The ISC Int'l Journal of
Information Security

July 2010, Volume 2, Number 2 (pp. 109-120)
I sa c u re http://www.isecure-journal.org

High Capacity Steganography Tool for Arabic Text Using ‘Kashida’
Adnan Abdul-Aziz Gutub®* and Ahmed Ali Al-Nazer®

aCollege of Computer, Umm Al-Qura University, Makkah, Saudi Arabia.
b Saudi Aramco, Dhahran, Saudi Arabia.

ARTICLE INFO. ABSTRACT

Article history:

Received: 29 November 2009 . . .
Revised: 9 June 2010 as sound, pictures and text. A new approach is proposed to hide a secret

Steganography is the ability to hide secret information in a cover-media such

Accepted: 16 June 2010 into Arabic text cover media using “Kashida”, an Arabic extension character.

Published Online: 13 July 2010
nbished Thmer 0wy The proposed approach is an attempt to maximize the use of “Kashida” to

Keywords: hide more information in Arabic text cover-media. To approach this, some
Arabic E-Text, Text . . .)

Steganography, Text algorithms have been designed and implemented in a system, called MSCUKAT
Watermarking, Text Hiding, (Maximizing Steganography Capacity Using “Kashida” in Arabic Text). The

Kashida, Feat Codi
ashida, Teature Lodms improvements of this attempt include increasing the capacity of cover media

to hide more secret information, reducing the file size increase after hiding the

secret and enhancing the security of the encoded cover media. This proposed

work has been tested outperforming previous work showing promising results.
© 2010 ISC. All rights reserved.

1 Introduction media. Different human being languages have different
characteristics and properties. In Arabic language,
there are 28 different characters. Arabic characters
are joined when writing words contain more than
one character. Depending on the joined characters,
an extension character “Kashida” may be embedded
between two Arabic characters.

Steganography is defined as in [1] “the art and science
of writing hidden messages in such a way that no one,
apart from the sender and intended recipient, even
realizes there is a hidden message”. Steganography
works as we hide information in un-used and redundant
bits in any cover media such as pictures, sound and
text. There are two uses of the extension character
“Kashida” in Arabic text. One is to decorate the
Arabic text format so that it looks better and more
convenient. This use is important especially in the
titles of the documents. The second use is to justify
the Arabic writings within lines, similar to English
where spaces are used for justifying the text in lines.
The advantages of using “Kashida” in Arabic text to
either format it or justify the lines will not affect the
text contents and meaning [4, 5].

Hiding secret information in text is more challenging.
First, text documents have relatively little redundant
information. Second, the structure of text documents
is almost identical to their look and hence any change
may be visible. Nevertheless, using text is preferred
over other media because it needs less memory to
save, is easier to transfer over the network and more
efficient and cost-saving in printing [2, 3].

Text steganography as it is hiding a secret inside

In this paper, an improved approach is proposed to
text has dependencies on the language used as cover Papet, provec abp prop

maximize the use of the Arabic extension character,

Kashida, between joined characters in Arabic text

Ernail add cubo . (A A Gutub) cover media. The idea of this approach is to embed
mail addresses: aagutub@uqu.edu.sa (A. A. Gutub), « c 1y . .

ahmed . nazeraranco. com (A. A. Al-Nazer). Kashida wlllere\{er possible after any Arabic lettc?r

ISSN: 2008-2045 @ 2010 ISC. Al rights reserved. regardless of it being dotted or not dotted; as Arabic

ISeﬂure@

* Corresponding author.

110

High Capacity Steganography Tool for Arabic Text Using ‘Kashida’ —A. A. Gutub and A. A. Al-Nazer

letters are categorized to two groups: dotted and non-
dotted letters. The approach initiative is originally
presented by us in [5]; where it is improved here and
compared to the earlier work presented in [4].

The rest of this paper is organized as follows. Sec-
tion 2 presents different approaches related to Arabic
text steganography. Section 3 starts by presenting a
background and study of Arabic characters properties.
After that, it describes the details of the proposed ap-
proach including the idea, algorithms and implemen-
tation. In Section 4, we highlight the improvements of
this work over other approaches. Section 5 afterwards,
presents a comprehensive comparison between the
proposed approach and other approaches including
the proposed approach testing results. Then, a new
secured MSCUKAT approach is detailed in Section 6.
Section 7 suggests ten items to be future work ideas
to be considered related to this effort. Finally, Section
8 summarizes the findings in a brief conclusion.

2 Related Work

In [2], the paper proposes a new approach to Text
Steganography in Persian and Arabic texts. This ap-
proach uses one of the characteristics of Persian and
Arabic languages which are the rich existence of points
in their phrases. More than half of the Arabic and
the Persian characters have points. To hide a secret,
the authors propose the vertical displacement of those
points. Before hiding a secret, the authors propose
to compress the secret information first. Then, they
locate the first pointed letter in the cover text. The
size of hidden information is also hidden in the be-
ginning of the text. After that, the compressed secret
bits are read. If the bit has value of zero, the pointed
letter remains unchanged. In case the bit has value
of one; the point of the pointed letter is shifted a lit-
tle upward. This procedure is repeated for the next
pointed letters in the cover text and the next bits of
compressed secret information. Then, points of the
remaining pointed letters are vertically displaced ran-
domly to divert the attention of readers to have better
security. To recover the bits, they identify all hidden
bits in the letters based on the place of points on the
character. After that, the decompression is done to
get the original hidden secret. This approach has a
fair capacity and reasonable robustness in printing
and resizing. On the other hand, it requires having a
new font and it works only with that font. Retyping
and scanning the text can cause loss of hidden infor-
mation. This approach is tested using several Iranian
newspapers to prove the capacity of the approach. As
explained above, the results give a good performance
in capacity while security is still questionable. Figure
1 shows an example of an Arabic letter before and

18:0ured)

Figure 1. An example of a vertical displacement of the point
in an Arabic letter

after the vertical displacement.

In [4], the authors propose a new watermarking tech-
nique to hide a secret by utilizing the extension char-
acter in Arabic language “Kashida” with the pointed
Arabic letters. To hide the secret bits, the authors
proposed using “Kashida” with pointed letters to rep-
resent 'one’ while “Kashida” with un-pointed letters
to represent ‘zero’. The authors propose two ways to
implement it: “Kashida” before and Kashida-after.
“Kashida” before adding the extension letter before,
while Kashida-after adds the extension letter after
the current letter. The results of applying those tech-
niques give a good performance in capacity, as com-
pared to [2], while security is still unconvincing. How-
ever, the authors in [4] propose a secured method that
mix Kashida-Before and Kashida-After by having odd
lines encoded with one method and even lines encoded
with the other one. A comparison between the results
of this technique and previous work done by Shirazi
[2] gave a clear idea about the increased capacity.

