
Adnan Gutub, Lahouari Ghouti, Yousef Elarian, Sameh Awaideh, Aleem Alvi

Kuwait Journal of Science & Engineering (KJSE), Vol. 37, No. 1, June 2010

Utilizing Diacritic Marks for Arabic Text Steganography

ADNAN A. GUTUB1, LAHOUARI M. GHOUTI2, YOUSEF S. ELARIAN2,

SAMEH M. AWAIDEH2, ALEEM K. ALVI 2

1Center of Excellence in Hajj and Omrah Research, Umm Al-Qura University, Makkah, Saudi
Arabia.
Associate Researcher, Center Of Excellence in Information Assurance (CoEIA), King Saud
University, Riyadh, Saudi Arabia.
Email: aagutub@ uqu.edu.sa

2College of Computer Sciences and Engineering, King Fahd University of Petroleum &
Minerals, Dhahran 31261, Saudi Arabia.

ABSTRACT

Arabic diacritic marks represent efficient carriers to hide information in plain text. The ability of

diacritics to be invisibly superimposed on each other when typed multiple times consecutively makes

them suitable for robust data-hiding applications. In this paper, we propose two different algorithms to

map secret messages into repeated diacritics in a non-wasteful fashion, where the number of extra

diacritics is defined in fixed and variable size fashions. Therefore, the size of the outputted text is

decided by the encoding flexibility. Both steganographic algorithms are characterized by several

advantages over their existing counterparts. Finally, we provide a detailed performance analysis of both

algorithms in terms of embedding capacity, robustness and file-size measures.

Keywords: Arabic text; capacity; data hiding; diacritic marks; steganography.

INTRODUCTION

Since ancient times, people have recognized the importance of information (and communication) secrecy

and security. Since then, several approaches have been successfully adopted and used for covert

communications and information exchange. Steganograhy, or the art of covert writing, has emerged as

the most efficient means for such purposes in hostile situations such as wartime. As such, steganograhy

aims at concealing the very existence of the covert messages from enemies, attackers and hackers alike

which would ensure the secrecy, and hence the security, of these covert messages. The “plain messages”

(or "plaintext" in cryptography) are discreetly manipulated to seamlessly carry the secret (or covert)

messages. Moreover, nowadays with the emergence of the Internet, the Global Information Highway,

steganography has been the focus of active research to develop novel and innovative techniques to serve

such purposes. Figure 1, as represented by Dmitri (2007), gives an outline where a detailed hierarchical

classification of steganography is given.

Adnan Gutub, Lahouari Ghouti, Yousef Elarian, Sameh Awaideh, Aleem Alvi

Kuwait Journal of Science & Engineering (KJSE), Vol. 37, No. 1, June 2010

In Figure 1, the adopted classification categorizes the different steganograhic techniques according to

the type of the cover message. In this paper, we restrict our work to the class of text-based

steganography. The linguistic-based techniques exploit the computer-coding techniques to hide the

covert messages (Dmitri 2007). Information hiding through the use of signs and symbols belongs to the

semagram-based steganography class.

Arabic diacritic marks have been efficiently used for information hiding (Shirali 2006, Aabed et al.

2007, Gutub & Fattani 2007, Gutub et al. 2008. In this case, extra instances of some diacritics are

inserted in the text to enable the embedding of the covert message. The diacritic multiple insertion is

carried out in an invisible fashion where the inserted diacritics are superimposed on each other without

affecting their initial positions. The covert information is carried by the multiple instantiations (or

insertions) of these diacritics. It is easy to note the increase in size of the resulting cover message in

terms of file size.

Figure 1: Classification tree of steganography (Dmitri 2007).

The paper is organized as follows. Some background information on Arabic diacritics is given in

Section 2. In Section 3, an account of the existing work on Arabic and several non-Arabic scripts’

steganography is given. The two proposed steganographic algorithms (fixed-length and variable-length

encoding) are detailed in Section 4. The new concept of wasting property is established in Section 5.

