce sequences:
 - having large periods
 - having good statistical properties
 - readily analyzed using algebraic techniques
- But, the output sequences of LFSRs are easily predictable.

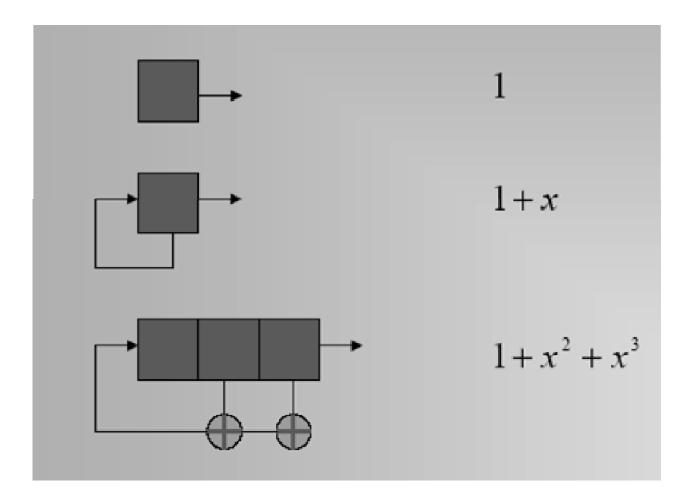
Linear Feedback Shift Register (LFSR)

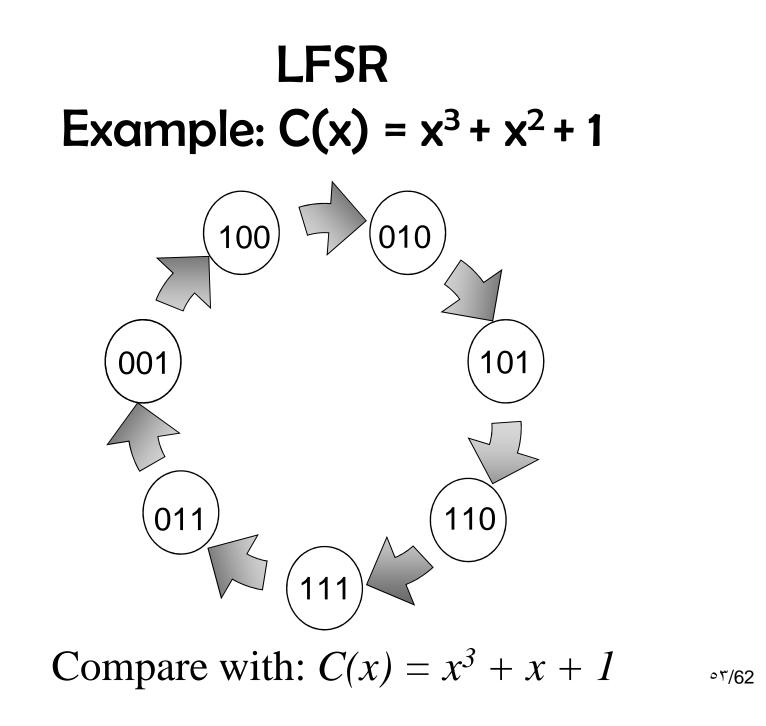


$$1 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_L x^L$$

If C(x) is chosen carefully the output of LFSR can have maximum period of 2^{L} -1