In [6], the authors propose a new steganography
method to hide secret information into Arabic text
cover media. The proposed approach utilizes diacritics
in Arabic language which are used for vowel sounds
and found in many religious documents. There are
eight different diacritical symbols used in Arabic. They
found that one diacritical symbol, “Fatha”, is used in
Arabic text as much the other seven diacritical sym-
bols. So, they used “Fatha” symbol to represent 1 and
the other symbols to represent 0. To hide bit of value 1,
they search for the first applicable location for “Fatha”
and then remove it. And to hide 0 they search for the
first applicable location for other diacritical symbols
and remove it. The advantage of this method is the
high capacity since each Arabic letter is applicable for
a diacritic. The disadvantage is that hiding some dia-
critics will get the reader’s attention. Figure 2 shows
text with diacritics and text without them.

In [7], the authors extend the use of diacritics to
hide more information in the cover text. The main idea
of their proposed approach is to put multiple diacrit-
ics on top of each other so that they will look invisible.
Two approaches were proposed: one is based on text
and one is based on images. The bit-representation is
converted to decimal number. In the text approach,
they put multiple diacritics that mapped to the deci-
mal number. Then, they need to have a digital copy of
the document and a program to extract the number

July 2010, Volume 2, Number 2 (pp. 109-120)

Text with diacritics Text without diacritics

OF il)l O e 08 (e 8 Ol Wiaa
ok aie il oy e Comans JUB aliy 0 Aile

Jlae Y1 L) J sy aluss e il o il J gua) Canans
Je 4) 43 CilS Gad 5 Le (sl IS Al
Lol 43 e CilS e 4] sala Le) 45 aed das

A sals Lo) 4 g LeaSiy bl) i g

) Al G) ke A 5500 5 s

Figure 2. An example text with and without diacritics

of hidden diacritics. In the image, the text containing
multiple diacritics is converted into image and then
analyzed to get the secret back. The advantage of
multiple diacritics approach is the huge capacity since
they can hide big secrets in one diacritic. However,
the disadvantage is that putting diacritics in specific
places in the documents gets the reader’s attention.

In [8] and [9], the authors proposed two approaches
based on the UNICODE encoding of the pseudo space
and pseudo connection characters. Arabic letters are
written in a connected way so that the letters of a word
are connected. However, some Arabic letters can’t be
connected. After each connected letter, we can put
pseudo connection character which is not visible. The
pseudo connection character is known as zero width
joiner (ZW1J). If the letter is not connected, we can
put pseudo space character which is not visible as
well. The pseudo space character is called zero width
non joiner (ZWNJ). So, a pseudo character is put
where applicable to hide 1 and skipped to hide 0. The
advantages of this approach are the invisibility of the
pseudo characters and the huge capacity since we
can hide a secret bit after each Arabic letter. In the
printing format, this approach is not helping since
hidden information is invisible.

In [10], a new approach is proposed to hide infor-
mation in the Arabic and Persian cover text based on
the UNICODE codes for the letters. Based on the fact
that the writing is connected, Arabic and Persian let-
ters have four formats each based on their location in
the word. Each format has a code in UNICODE and
the unique format representing the letter has another
code. The text is saved using the unique representation
code. Any text-program which reads the text makes
contextual analysis to show the correct format in the
program. This approach proposes using the unique
representation codes for a word to hide 0 and using
the location-based format code for a word to hide 1.
It has the advantage of good capacity since each one
word in the cover text will be used to hide one bit.
However, it will not help in the printing format since
hidden information is invisible.

In [11], the authors propose using reverse “Fatha”
to hide information in the cover text instead of the
regular “Fatha”. “Fatha” among other diacritics is
the most used diacritic in Arabic, Persian and Urdu

Figure 3. An example of regular “Fatha” and inverse “Fatha”

languages. We put an inverse format of “Fatha” where
applicable on the same letters we want to hide. No
one will notice this inverse “Fatha” easily which is an
advantage. The disadvantage of this approach is the
need for a new font to use to put the inverse “Fatha”
since it is not a standard diacritic. Figure 3 shows
both regular “Fatha” and inverse “Fatha”.

In [12], a new approach to Steganography in Persian
and Arabic texts is proposed. It uses special form of
“La” word to hide information. “La” (“¥”) is created
when the letter “Lam” (“J”) is followed by the letter
“Alef” (“1”). To hide 0, we insert Arabic extension
letter between “Lam” and “Alef” letters and use the
normal form of “La”. To hide 1, a special form of the
word “La” with a unique code in Unicode is used. This
method is used in limited format of the text and hence
has less capacity than the others.

3 Proposed Approach

The idea is originally described briefly in [5]. There
are 28 letters in Arabic language, where some letters
have more than one format. For example, the letter {1}

has 6 formats { ¢ & <! <3<1 <N The Arabic keyboard
contains a total of 35 different formats for the 28
letters. The Arabic extension letter, Kashida, can
come before or after certain letter formats. In both
cases, “Kashida” can’t start a word and can’t end a
word, i.e. “Kashida” can’t come in the beginning of a
word and can’t come in the end of a word. We can put
“Kashida” after all Arabic letters if it is not the last
letter and it is not from the letters {J <o ¢3¢ es e}
in addition to the {s} format of the letter {=}. For
example, let’s take the word “Jw<”. We saw here we
could put two Kashida(s) in 4-letter word. We could
not put Kashida after the last letter {J} and after {i}.

We have studied Arabic letters to see their applica-
bility to add “Kashida”, as shown in Table 1. Table
1 shows the 28 Arabic letters followed by 35 letter
formats. Then, it shows if “Kashida” comes before
the letter with an example. Finally, the table shows if
“Kashida” comes after the letter with an example again.
Although the letter Lam (J) can accept “Kashida” af-
ter itself, there are four exceptions. They happen when
the letter Lam (J) is followed directly by one format of

the letter Alef (1). Those letter formats are (] el h.
In Arabic language, those two letters, Lam and Alef,
when followed by each other are normally written dif-

1S¢0ured)

111

112

High Capacity Steganography Tool for Arabic Text Using ‘Kashida’ —A. A. Gutub and A. A. Al-Nazer

Table 1. Arabic letters and their applicability for “Kashida”

Applicable
for ”Kashida”
After Letter

Applicable
for ” Kashida”
Before Letter

Arabic
Letter

Letter Num.
Format Rep.