Several issues related to the properties of the cover message are also discussed here. In Section 6, we

discuss the proposed techniques to be used for the mappings of the covert message. Furthermore, a

qualitative analysis of the mapping schemes is given. A detailed description and performance analysis of

the steganographic prototypes, developed based on the proposed algorithms, are given in Section 7 in a

quantitative manner. Finally, Section 8 concludes the paper by summarizing the proposed steganographic

algorithms.

BACKGROUND ON ARABIC DIACRITIC MARKS

In Arabic scripts, Arabic diacritics (or consonants) decorate letters in a way to modify their

pronunciations (Gutub et al. 2008). Fathah, Dammah and Kasrah specify the ‘a’, ‘u’ and ‘i’ short

vowels, respectively. Fathatan, Dammatan and Kasratan are the three respective variations with

Tanween (translated as nunation, or n'ing). These may occur at the end of some Arabic nouns to make a

Adnan Gutub, Lahouari Ghouti, Yousef Elarian, Sameh Awaideh, Aleem Alvi

Kuwait Journal of Science & Engineering (KJSE), Vol. 37, No. 1, June 2010

pleasant n sound, just like the n in “an” (in contrast to “a”) (Tanween 2009). The Sukun diacritic

explicitly indicates the end of a syllable (absence of a vowel) (Sukuun & Shadda 2009). Finally, Shaddah

replaces a double-consonant and introduces a termination (Al-Ghamdi & Zeeshan 2007). These marks

are written over or beneath Arabic characters. It should be noted that for digital representation purposes,

they are represented (encoded) as characters (Abandah & Khundakjie 2004). The six diacritics of Arabic

script are shown in Figure 2 (Aabed et al. 2007) arranged from right to left following the order

mentioned above.

Figure 2: Arabic diacritic marks.

As in most languages, vowels occur frequently in the Arabic language. Particularly in Arabic, the

nucleus of every syllable is a vowel (El-Imam 2004). The frequent occurrence of these vowels would

imply an abundance of diacritics in any Arabic script. However, it should be noted that the use of

diacritics is optional and not even a common practice in modern standard Arabic (Aabed et al. 2007). But

it should be noted that for holy scripts, mainly the Quran, and in situations where the subtle alterations of

diacritics would lead to crucial differences and meanings being distorted. In fact, Arabic readers are

trained to deduce diacritic marks (Shirali 2006, Gutub & Fattani 2007). To illustrate the effect of

omitting the vowel diacritics, consider reading the English sentence shown in Figure 3 (Sakhr Software

Co 2009).

Figure 3: An English sentence and its non-vowelized version - reproduced in part from (Sakhr Software Co).

 Knowing the facts mentioned previously, diacritics might be abundant when the appropriate texts,

manuscripts and documents are considered. Results of a simple Arabic content query in Google® are

summarized in Table 1.

Table 1: Per-diacritic statistics.

Diacritic
Number of page references

by Google
Numbers of diacritics in Musnad Al-

Imam Ahmed (available online)
Fathah 1,220,000 1,679,820

Dammah 854,000 367,224
Kasrah 683,000 472,101
Fathatan 1,500,000 18,752
Dammatan 603,000 24,096
Kasratan 1,040,000 50,820
Sukun 643,000 459,566

Shaddah 1,130,000 300,906

The number of retrieved documents for each diacritic mark independently (shown in Column 1) is

Adnan Gutub, Lahouari Ghouti, Yousef Elarian, Sameh Awaideh, Aleem Alvi

Kuwait Journal of Science & Engineering (KJSE), Vol. 37, No. 1, June 2010

summarized in the second column of Table 1. For comparison purposes, the individual frequencies in

Musnad Al-Imam Ahmed (2009) are presented in the third column of Table 1. We used Musnad Al-

Imam Ahmed because it is well known as one of the largest religious books available online. It is quite

interesting to notice the abundance of these diacritics in both types of documents which supports our

opinion about the appropriateness of the considered documents for a successful implementation of the

proposed steganographic schemes.