LFSR Connection Polynomial Generation

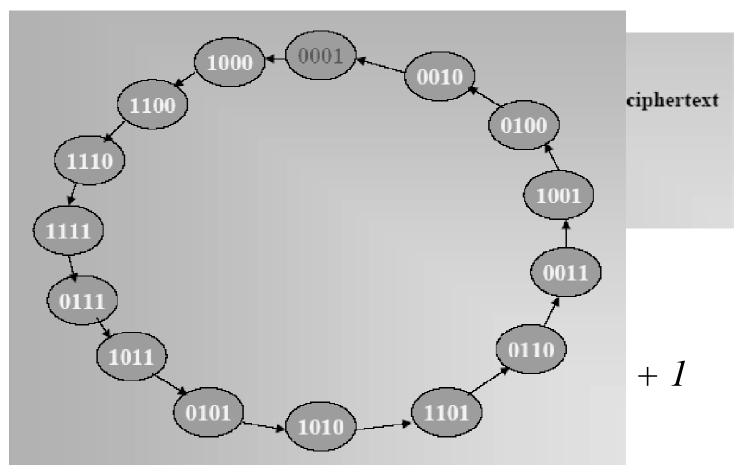




LFSR Example

٥٤/62

when initial state is (0001) LSFR Output: 100011110101100 100011110101100 ...



LFSR

- *LFSR* have good statistical properties.
- However, they may be predictable

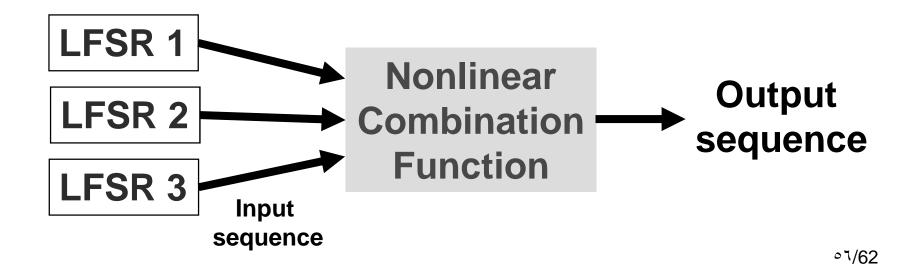
Caveat/Warning:

- Mathematical proofs of security of such generators are not known.
- They are deemed to be computationally secure after having withstood sufficient public scrutiny and inspection.

Nonlinear Combination Generator

Combiner function must be

- Balanced
- highly nonlinear
- carefully selected → no dependence between any subset of LFSR sequences and the output sequence



Example: Geffe generator

 $F(x_1,x_2,x_3) = x_1x_2 \oplus x_2x_3 \oplus x_3$

- inspect the truth table of the combiner function to gain more insight about the security of Geffe generator.
- The combiner function is balanced
- However, the correlation of *z* to *x*₁ is P(*z*=*x*₁) = ³/₄ *x*₂ is P(*z*=*x*₂) = ¹/₂ *x*₃ is P(*z*=*x*₃) = ³/₄

x_2	<i>x</i> ₃	F
0	0	0
0	1	1
1	0	0
1	1	0
0	0	0
0	1	1
1	0	1
1	1	1
	0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1

Geffe Generator Example Study

- LFSR#1: $1+x+x^4$.
- LFSR#2: $1+x+x^3$.
- LFSR#3: $1+x^2+x^5$.

Initial key1: 1000 Initial key2: 110 Initial key3: 10101

- Key sequence $1(x_1)$:
- Key sequence $2(x_2)$:
- Key sequence $3(x_3)$:
- Output sequence (z):

• Exhaustive search: $15 \times 7 \times 31 = 3255$

Correlation Attack

- If we have *n* LFSRs, the key space of the non-linear combination generator is the product of their non-repetitive shortest sequence terms.
 Exhaustive search = Brute force attack: 15×7×31= 3255 trial
- However, if there is correlation between the output sequence and each input sequence then the *effective* key length can be reduced to the summation of their non-repetitive shortest sequence terms.