i 1570 [Yes J No

f 1571 L Yes i No

i 3 1572 5 Yes -3 No
) 1573 L Yes - No

1 1574 = Yes = Yes

! 1575 L Yes - No

<@ <@ 1576 - Yes - Yes
5 1577 X Yes 3 No

O <O 1578 o Yes 5 Yes
& & 1579 & Yes 3 Yes
z z 1580 = Yes - Yes
z z 1581 = Yes - Yes
z ¢ 1582 & Yes A Yes
3 3 1583 K Yes =) No
3 3 1584 kY Yes -3 No
B) B) 1585 > Yes =J) No
J J 1586 > Yes =) No
o o 1587 o= Yes s Yes
S g 1588 2 Yes " Yes
o ua 1589 o Yes —a Yes
u=) 1590 o Yes —a Yes
L L 1591 L Yes B Yes
L L 1592 BEN Yes 8= Yes
& & 1593 & Yes - Yes
¢ & 1594 & Yes < Yes
o - 1601 (= Yes 4 Yes
It} t) 1602 & Yes 3 Yes
4 4 1603 < Yes =< Yes
Jd d 1604 d Yes J Yes
o a 1605 &~ Yes - Yes
o 0 1606 o Yes 5 Yes
° ° 1607 “ Yes Y Yes
g 3 1608 Es Yes =9 No
I 1609 = Yes - Yes

] ¢ 1610 - Yes = Yes

ferently as: (‘y R <), Arabic readers see it is not
convenient if “Kashida” comes between. Hence, we
exclude “Kashida” to come between those letters.

The idea is to build a steganography schema and
tool that utilizes the extension character “Kashida”
in Arabic language to hide a secret. The motivation of
this work is to maximize the capacity by utilizing all
possible locations for “Kashida” in the Arabic letters.
To achieve this, we have done a study to know which
Arabic letters can be extended and we defined the
rules for MSCUKAT to embed “Kashida” in Arabic
text, as in the previous section. Based on the above
study, we put “Kashida” where applicable and the bit
representation of the secret has value of 1 while we skip
it if the secret has value of 0. The algorithm is based on
Binary Coded Decimal (BCD) representations as other
papers do in this field. An important assumption is
that the cover text is plain text without any formatting
or justifying and it is without “Kashida”.

18:0ured)

A programming language (C#) with Dot Net Frame-
work 2.0 is used for encoding and decoding the secret
message. The cover media which is represented in an
Arabic text is taken from text files so the program will
take the Arabic text and embed a secret message in it
using MSCUKAT technique. Moreover, the secret can
be read from a text file and then converted to binary
bit representation. The program is able to extract the
secret from the cover media that has a secret.

The program has two parts: one for encoding secret
in a cover media and the second for decoding the
secret. The first part which is fully implemented has
four steps:

(1) entering or uploading the secret,

(2) converting the secret to bit representation,

(3) entering or uploading the cover media, and fi-
nally,

(4) embedding (or encoding)the secret in the cover
media.

Once you click on the fourth step (embedding the
secret), the secret will be embedded using “Kashida”
and MSCUKAT approaches with useful statistics in-
formation. Not only that, but it will export the statis-
tics into text file to use it in the excel sheet.

Figures 4 and 5 were taken as snapshots of the
MSCUKAT program. Figure 4 shows the full picture
of the program. Figure 5 shows, in focus, the steps
of encoding a secret. Figure 6 shows how the output
encoded messages will be.

We have implemented the two “Kashida” ap-
proaches in [1]: Kashida-after and Kashida-before
as explained below. Moreover, we have implemented
the third approach suggested by the authors to have
better security where we apply Kashida-after for odd
lines and Kashida-before for even lines.

For Kashida-after, we put “Kashida” if we have 0
bit and we have applicable non-dotted character for
putting “Kashida” after. We defined the applicable
characters as shown in Table 1. Note that the letter
(Lam) is applicable if it is not followed by the letter
(Alef). We have considered that and have tested each
(Lam). We have also tested to see if the next letter is
space or enter so that we have excluded it since adding
“Kashida” is not applicable in this case. On the other
hand, if we have 1 bit and we have applicable dotted
character for putting “Kashida” after. We defined the
applicable characters as shown in Table 1. Also, we
have tested if the next letter is space or enter so that
we have excluded it since adding “Kashida” is not
applicable in this case.

For Kashida-before, we put “Kashida” if we have 0
bit and we have applicable non-dotted character for

July 2010, Volume 2, Number 2 (pp. 109—120) 113

all MSCUKAT =[E] &]

a) Encryption
Step 1: Enter or Upload Secret

Encryption Results

Enter Secret Text (or) [Upload Secret File |

il 1 ol MSCUKAT Embeded Text
File Name sl .~ Mo.OfChar. 1383
- Length 22 ar Jo=llg pl all ale Lol |_'| Percentage 40.85
=5 = PP - =
‘J“”mf')”"f‘ TR If‘zd“l"s*_“‘”_'. | Ratio(Sec,Cov) 3.87
- H - H [s\.LG ‘LAJ = il socelg . i lolkl
Step 2: Convert Secret to Bits Representation g atis Al she e) i I F S L Ee Y el P 581
: sasgall V@l Vol ag Slg . { Ogaley W o yilln
Convert Secret To Bits Length (bits) 352 ol pl=ll alay ooy pal =l {I:qj .:I.u_.:. g_: Q il
100 o0 » 1 LS . algw)g eaas 110w Of 1g by -
0001010001100000110011000110 » Ones (1s) e ol & Sl o8 g s ag il s G File Export

0000101000100110000000000100

Ones Perc. 28.41

Step 3: Enter or Upload Cover Media Dotted Kashida (After Letters) Embeded Text

Enter Cover Media Text {or) [Upload Cover Media File] oMl dy bl & MNo. Of Char. 1943
‘_‘\Jt.ﬂ.ll Ayl 4 s dasllz plell ple oozl 5 || Percentage 58.23
: i : r9 ¢ L2)UIg Clglow ! 5 L5 Sl all sozdl
@ Jaslis alall sle Lol E! FileName D:\sersinazeaala e e mlgu P Ratio{Sec,Cov) 5.52
pidlell b coll ol d02l Length 3337 il e s S8 J5F: 8. Jpdl slc p s
2ally Clolkll Jaxs « LS)l5 « VLY ol 1p e . £ oneles Y oyills Ggel e
wle plell Lad il all 1ozlly - e Export alas gt poalsll al Sy W sasg alll Q
Qg 82 ac Lo Ol 1 g ilg . opllg plell .
Step 4: Embed Secret in Cover Media | Embed il o8 4pl; bad ar alll s oo ® LS