RELATED WORK

Following the successful applications of steganography in English, other Latin and non-Latin texts,

information hiding for Arabic text begun to emerge. Because of the peculiar nature of Arabic texts, three

inherent properties of Arabic script have been considered for steganograhy: dots, connectability and

diacritics. Shirali (2006) proposed a new method for hiding information in Persian and Arabic Unicode

texts. Shirali (2006) presented two special characters, the zero width non-joiner (ZWNJ) and zero width

joiner (ZWJ) characters, respectively, used to hide information in Persian and Arabic Unicode text

documents. It is known that in Persian and Arabic texts, most letters are normally connected together in

words. However, the ZWNJ character prevents the Persian and Arabic letters from joining and the ZWJ

character forces them to join together. More specifically, Shirali (2006) hides secret information in the

points’ location within the pointed letters. First, the hidden information is looked at as binary with the

first several bits (for example, 20 bits) to indicate the length of the hidden bits to be stored. Then, the

cover medium text is scanned. Whenever a pointed letter is detected, its point location may be affected

by the hidden info bit. If the value of the hidden bit is one, then the letter point is slightly shifted up;

otherwise, the point location remains unaffected. This point shifting process is shown in Figure 4 (Shirali

2006) for the Arabic letter ‘Fa’. It should be noted that in order to create more perceptual transparency,

the points of the unaltered letters are randomly changed.

Figure 4: Point shift-up of Arabic letter ‘Fa’(Shirali 2006).

It should be noted that this method can hide one bit in each Persian/Arabic letter which would enable a

high capacity for text hiding. Also, this method does not yield visible alterations on the cover text which

would achieve a desirable perceptual transparency. However, the algorithm, proposed by Shirali (2006),

requires special fonts to be installed and gives different codes to the same Persian/Arabic letter

depending on the secret bit being hidden. Therefore, it suffers from being practical as a standard (Gutub

et al. 2007).

Adnan Gutub, Lahouari Ghouti, Yousef Elarian, Sameh Awaideh, Aleem Alvi

Kuwait Journal of Science & Engineering (KJSE), Vol. 37, No. 1, June 2010

Samphaiboon and Dailey (2008) propose a steganographic scheme for Thai plain text documents. In

the Thai TIS-620 system, the standard Thai character set, vowel, diacritical, and tonal symbols are

redundantly composed in a very special way (Samphaiboon & Dailey 2008). Samphaiboon and Dailey

(2008) exploit such redundancies as the compound characters combining vowel and diacritical symbols

in the TIS-620 system. Their proposed scheme is characterized by unnoticeable textual modifications and

achieves an embedding capacity of 0.22% (Samphaiboon & Dailey 2008). Thai characters can be placed

vertically at four levels: 1) top level; 2) above level; 3) base-line level; and 4) below level, as shown in

Figure 5.

Figure 5: Four levels of vertical placement of Thai symbols (Samphaiboon & Dailey 2008).

This scheme is a blind one since the original cover text is not required for decoding. Moreover, this

embedding scheme allows 2.2 bytes of covert text per kilobyte of cover text on average. However, it

should be noted that this scheme applies only to Thai text and cannot be generalized easily.

Amano and Misaki (1999) propose a feature calibration scheme for steganographic uses in Japanese

texts by embedding and detecting watermarks in document images. A calibration method is proposed to

use the difference between two features extracted from two sets of partitions arranged symmetrically. In

this method, the average width of character strokes is used as a feature. Figure 6 shows a typical two-set

partitioning as proposed by Amano and Misaki (1999). Figure 7 shows the plain text in (a), the cover text

after 1-bit embedding in (b), and the cover text after 0-bit embedding (c). It is clear from Figure 7 (b and

c) that the proposed partitioning layout is able to counterbalance the variations of the stroke width feature

with respect to the font face, font size, contents printed, and re-digitization.

Figure 6: Partitioning and Grouping into two sets (Amano & Misaki 1999).

(a)

(b)

(c)

Figure 7: Steganograhy example in Japanese text. (a) Plain text. (b) Cover text with 1-bit embedded.
(c) Cover text with 0-bit embedded (Amano & Misaki 1999).