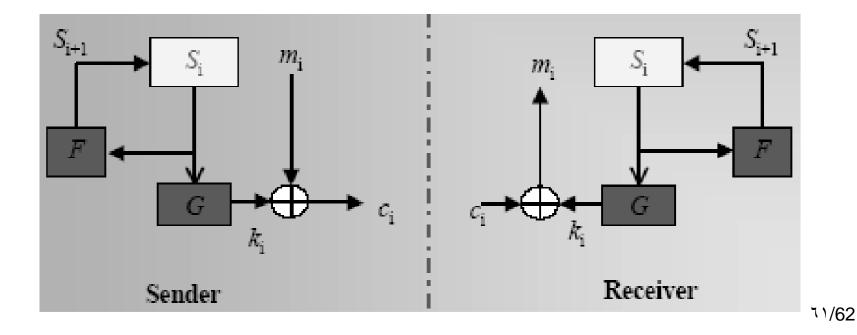
Correlation attack: 15+7+31 = 53 trial

Correlation Attack

z	1	0	1	0	1	1	1	0	0	1	0	1	1	0	1		1
																	l t
$x^{(1)}_{1}$	Ţ	1	1	0	1	0	1	1	0	0	1	0	0	0	1	8/15	
$x^{(2)}_{1}$	1	1	0	1	0	1	1	0	0	1	0	0	0	1	-	8/15	
$x^{(3)}_{1}$	1	0	1	0	1	1	0	0	1	0	0	0	1	1	1	10/15	
$x^{(4)}_{1}$	0	1	0	1	1	0	0	1	0	0	0	1	1	1	1	6/15	
$x^{(5)}_{1}$	1	0	1	1	0	0	1	0	0	0	1	1	1	1	0	8/15	
$x^{(6)}_{1}$	0	1	1	0	0	1	0	0	0	1	1	1	1	0	1	10/15	
$x^{(7)}_{1}$	1	1	0	0	1	0	0	0	1	1	1	1	0	1	0	6/15	ļ
x ⁽⁸⁾ 1	1	0	0	1	0	0	0	1	1	1	1	0	1	0	1	6/15	
x ⁽⁹⁾ 1	0	0	1	0	0	0	1	1	1	1	0	1	0	1	1	8/15	
x ⁽¹⁰⁾ 1	0	1	0	0	0	1	1	1	1	0	1	0	1	1	0	4/15	
x ⁽¹¹⁾ 1	1	0	0	0	1	1	1	1	0	1	0	1	1	0	0	12/15	100
x ⁽¹²⁾ 1	0	0	0	1	1	1	1	0	1	0	1	1	0	0	1	7/15	/62

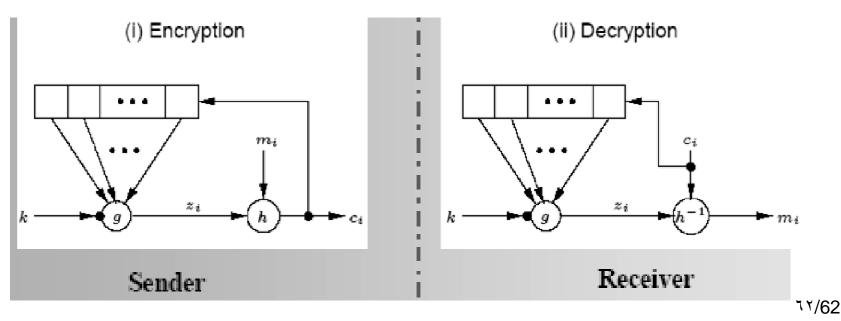
Synchronous Stream Ciphers

- Key-stream is independent of plain and cipher-text.
- Both sender & receiver must be synchronized.
- Resynchronization can be needed.
- Active attacks can easily be detected. (insertion, deletion, replay)
- No Error Propagation.



Self-Synchronizing (Asynchronous) Stream Ciphers

- key stream generated as function of fixed number of previous ciphertext bits
- Active attacks cannot be detected.
- At most *t* bits later than synchronization is lost, it resynchronizes itself
- Limited error propagation (up to *t* bits).



SEAL (just an idea)

- SEAL (Software-optimized Encryption Algorithm) is a binary additive stream cipher (proposed 1993)
- specifically designed for efficient software implementation for 32-bit processors
- it has not yet received much scrutiny from the cryptographic community