b) Decryption

Decrypt MSCUKAT Embeded Text Dotted Kashida (Before Letters) Embeded Text
% .'UI g MNo. Of Char. 2451
B ENEREY -
Get Current Secret :\J- ST, 25 ST 73.75
or Upload Encrypted File = =g ¢ uasls Slglooud] 15 il all Lol ~ Ratio(Sec,Cov) 6.99
plzll] Sill all 1o lg ¢ yillg oL Bl
il Sgs g L L8} UIES . Jp el ole P 331
Decrypt Dotted Kashida (After Letters) Embeded Text ;rq”_ Vol ag “‘i',;?{ ol ey ¥ yills ogel =, Q .
plelialay g oy polellal dyd Y sass ol
Get Current Secret it Sl ol = Ot s o 'J_u:_" L3
¢ g wyg sy © la0zro Ol ap dilg ¢ o allg
S gl oyl n b ag Bay e ayalll sy e T File Export
or Upload Encrypted File -
Decrypt Dotted Kashida (Before Letters) Embeded Text Dotted Kashida (Mixed for High Security) Embeded Text
Get Current Secret i T » MNo.OfChar., 2037
- asJoslls plall ol o Szl _, || Percentage 61.04
or Upload Encrypted File - J==s o Lapiis gl w Il 1% Sill all sezdl .
bzl Jas sl all asclis « jeally Sl Lkl Ratio(Sec,Cov) 5.79
Decrypt Dotted Kashida (Mixed for High Security) Embeded Text il Sat ey J B LB G 1 JIES . Jpll sle P 455
Vlaly ol spily . { Gael=, ¥ oyills Gaal =,
Get Current Secret i plallzlay oo poalell al s Y aasg all Q 731
JHLEN ¢ adg g sae © lxoceo Ol ag iy ¢ opaally :
or Upload Encrypted File i P ale ® ol s dapddy lpFaall sy T File Export

Figure 4. Snapshot of the MSCUKAT program - the full picture

Step 1: Enter or Upload Secret putting “Kashida” before. We defined the applicable
Enter Secret Text (or) [T ?haracters as shown in 'Table 1. Also, we have tested
: if the previous letter is space or enter so that we

£zl pazll dl g . o
F3E Herne have excluded it, i.e. adding “Kashida” is considered
= Length 22 not applicable in this case. We further studied if the
Step 2: Convert Secret to Bits Representation previous character of the character we want to add

“Kashida” before, if it is applicable to have “Kashida”
after; we generally defined the applicable characters
as shown in Table 1.

| convertSecret Togits | Length (bits) 352

0001010001100000110011000110 » Ones (1s) 100

0000101000100110000000000100 Ories Perc. 28,41

The following example is built based on the example

Step 3: Enter or Upload Cover Media shown in [4]. It clearly shows how we have implemented

Enter Cover Media Text (or) [Upload Cover MediaFile | “Kashida” approaches. Moreover, it shows the result of
fjij m i S |: Sl e applying the pr(?posed MSCUKAT approach on the
ol (515 3411 <l 10 et e same cover media text. We suppose t-hat we want to

ﬁ:ﬁﬂﬁﬁ : :Ubfo.l_?rj 3 i hide the secret “110010”in the following text:

| Fie Export | waging Yo 48 55 o pall 2Dlasl Cpusn (a7

Step 4: Embed Secret in Cover Media Embed We count the number of characters in the cover media
text to be 34. Then, we encode the secret and we
Figure 5. Snapshot of the MSCUKAT program - in focus the count how many characters are needed to hide the

steps of encoding a secret secret as shown in Table 2.

114

High Capacity Steganography Tool for Arabic Text Using ‘Kashida’ —A. A. Gutub and A. A. Al-Nazer

Encryption Resalys ——————————————

MSCUKAT Embeded Text

Ledabl &bl » Mo, OfChar, 1363
ar Lo =llg pl=ll (olo Sl Il Percentage 40.85
=g o Lapills Clslooal (5l sill all soll :

wole plall Lad il all soxdlg « jgullg Silolkll aliofec tou) R i,
U9 olmy i)l Sgiay) B J8 7} JLES (gl P 981
oo srg alll W] al] W ol ap il « { Ogolos W o aillg Q 981
ol ol =l prley gty ool allal 2l e W e

o ¥ 0 LSl ¢ algua s eaec a0 w0 O agdls Fie E =
auls alll ol #)l s dapiey uFarallisg T e

Dotted Kashida (After Letters) Embeded Text

ool kIl » No.OfChar. 1943
ay,loslls pl=ll ple ol || Percentage 58.23
J=n . LVl lglocw)l gl wsill all soll .

; | Lot 5ill all 10celg « g Jlg lo LB 11 Ratio(Sec,Cov) 5.52

M_Mlugg{;uq.d_;adﬂ}:dlé_ﬁ‘d.g_zll._;\m p 530
el WOl g Big . { Ogoley Y yilly Ogol ey
Zloay o0y poal=ll @l 2y ¥ s sgalll Q 300

g8 8iat laoses Ol 2 p.dlg cralls plzl) .
il e agdd lpdraralllsprpo®: Jilal T

File Export

Dotted Kashida (Before Letters) Embeded Text
R Ma. Of Char, 2451
gl Gk Sl

.
2 Joslls plall Lo Sl 7 Percentage 73.75
J=3 ¢ payillg Slgloswd] 15 wSill all saxdl Ratio{Sec,Cov) 6.99
Alell a8 Sill all 1o % ig ¢ yillg ol Bl

ol S0y L@ 8} B dp el sle P 331
Wl WOl ag sy - { Ggol=y W sills Ggoley o) 638
plellaleay ool al sy s Y sasg alil

L - adgws sie s laomo Ol ap iy o pulln =

Pl s gl sdag ey taralllsy e T

Dotted Kashida (Mixed for High Security) Embeded Text

B Ak %] » MNo.OfChar. 2037
s Josllz plall Lo cazell . [Percentage 61.04
=g« (o) VIg lglo e |l G 15 S0l all sazdl

pl=ll Lo sil all sozelly o jallg Clel Bl Ratio(Sec,Cov) 5.79

Gl SgE g) B A8d:ruad. ol ole P 455
Wl WOl gy - {Ggel=y ¥ oillg Gral=ey
plallgl oy orpalellal 2yl Y e all Q 731

JFEN ¢ Agaard st & 10050 Ol Agaiilg o tllg
e, el o® ol e bag ddy i saalll g o T

File Export

Figure 6. Snapshot of the MSCUKAT program - output
encoded messages

4 Improvements

The improvements of applying MSKUKAT can be mea-
sured when we compare it to “Kashida” approaches
in [4]. We observe three improvements. First, the ca-
pacity of cover media is increased to hide more secret
information. Second, the file size increase after hiding
the secret is reduced since we have less addition to
the original cover media. Third, the security of the
encoded cover media is enhanced.

First, the main motivation of MSCUKAT is to
increase the capacity of the cover media to hide longer
secrets; secrets are represented in bits. As a result of
increasing the capacity, MSCUKAT can hide more
information according to our experiments in the next
section; the proposed approach is giving capacity of
55% more “Kashida” approaches as compared to [1].