Adnan Gutub, Lahouari Ghouti, Yousef Elarian, Sameh Awaideh, Aleem Alvi

Kuwait Journal of Science & Engineering (KJSE), Vol. 37, No. 1, June 2010

Kim and Oh (2004) propose a novel algorithm for watermarking grayscale Korean text document

images. The algorithm embeds the watermark signals through edge-direction histograms. The algorithm

exploits the sub-image consistency concept. Text sub-images are assumed to have similar-shaped edge

direction histograms. They showed the assumption validity over a wide range of document images. A

text block (or more) is designated as a mother block. A reference edge-direction histogram is provided by

the unaltered mother block(s). Then, each of the remaining blocks (referred as a child block) is modified

by the embedding process to have an edge direction histogram different from the mother block(s)

depending on the bit value (0 or 1). Figure 8 shows an example of plain and cover Korean texts images.

 (a) (b)

Figure 8: Steganograhy example in Korean text. (a) Plain text. (b) Cover text (Kim and Oh 2004).

PROPOSED ALGORITHMS

In an attempt to alleviate the limitations of Arabic-based steganographic algorithms (Shirali 2006), we

will propose the use of the connectivity property. Gutub & Fattani (2007) and Gutub et al. (2007)

presented methods for utilizing the Kashidas for steganograhy. Kashida (the Arabic redundant extension

character used for justifying or beautifying a text) before/after dotted/un-dotted characters has overcome

the need for requiring new fonts to be installed. Gutub & Fattani (2007) proposed a steganographic

scheme that hides secret information bits within Arabic letters by exploiting their inherited points. To

locate a specific letter carrying the secret bits, the pointed letters and the redundant Arabic extension

character (Kashida) are considered. A one-bit is secretly hidden in a pointed letter with extension, and an

un-pointed letter with extension is used to host a zero-bit. Note that the letter extension does not have any

effect on the content writing nor meaning. It has a standard character hexadecimal code: 0640 in the

Unicode system (Gutub et al. 2007). In fact, this Arabic extension character in electronic typing is

considered a redundant character only for arrangement and format purposes. The embedding scheme is

illustrated in the example shown in Figure 9.

Figure 9: Steganography example adding extensions after letters.

Adnan Gutub, Lahouari Ghouti, Yousef Elarian, Sameh Awaideh, Aleem Alvi

Kuwait Journal of Science & Engineering (KJSE), Vol. 37, No. 1, June 2010

In Figure 9, a secret information code 110010 will be discreetly embedded into a plain Arabic text.

The least significant bits are considered first. The first secret bit ‘0’ will be hidden in an un-pointed

letter. The cover text is scanned from right to left due to Arabic regular writing/reading direction. The

first un-pointed letter in the cover-text is the ‘meem’ letter. This ‘meem’ will carry the first secret bit ‘0’

by adding an extension character after it. The second secret bit, ‘1’, cannot be hidden in the second letter

of the cover text, ‘noon’ because this letter position cannot allow extension (based on Arabic language

writing rules). The next possible pointed letter to be extended is ‘ta’. Note that a pointed letter ‘noon’

before ‘ta’ is not utilized due to its unfeasibility to add an extension character after it. The technique,

proposed by Gutub & Fattani (2007), can be applied in a straightforward fashion to texts having similar

approaches of pointing and extending letters (such as the Persian and Urdu texts). However, a reduction

in hiding capacity occurs due to the restricting rules on the usage of Kashida and due to the wasting

property described in the following Section.

Diacritic marks in Arabic text have been proposed for steganography by Aabed et al. (2007). Their

approach makes use of eight different diacritical symbols in Arabic to hide binary bits in the original

cover media. The embedded information is then extracted by reading the diacritics from the document

and translating it back to a binary representation. Fully diacritized Arabic texts are used as cover media.

Then, the first bit of the secret data is compared with the first diacritic in the cover media. If, for

example, the first secret bit is one and the first diacritic is a ‘fatha’, the diacritic is kept on the cover

media and an index for both the embedded text and the cover media is incremented. If, however, the first

diacritic was not a ‘fatha’, then it is removed from the cover media and the index for the cover media is

incremented to explore the next diacritic. The same approach is repeated until the next ‘fatha’ is found. A

secret zero-bit is embedded in the same way, except it will use the remaining seven diacritics other than

‘ fatha’. The embedding process is illustrated in Figures 10-a and 10-b.

Figure 10-a: Example of a Standard Arabic text with full diacritics placement.

Figure 10-b: Example of using Standard Arabic diacritics to encode a pseudo-random sequence.

Figure 10-a shows a standard Arabic text full of diacritics (the plain text in this case). The secret

message consists of a pseudo-random sequence represented in hexadecimal format as:

E7 - 30 - E9 - 1C - A4 - FC - B8 - B9 - AF - 1F - 0B - D9 – 22

The resulting cover media (or text) is illustrated in Figure 10-b. Notice the clear differences in diacritics

between the two texts illustrated in Figures 10-a and 10-b, respectively. These differences indicate that

the secret message has been effectively and discreetly hidden in the cover text. It should be noted that the

Adnan Gutub, Lahouari Ghouti, Yousef Elarian, Sameh Awaideh, Aleem Alvi

Kuwait Journal of Science & Engineering (KJSE), Vol. 37, No. 1, June 2010

same cover media can be reused more than once if needed. However, unless a method is used to reinsert

the removed diacritics, hiding capacity will decrease drastically every time a new message is embedded

into the cover text. Zitouni et al. (2006) propose the use of maximum entropy to restore the missing

Arabic diacritics. Another approach using hidden Markov models (HMMs) to restore the vowels is

proposed by Gal (2002). Diacritic restoration can also be done manually if necessary, and in any case, a

new cover media, already diacritized, can be used instead.

 Borrowing ideas from the computer representation (display/print) of Arabic diacritic marks, Gutub et

al. (2008) propose two different approaches: 1) textual; and 2) image. In the first approach, the whole

secret message can be hidden in a single diacritic mark by hitting/typing (or generating) a number of

extra-diacritic keystrokes equal to the binary number representing the secret message. For example, to

hide the binary string (110001)b = 49d, the repetition rate is n = 50. This number seems quite high for

such approaches. One solution could consist of performing the same algorithm on a block of a limited

number of bits. For illustration, we consider the same secret message of (110001)b; then we will repeat

the first diacritic 3 extra times (3 = (11)b); the second one, 0 extra times (0 = (00)b); and the third one, 1

extra time (1=(01)b).

 Gutub et al. (2008) propose a variant for the same approach similar to the run-length encoding (RLE)

algorithm used in data compression. In the RLE variant, the first diacritic mark is repeated in the cover

text as much as the number of consecutive, say, ones emerging in the beginning of the secret message

stream. Similarly, the second diacritic is repeated equivalently to the number of the consecutive zeros in

the secret text. In the same way, all oddly-ordered diacritics are repeated according to the number of next

consecutive ones, and all the evenly-ordered ones are repeated according to the number of zeros. For

illustration, the RLE variant to embed the same secret message would imply repeating the first diacritic

two times (2 = number of 1’s in the sequence (11)b); the second one three times (3 = number of 0’s in the

sequence (000)b); and the third one one time. Table 2 summarizes the results of information hiding and

encodings of the binary sequence 110001 using the two variants (block and RLE encoding) of the textual

approach.

Table 2: Embedding results of the binary sequence 110001 using the two variants of the textual approach.

Scenario Extra diacritics
Textual approach: Variant 1 (All stream) 49
Textual approach: Variant 1 (Block Size = 2) 3 + 0 + 1 = 4
Textual approach: Variant 2 (RLE Encoding) (2-1) + (3-1) + (1-1) = 3

In the second approach, image-based, one of the fonts that slightly darken multiple occurrences of

diacritics is selected. Figure 11 (a) shows the darkening of the black level of the diacritics by multiple

instances. The brightness levels of such diacritics are quantized by adding their 24 color-bits

representation as a concatenated sequence. Notice that the less the brightness level, the more the darkness

is. It should be noted that image conversion is necessary in this approach to withstand printing effects.