Second, another major improvement is that al-

1SeCure

Table 2. Example of applying MSCUKAT compared to
“Kashida” approaches

Secret bits Cover media length Cover media text

110010 34

aginy Yo 4S i e pall 2Dl Cpin (10

Approach Needed letters to hide secret Output text

11001 0

UR22 v

aginy Ve 45,55 6 jall Sl Guan e

Kashida-Before 32 hl i f ii

Aiay Yl aS i s padl Dbl (pasa e
11 0010

Wiy

iy Yo 48 i o padl 23U Guen (g0

Kashida-After 32

MSCUKAT 17

though we have increased the capacity of the cover
media, the size of the cover media is not increased
much. We have reduced the increase of the file size by
70% compared to “Kashida” approaches of [3, 4]. So,
we are only increasing the file size with 30% of what it
should increase compared to “Kashida” approaches of
[3, 4]. This improvement comes from our observation
to the secrets’ size with the number of ones and its
percentage. Our finding, from the sample secrets we
have, is that the number of 1’s in the secret is much
less than the number of 0’s. This is based on our ex-
periment which assumes that the information we are
encoding is simple text not encrypted or compressed.
It is the same assumption of the other paper which
we compared to, i.e. papers [3—5]. We found that on
average the percentage of 1’s in a secret is 28.4%. We
set up MSCUKAT approach so that we put “Kashida”
if we have the bit equals to 1 and this has a great
impact on the increase of the cover media file size.
The cover media file size is increased by small per-
centage. Finally, as a result of putting less number of
extension letters, Kashida, in our approach, the Ara-
bic readers see it more convenient and comfortable
to read compared to “Kashida” approaches where we
add Kashida(s) as much as the size of the secret.

Third improvement is the enchantment of the secu-
rity. From security point of view, one could count the
number of the extension letters in “Kashida” encoded
text to know the size of the secret. We think that our
approach is more secure than [3] and [4], since the
number of extension letters in MSCUKAT encoded

text does not reflect the size of the secret.

5 Experiments and Comparisons

The cover media used in the experiments is taken from
15 Khotbas, Friday’s speeches, of Ibn Othaimeen, Is-

July 2010, Volume 2, Number 2 (pp. 109-120)

Table 3. Comparison between MSCUKAT with “Kashida”
approaches in capacity

Approach P Q (P+Q)/2
Kashida-After 0.163 0.224 0.194
Kashida-Before 0.109 0.167 0.138
Kashida-Mixed 0.136 0.196 0.169
MSCUKAT 0.300 0.300 0.300

lamic scholar, of different lengths * . Also, the eight se-
crets used in the experiments are the parts of Sorat Al-
Fatiha from Holy Quran, the holy book of Muslims. We
have compared the proposed approach, MSCUKAT,
with previous “Kashida” approaches in [4] in differ-
ent ways. In [1], there are three approaches when de-
ciding to put “Kashida” to hide a secret. They are:
(1) “Kashida-After” where we put “Kashida” after
the applicable letter; (1) “Kashida-Before” where we
put “Kashida” before the applicable letter; and (3)
“Kashida-Mixed” where we put “Kashida” after the ap-
plicable letter in odd lines and put “Kashida” before
the applicable letter in the even lines of the cover text.

First, we need to know that our approach is simi-
lar to “Kashida” approaches in the use of the exten-
sion letter “Kashida” to hide a secret bit. However,
“Kashida” approaches use the extension letter to hide
any secret bit whereas MSCUKAT approach uses the
extension letter to hide only the secret bits with value
1. For the other secret bits which contain 0, we skip the
applicable location and move to the next. In “Kashida”
approaches, they use dotted letters to hide 1’s and
un-dotted letters to hide 0’s whereas we did not dis-
tinguish between dotted and un-dotted letters in our
approach.

To numerically compare the two approaches, we
count the number of applicable locations to put the
extension letter “Kashida” in the cover media in both
approaches independent of the secret message. We
have used the 15 speeches in [? | and then taken
the average as shown in Table 3 below. Similar to
what given in [4], we use p to represent the ratio
of the applicable locations to hide 1’s to the cover
media length. Also, we use q for ratio of the applicable
locations to hide 0’s to the cover media length. Finally,
we average p and q by adding them up and dividing
by 2. Table 3 shows the results.

We observe that MSCUKAT is performing better
that the other “Kashida” approaches. It gives at least
55% (0.194:0.300) more capacity than that with the

L Tt is available online at http://www.ibnothaimeen.com/all/
Khotab.shtml

Table 4. Comparison between MSCUKAT with “Kashida”
Approaches in Coverage Percentage and Secret Occupation
Ratio

Approach Coverage Percentage Secret Ratio
Kashida-After 49.2 5.1
Kashida-Before 67.3 7.2
Kashida-Mixed 56.4 5.9
MSCUKAT 32.8 3.4

best “Kashida” approach in our experiment, namely
Kashida-After.

Then, we calculated the ratio between the secret
and the needed characters in the cover media to hide
the secret. Also, we compared the percentage of the
needed characters to hide the secret and the cover
media size to see how much it would consume in order
to hide this secret. We hid the 8 secrets, one by one,
in the 15 cover media, again one by one. So, we had a
total of 8 x 5 runs. Then, we averaged them as shown
in Table 4 below.

To read Table 4 correctly, we need to know the
following. Number of char is the number of first char-
acters in the cover media that can hide the secret.
Cover percentage is ((Number of char)/(Cover media
length))x100; this gives the percentage of cover me-
dia that has been used to hide the secret. Secret ratio
is the ratio between secret and cover media which
equals to (secret length)/(Number of char). It helps to
know the ratio between number of bits to be hidden
and number of characters in the cover media that are
enough to hide such secrets.

We observe that MSCUKAT is outperforming the
other approaches by utilizing less percentage of the
cover media to hide a secret. MSCUKAT is saving at
least 33% (32.8:49.2) of the cover media compared to
“Kashida” approaches. The ratio between the secret
and the needed cover media size to hide is better in
MSCUKAT with at least 33% (3.4:5.1).

The following bar charts (Figure 7 and Figure 8)
illustrate this study. Figure 7 shows the comparison
between “Kashida” approaches and MSCUKAT ap-
proach in the needed cover media percentage that can
be used to hide a secret. Figure 8 presents a similar
comparison but in the ratio between the secret and
the needed cover media, i.e. how much we need (in
ratio) to hide a certain secret with a defined length.

Based on the experiments we did, we observe that
using MSCUKAT is giving much more capacity than
using “Kashida” approaches. This study implies the
limitation of the capacity when using “Kashida” previ-
ous approaches. On the other hand, using MSCUKAT

1S¢0ured)

http://www.ibnothaimeen.com/all/Khotab.shtml
http://www.ibnothaimeen.com/all/Khotab.shtml

116

High Capacity Steganography Tool for Arabic Text Using ‘Kashida’ —A. A. Gutub and A. A. Al-Nazer

80
70
60
50 A
40 -
30 -
20 -
10 -
0 - . . .
& P @*‘zb &
& & & &
%’bc’ 3}\\ ,_‘)Q\
@ v
M coverage percentage

Figure 7. Comparison between MSCUKAT and “Kashida”
approaches in the coverage percentage

1N

MSCUKAT

o B N W A~ U1 O N

Kashida-After Kashida-Before Kashida-Mixed

M Secret Ratio

Figure 8. Comparison between MSCUKAT and “Kashida”
approaches of ration between the secret and the needed cover
media size

approach gives more possibility to hide longer secrets.

One important note we observe is the secrets’ size
with the number of ones and its percentage. We have
studied the input secret that we can embed in a cover
media. We want to analyze the number of 1’s in the
secret and its percentage compared to the size of the
secret. Table shows our findings.

We observe that we have on average 29.3% of the
secret are 1’s and the other 70.7% are 0’s. One impor-
tant difference between our approach MSCUKAT and
“Kashida” old approach [3, 4] is that we put exten-
sion letter for ones only while we skip the applicable
location for “Kashida” if we want to hide 0. How-
ever, the extension letter is required for 0’s and 1’s
in “Kashida” approaches described in [3, 4]. This is
based on our experiment which also assumes that the
information we are encoding is simple text not en-
crypted or compressed such as in the diacritics stego
approach detailed in [0, 7]. The comparison is using
the same assumption of the other paper, i.e. [4], which
we compared to.

ISeGur@

Table 5. Secrets Statistics

Secret Length Number of 1’s Percentage
1 208 63 30.3
2 224 63 28.1
3 336 95 28.3
4 336 106 31.6
5 352 100 28.4
6 352 104 29.6
7 352 105 29.8
8 464 131 28.2
Average 328 95.9 29.3

To encode the cover media with a secret, we need to
add extension letters which will increase the size of the
file. The proposed MSCUKAT approach is more effi-
cient in encoding the message compared to “Kashida”
approaches. Encoding the message in the proposed
approach results in smaller file sizes as compared to
“Kashida” approaches. On average, the file sizes are
reduced by 70.7% by using the proposed approach.
Moreover, we have two more experiments. The first
one, we make the secret constant and we change the
cover media. We have taken secret number 1, which is

LL(‘.\..!;‘)S‘ uaa‘)n b s
and hid it in the fifteen-speech cover media. Once
we converted the secret to bit-representation, it had
352 bits: 100 ones (28.4%) and the others were zeros.
Table 6 shows the results.

Using the proposed approach, MSCUKAT, gives an
average of 35.1% capacity, which means we can hide
the specified secret by using 35.1% of the cover media.
On the other hand, using ”Kashida” approaches has
an average of 62.4% capacity to hide the same secret.
Clearly, using MSCUKAT approach is giving 78%
better than using “Kashida” approaches.

In the second experiment, we fix the cover-media of
length 5,567 characters (Last Khotba) and we change
the secret. Table 7 shows the result of this experiment.
Moreover, we observe that MSCUKAT approach is
giving better capacity than “Kashida” approaches by
at least 53% more.

Overall, MSCUKAT is giving better capacity.
Whether we fix the secret and change the cover media
or we fix the cover media and change the secret, we
have similar results. From security point of view, one
could count the number of the extension letters in
“Kashida” encoded text to know the size of the secret.
We think that our approach is more secure since the
number of extension letters in MSCUKAT encoded
text does not reflect the size of the secret.

July 2010, Volume 2, Number 2 (pp. 109-120)

Table 6. Comparison between MSCUKAT and “Kashida” approaches in the percentage of cover media occupations with fixed secret

Cover media Kashida-After

Kashida-Before

Kashida-Mixed MSCUKAT

1 71.33 N/A 83.87 48
2 70.99 97.32 83.22 46.82
3 63.92 98.28 77.25 44.61
4 59.1 78.33 67.69 39.2
5 60.09 90.63 69.49 38.83
6 58.23 73.75 61.04 40.85
7 48.43 67.56 54.39 33.31
8 48.66 75.27 59.79 32.58
9 47.79 66.52 56.28 32.18
10 47.64 65.55 56.45 31.75
11 47.29 66.35 54.58 30.13
12 46.18 68.11 51.48 30.07
13 46.49 64.29 55.3 28.33
14 47.13 63.09 53.89 29.26
15 33.68 44.8 35.23 20.8
Average 53.1 72.8 61.3 35.1

Table 7. Comparison between MSCUKAT and “Kashida” approaches in the percentage of secret occupations with fixed cover media

Secret Kashida-After Kashida-Before Kashida-Mixed MSCUKAT
1 31.31 43.27 33.91 20.8
2 19.94 25.4 19.94 12.47
3 33.68 44.8 35.23 20.8
4 29.28 41.64 33.91 19.94
5 30.11 43.27 35.85 20.8
6 19.81 26.93 21.43 13.24
7 30.84 40.4 33.91 19.94
8 41.82 56.3 49.15 26.55
Average 29.6 40.25 32.92 19.32

Other factors in the comparison between the two
approaches are considered such as complexity, se-
curity and robustness. First, regarding complexity,
MSCUKAT is less complex than the approaches in
[4]. In [4], their approach is mixing the dotted letter
with the extension character as well as the odd and
even lines. In MSCUKAT, it is a straightforward ap-
proach to find applicable Kashida to hide the secret
regardless of dotted letters and order of lines. Sec-
ond, regarding security, both approaches are using
“Kashida” to hide the secret bits but the approach in
[4] is using “Kashida” to hide all bits (0’s and 1’s)
where MSCUKAT is using “Kashida” to hide only 1’s.
This indicates that our approach has less appearance

in the cover text and hence is more secure. The ap-
proach in [4] will get reader’s attention because of the
extensive use of “Kashida” in the cover text. Finally,
regarding robustness, both approaches share the same
level since they use explicit extension letter to hide in-
formation. Retyping the text or scanning it may cause
loss of the hidden information.

6 Secured MSCUKAT

We would like to go further and make secured version
of MSCUKAT to have better security and make it
difficult to crack. It starts with the time we think of
how we will save the number of bits of the secret. We

118

High Capacity Steganography Tool for Arabic Text Using ‘Kashida’ —A. A. Gutub and A. A. Al-Nazer

Table 8. Numbers from 0-9 and their bit representation

Number Bit Representation

1000110000000000
0100110000000000
1100110000000000
0010110000000000
1010110000000000
0110110000000000
1110110000000000
0001110000000000
1001110000000000
0000110000000000

S © 00 N O Utk W N

decided to save it at the beginning of the encoded
cover media followed by the encoded secret bits using
the extension letter, Kashida, as shown in the previous
sections.