This conversion is necessary given the major differences between the printing and display technologies

used in rendering such complex Arabic characters (Correll 2000). It is interesting to note that the printing

process does not darken extra diacritic instances of text, even when they are by the display process. This

Adnan Gutub, Lahouari Ghouti, Yousef Elarian, Sameh Awaideh, Aleem Alvi

Kuwait Journal of Science & Engineering (KJSE), Vol. 37, No. 1, June 2010

non-uniformity in the effects reduces the possible number of repetitions of a diacritic to such a level that

will allow the diacritic to simultaneously withstand both printing and scanning processes. This limitation

favors the use of the textual approach over the image counterpart. More specifically, the block-based

variant with a small block size (say, 2). In addition to this, the size of the image file containing the cover

text is usually much larger than that of the text-based representation. Finally, it is worth mentioning that

to transform the text into an image format (such as the portable document format (PDF) which will

prevent it from accidental or intentional font manipulation) would hinder the security of the embedded

information.

 (a) (b)
Figure 11: (a) Image representation of Arabic diacritics. (b) Quantization of brightness levels of selected diacritics

by adding the 24 color-bits.

Table 3 gives a summary of the capacity, robustness and security of the proposed approaches. It

should be noted that we have considered two different cover media for the image-based approach. In the

first instance, a softcopy of the document image is used as a cover media, while a printed version of the

document is used in the second one. Although the textual approach is not, generally, robust to printing, it

Table 3: Comparison of the proposed approaches in terms of capacity, robustness and security.

Proposed Approach Capacity Robustness Security

Text + Softcopy High, up to infinity
using the first variant

Not robust to
printing

Invisible, in code

Image + Softcopy Very low, due to image
overhead

Not robust to
printing

Slightly visible

Image + Hardcopy Moderate in first variant
(Block size of 2)

Robust to printing Slightly visible

is capable of achieving arbitrarily high embedding/hiding capacities. However, the security of the

embedded information can be jeopardized when the cover media is excessively used for embedding and,

therefore, the file size gets increasingly larger. On the other hand, the image approach is, to some extent,

robust to printing. For comparison purposes, we have considered, in our work, the softcopy version. It

has a very low embedding capacity. Also, its security is vulnerable since text is not usually sent in

Adnan Gutub, Lahouari Ghouti, Yousef Elarian, Sameh Awaideh, Aleem Alvi

Kuwait Journal of Science & Engineering (KJSE), Vol. 37, No. 1, June 2010

images. The hardcopy version of the image approach aims to achieve robustness with good security.

It should be noted that the redundant nature of using such diacritics has served information hiding by

the selective omission of some instances. Again, this proposal suffered from the wasting property. To

improve the capacity, however, a multi-instance approach, with non-wasting scenarios, was proposed by

Aabed et al. (2007). We will explore the wasting property in the next Section.

EXPLOITING WASTING PROPERTY TO IMPROVE STEGANOGRAPHY

In this Section, we will first define the wasting property noticed in some steganographic algorithms. The

wasting property manifests itself in algorithms that use different kinds of cover media for different types

of secret messages. For example, the original Kashida method can hide a one-bit after a dotted Arabic

character (after pointed letter), but needs an un-dotted character to hide a zero-bit. This would mean an

excess waste of the cover media whenever the latter is not appropriate for the secret bit to be embedded.

Figure 12 shows a regular Kashida-based steganographic process. An improved version that exploits the

wasting property is shown in Figure 13. In this case, the potential recipient segments (cover blocks) of

the Arabic cover are elongated and highlighted (underlined). Then, the secret binary sequence 11001 will

be embedded in the shown cover text in Figure 12. The wasted cover text blocks are double underlined

(highlighted in red) while the ones being used are marked with a single underline (highlighted in green).