The size of the secret bits is taken as numerical rep-
resentation (e.g. 8 means secret with 8 bits) and then
convert it to its bit representation (e.g. 8 is converted
to be 1000). Then, we put it at the beginning of the
cover media by putting “Kashida for 1 and skipping
the applicable location for 0 as we did previously. After
that, we put a mask then we encode the secret bits.

Table 8 shows the numbers from 0 to 9 and their
bit representation. The mask is “1111” since we have
studied the bit representation of all numbers from 0
to 9 (which will compose the secret size) and found
that there is no four ones followed by each other. The
algorithm is based on the BCD representations as
other papers do in this field.

Next, we looked at the secured MSCUKAT. We
want to make the encoding process that hides the
secret more securely by taking a skip-number between
0 and 4. This number is calculated by the following
equation:

skip-number=modular(cover-media-size, 5)
Then, we skip none, one, two, three, or four charac-
ters if we have skip-number values 0, 1, 2, 3 or 4, re-
spectively. We mean, by skipping, that we should not
apply MSCUKAT in the desired location. Once we
go through the cover media, we make a pointer of the
current-location that is applicable to put “Kashida” in
and we then skip if the following formula equals zero.

modular(current-location, skip-number)
For example, if skip-number is 3, it means that it will
hide the secret in all possible location for “Kashida”
but it will skip the third possible from each five possible
locations.

18:0ured)

Encoding the cover media with a secret using se-
cured MSCUKAT requires more steps than normal
MSCUKAT approach. In addition to skipping letter
extension being relatively random (based on the length
of the cover media), we go through the remaining un-
encoded text in the cover media and we do random
encoding. This will assure higher security. After en-
coding the message, we need to know how to decode
it. Here, we need the format of the encoded message
explained at the beginning of this section. This is sug-
gested as future work to be evaluated if it can help
securing the proposed algorithm

7 Future Work

Although we got good results out of the experiments
we conducted, we would like to highlight some future
work to be done in order to have a comprehensive
steganography solution. First, we need to implement
the secured MSCUKAT approach, test it and com-
pare it to both approaches in [4] and [2]. Second, we
need to hide the length of the secret inside the cover-
media to easily retrieve the secret information from
the cover media. For this, we need to formulate the
length and assign starting and ending bits to identify
it easily. Third, we should use the extension charac-
ter, Kashida, in the remaining un-used and applicable
letters randomly to divert the attention of readers to
have better security. This method works fine in [4] and
gives an advantage in its security. Yet, the security
of this system is based on an algorithm. If somebody
knows the algorithm, he/she will be able to extract
the secret information. In future, this can be enhanced
by encrypting the secret to make it more challenging
to decrypt.

Forth, we should enable MSCUKAT program to
read cover-media that has hidden secret and then
decode it automatically. It should recognize the size of
the secret from reading the first part of cover media.
Fifth, we should look at the possibility of encrypting
the secret to have better security. The security of our
system is based on an algorithm. If somebody knows
the algorithm, he/she will be able to extract the secret
information. This can be enhanced by encrypting the
secret to make it more challenging to decrypt. Sixth,
we should think of compressing the secret as in [2] to
encode the cover media with smaller size secrets. This
will increase the capacity much more but it might add
computational overhead to compress and decompress
the secret.

Seventh, we should use other formats for the secret.
So far, we have used only text files. We look for using
other file types like pdf and power points. For that,
we need to convert those files to their bit binary repre-

July 2010, Volume 2, Number 2 (pp. 109-120)

sentation which is not an easy task. Eighth, we should
make a web version of MSCUKAT to expose the use of
it and make it publically used. This will help us with
getting feedback from the users in order to improve it.
Ninth, we should utilize richer data in the experiment
to have better evaluation of MSCUKAT and compare
it with “Kashida” approaches in [4]. Tenth, we need
to implement Shahreza’s approach [2] and compare it
to our approach and “Kashida” approaches to have
better evaluation in both capacity and security.

8 Conclusion

A study was done on characteristics of Arabic letters
and how the extension letter, Kashida, can be embed-
ded in between Arabic letters. Based on the results
of the study, a new approach is proposed to hide a se-
cret into Arabic text cover media using Kashida. The
proposed approach is maximizing the use of “Kashida”
to hide more information in Arabic text cover media.
Based on this approach, sufficient algorithms have
been designed and implemented in a system. The
developed system, called MSCUKAT (Maximizing
Steganography Capacity Using “Kashida” in Arabic
Text) has been tested and shown promising results
that outperform previous work in [4].

MSCUKAT gives 55% more capacity than best
“Kashida” approach in [4] when we have counted the
applicable locations for “Kashida” in the cover media
independent of the secret. Moreover, MSCUKAT saves
33% of the cover media size that is used to hide a secret
when compared to the best “Kashida” approach. The
ratio between the secret and the needed characters in
the cover media is better 33% in MSCUKAT. Once
we have experimented constant secret with changing
cover media, we have found that using MSCUKAT
approach is giving 78% better than using “Kashida”
approaches. Also, testing constant cover media with
changing secret tells that MSCUKAT approach is
giving better capacity than “Kashida” approaches by
at least 53% more. On the other hand, the number of
1’s in a secret is 29.3% of the secret size based on our
study. This is based on our experiment which assumes
that the information we are encoding is simple text not
encrypted or compressed. It is the same assumption of
the other paper which we compared to. The decrease
of number of 1’s implies reducing the file size (which
will be increased after putting Kashida) by 70.7%
using MSCUKAT compared to “Kashida” approaches.
Based on our study, we conclude that we can have more
capacity by utilizing the places of adding Kashida.

Cleary, the improvements include increasing the
capacity of cover media to hide more secret informa-
tion, reducing the file size increase after hiding the

secret and enhancing the security of the encoded cover
media. Moreover, we have proposed a new secured
MSCUKAT approach that can improve the security of
MSCUKAT. Future work can be carried out from our
experiment to enhance the way we embed “Kashida”
in the text.

Acknowledgements

The authors would like to thank Umm Al-Qura Uni-
versity, Saudi Aramco and King Fahd University of
Petroleum & Minerals (KFUPM) for supporting this
work.

References

[1] Steganography, 2009. Available at http://en.
wikipedia.org/wiki/Steganography.

[2] M.H. Shirali-Shahreza and M. Shirali-Shahreza.
A New Approach to Persian/Arabic Text
Steganography. In Proceedings of the IEEE/ACIS
International Conference on Computer and In-
formation Science (ICIS-COMSAR’06), pages
310-315, 2006.

[3] Adnan Gutub and Manal Fattani. A Novel Arabic
Text Steganography Method Using Letter Points
and Extensions. In Proceedings of the WASET
International Conference on Computer, Informa-
tion and Systems Science and Engineering (1C-
CISSE’07), pages 28-31, Vienna, Austria, 2007.

[4] Adnan Gutub, Lahouari Ghouti, Alaaeldin Amin,
Talal Alkharobi, and Mohammad K. Ibrahim.
Utilizing Extension Character ‘Kashida’ With
Pointed Letters For Arabic Text Digital Water-
marking. In Proceedings of the International
Conference on Security and Cryptography (SE-
CRYPT’07), Barcelona, Spain, 2007.

[5) Ahmed Al-Nazer and Adnan Gutub. Exploit
Kashida Adding to Arabic e-Text for High Ca-
pacity Steganography. In Proceedings of the In-
ternational Workshop on Frontiers of Informa-
tion Assurance & Security (FIAS’09) in conjunc-
tion with the IEEFE 3rd International Conference
on Network & System Security (NSS’09), Gold
Coast, Queensland, AUSTRALIA, 2009.

[6] Mohammed Aabed, Sameh Awaideh, Abdul-
Rahman Elshafei, and Adnan Gutub. Arabic
Diacritics Based Steganography. In Proceedings
of the IEEE International Conference on Signal
Processing and Communications (ICSPC’07),
pages 756—759, Dubai, UAE, 2007.

[7] Adnan Gutub, Yousef Elarian, Sameh Awaideh,
and Aleem Alvi. Arabic Text Steganography Us-
ing Multiple Diacritics. In Proceedings of the 5th
IEEFE International Workshop on Signal Process-

1S¢0ured)

119

http://en.wikipedia.org/wiki/Steganography
http://en.wikipedia.org/wiki/Steganography

120

High Capacity Steganography Tool for Arabic Text Using ‘Kashida’ —A. A. Gutub and A. A. Al-Nazer

ing and its Applications (WoSPA’08), University
of Sharjah, Sharjah, UAE, 2008.

[8] M.H. Shirali-Shahreza and M. Shirali-Shahreza.
Steganography in Persian and Arabic Uni-
code Texts Using Pseudo-Space and Pseudo-
Connection Characters. Journal of Theoretical
and Applied Information Technology (JATIT), 4
(8):682—687, 2008.

[9) M. Shirali-Shahreza. Pseudo-space Per-
sian/Arabic text steganography. In Proceedings
of the IEEE Symposium on Computers and Com-
munications (ISCC’08), pages 864-868, 2008.

[10] Mohammad Shirali-Shahreza and Sajad Shirali-
Shahreza. Persian/Arabic Unicode Text
Steganography. In Proceedings of the Fourth In-
ternational Conference on Information Assur-
ance and Security (ISIAS’08), pages 62-66. IEEE
Computer Society, 2008.

[11] Jibran Ahmed Memon, Kamran Khowaja, and
Hameedullah Kazi. Evaluation of Steganography
for Urdu /Arabic Text. Journal of Theoretical
and Applied Information Technology (JATIT), 4
(3):232-237, 2008.

[12] Mohammad Shirali-Shahreza. A New Per-
sian/Arabic Text Steganography Using “La”
Word. In Proceedings of the International Joint
Conference on Computer, Information, and Sys-
tems Sciences, and Engineering (CISSE’07),
pages 339-342, Bridgeport, CT, USA, 2007.
Springer Verlag.

Adnan Abdul-Aziz Gutub is currently
working as Chairman of the Information Sys-
tems Department at the College of Computer
& Information Systems within Umm Al Qura
¥ University, Makkah Al-Mukarramah, all Mus-
| lims religious Holy City located within the
Kingdom of Saudi Arabia. Before this admin-
istrative position, he worked as a researcher at the Center of
Research Excellence in Hajj and Omrah (HajjCoRE) at Umm
Al Qura University.
Adnan is an associate professor in Computer Engineering
previously affiliated with King Fahd University of Petroleum
and Minerals (KFUPM) in Dhahran, Saudi Arabia.

1SeCure

He received his Ph.D. degree (2002) in Electrical & Computer
Engineering from Oregon State University, USA. He has his
BS in Electrical Engineering and MS in Computer Engineering
both from KFUPM, Saudi Arabia. Adnan’s research interests
are in optimizing, modeling, simulating, and synthesizing
VLSI hardware for crypto and security computer arithmetic
operations. He worked on designing efficient integrated circuits
for the Montgomery inverse computation in different finite
fields. He has some work in modeling architectures for RSA
and elliptic curve crypto operations. His interest in computer
security also involved steganography such as simple image
based steganography and Arabic text steganography.

Adnan has been awarded the UK visiting internship for 2
months of summer 2005 and summer 2008, both sponsored
by the British Council in Saudi Arabia. The 2005 summer
research visit was at Brunel University to collaborate with
the Bio-Inspired Intelligent System (BIIS) research group in
a project to speed-up a scalable modular inversion hardware
architecture. The 2008 visit was at University of Southampton
with the Pervasive Systems Centre (PSC) for research related
to advanced techniques for Arabic text steganography and
data security.

Adnan Gutub filled many administrative academic positions
at KFUPM; before moving to Umm Al-Qura University, he
had the experience of chairing the Computer Engineering
department (COE) at KFUPM from 2006 to 2010.

Ahmed Ali Al-Nazer is a PhD candidate
in Computer Science and Engineering at King
Fahd University of Petroleum and Minerals
(KFUPM) in Saudi Arabia. He has completed
all the PhD course requirements and work-
ing on the dissertation proposal. Since 2001,
Ahmed is working in the IT of the largest
| oil producer company in the world, Saudi
Aramco where he got exposed to real world

a1

information technology deployments.

Ahmed received his BSc degree in Computer Science in 2001and
MSc degree in Computer Science in 2006 both from King Fahd
University of Petroleum and Minerals, Dhahran, Saudi Ara-
bia. His thesis title was: “Collaborative Autonomous Interface
Agent for Personalized Web Search”. Ahmed’s research ar-
eas are in semantic web, data mining, steganography, security
applications, software engineering, machine learning, personal-
ization, search engines technologies and enterprise search. He
worked on Arabic stegnoagrpahy on new powerful techniques
to hide information in the Arabic text.

Ahmed has published several technical papers and conducted
technical researches and participated in many scientific con-
ferences. He delivered couple of seminars & public lectures in
IEEE and local conferences. In addition, he participated in
several funded research projects.

	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Improvements
	5 Experiments and Comparisons
	6 Secured MSCUKAT
	7 Future Work
	8 Conclusion
	Acknowledgements