It is worth noting that this sentence is only able to bear three (out of 5) secret bits.

 ھـنـا الـقـاھـرة
Figure 12: Embedding the secret sequence (110)b in a text line using the Kashida method (wasting property).

A non-wasting version of the Kashida method would remove the dotted letter consideration from the

procedure. We simply insert a Kashida after an extendible character to represent a one, and omit a

(otherwise possible) Kashida for a secret zero, i.e. regardless of the character’s possession of dots. All

five extendible characters in the text line are now capable of carrying an arbitrary bit: zero or one. The

result of embedding the same 5-bit binary sequence is depicted in Figure 13 with the “to-remain”

Kashidas as double underlined (highlighted in yellow) and the “to-omit” ones as single underlined

(highlighted in blue). Usually the maximum achievable capacity is obtained when using a non-wasting

algorithm.

 رةـاھـقـا الـنـھ
Figure 13: Embedding the secret sequence 11001 in a text line using the non-wasting Kashida method.

In this way, we principally classify non-wasting steganographic scheme for any scheme whose

embedding capacity is simply a function of the number of secret-bit carriers and not of their actual

sequence. With this in mind, the proposed diacritics algorithm, detailed by Aabed et al. (2007), is a non-

Adnan Gutub, Lahouari Ghouti, Yousef Elarian, Sameh Awaideh, Aleem Alvi

Kuwait Journal of Science & Engineering (KJSE), Vol. 37, No. 1, June 2010

wasting enhancement to that outlined by Gutub et al. (2008).

MAPPING THE HIDDEN MESSAGE

The diacritics algorithm presented by Aabed et al. (2007) embeds secret messages in multiple instances

of invisible Arabic cover text with diacritics. Because multiple-instances are used in the hiding process,

secret binary bits must be decoded into the (integer) number of repetitions of a diacritic mark. We will

provide a comparison between two possible decoding scenarios: the fixed-size decoding scenario and the

content-based decoding scenario.

The former decoding scheme parses a stream of binary bits into blocks of fixed size. The size of the

block is system-dependent. Decoding a block of bits into an integer is straightforward given that a coding

system is defined. Here, the basic Binary Code System is assumed. The latter scheme, variable-size

content-based, parses a stream binary data into an integer number regardless of the number of bits they

might have. The basic RLE idea is used to perform the mapping. It maps all consecutive ones and all

consecutive zeros into the length of their corresponding run.

Table 4 shows the encodings of the binary value 11000101 according to the two scenarios. Column 2

shows how the original sequence (i.e., the binary value 11000101 upper row in the mapping Column –

typed in red) is mapped into integers (beneath the corresponding sets of bits). The total number of blocks

that are used in the sequence mapping is shown in Column 3. It defines the minimum number of diacritic

marks that need to be found in the cover message to carry the secret message. The number of extra

diacritics to be added to the cover message to enable secret message embedding is given in the last

column.

Table 4: The encodings of the binary value 11000101 according to the two scenarios.

Scenario Mapping
Needed

Diacritics
Extra Diacritics

Fixed-size
= 1

1 1 0 0 0 1 0 1
1 1 0 0 0 1 0 1

8 1 + 1 + 0 + 0 + 0 + 1 + 0 + 1 =
4

Fixed-size
= 2

1 1 0 0 0 1 0 1
3 0 1 1

4 3 + 0 + 1 +1 = 5

Fixed-size
= 4

1 1 0 0 0 1 0 1
12 5

2 12 + 5 =13

Content-
based

1 1 0 0 0 1 0 1
2 3 1 1 1

5 (2-1)+(3-1)+(1-1)+(1-1)+(1-1)
= 8 - 5 =3

Comparing our two decoding schemes, we notice that the number of needed diacritics in the fixed-size

scenario is determined solely by the size of the secret message, regardless of the actual data it carries.

The size of the combined message, however, cannot be predicted until decoding of the actual data is

performed. On the other hand, the number of required diacritics in the content-based scheme cannot be

predicted without examining the content of the secret message to find out the number of runs. Moreover,

Adnan Gutub, Lahouari Ghouti, Yousef Elarian, Sameh Awaideh, Aleem Alvi

Kuwait Journal of Science & Engineering (KJSE), Vol. 37, No. 1, June 2010

it is interesting to notice that the size of the final combined output can be determined solely by inspecting

the size of the secret message. These findings are summarized in Table 5.

Finally, for an optimized use of both decoding schemes, the fixed-size method should be considered

when the selection of the cover message must be done quickly. However, content-based decoding should

be considered when the size of the combined message matters most. Therefore, whenever the size is the

only determining factor, the related property is easier to compute in advance.

Table 5: Factors determining the sizes of the cover and the combined messages for the two decoding schemes.

Scenario Needed Diacritics Extra Diacritics

Fixed-size only size of secret data complete secret data sequence

Content-based complete secret data sequence only size of secret data

PERFORMANCE RESULTS

 A prototype steganographic system is implemented to carry out the performance evaluation of the

proposed algorithms. In the first stage of the evaluation, a dataset to be used as covert text messages must

be appropriately selected. For this purpose, an Arabic text corpus from the University of Leeds

(Al-Sulaiti 2004) was used. Then, a set of plain text content was selected to be used as a cover message.

One of the largest e-books available in Arabic literature, Musnad Al-Imam Ahmed (2009), was used for

such purposes. Because of its large size, half the volume was considered sufficient for our testing

purposes. The selected content contains 7,305,490 characters and 1,037,265 words. Once the data sets

were selected, hidden messages were encrypted and hidden in the cover text. Then a performance

analysis was carried out. It is worth mentioning that the encryption stage is not integral to the proposed

steganographic algorithms but it aims at increasing the security level of the covert messages only. The

encryption was carried out using a publicly available library in Crypto++ Reference Manual (available

online). The encode/decode library supports most of the basic schemes in modern cryptography literature

such as the Elliptic Curve Cryptography (ECC) defined over GF(p) (Koblitz 1987) with private and

public keys randomly generated. At the output of the ECC block, we noticed that the RLE encoding

gives comparable efficiency to the 2-bits block. Further investigation on the resulting data revealed that

the ECC block was generating balanced data.

Tables 6 and 7 give a summary of the utterances of the different patterns used. Both tables clearly

indicate that the data is well balanced in this regard. For the extraction stage, the hidden message is first

extracted from each output file by counting diacritics and translating them into bytes. The RLE block

requires an extra step for flattening each run into its corresponding bits. Then, the hidden messages are

decoded using the Crypto++ library, and the output is compared with the original hidden files.

For a realistic testing procedure, excerpts of corpus (i.e., a representative sample of the naturally used

language) are selected as the original secret messages. The corpus used is the Corpus of Contemporary

Arabic (CCA) from Al-Sulaiti (2004) PhD thesis, which is reported to have 842,684 words from 415

diverse texts, mainly from websites. Furthermore, we encrypt these messages before hiding them, as

Adnan Gutub, Lahouari Ghouti, Yousef Elarian, Sameh Awaideh, Aleem Alvi

Kuwait Journal of Science & Engineering (KJSE), Vol. 37, No. 1, June 2010

mentioned previously. Table 8 shows sizes of the plain text and its corresponding encrypted message.

Note in Table 8, the ECC encryption slightly increases the size of the message. Our cover messages are

also intended to be natural by choosing them from a well-known Arabic diacritized reference of Musnad

Al-Imam Ahmed (2009) (Abandah & Khundakjie 2004). The book is reported to have a diacritic ratio of

about 50% (Aabed et al. 2007).

Table 6: Utterances of patterns 01 to 11 in the 10 files used.

01 10 11

1059 1098 1090

2138 2112 2055

3066 3112 3187

4128 4216 4160

5343 5208 5171

6197 6138 6266

7244 7185 7303

8065 8283 8336

9050 9213 9508

10459 10303 10349

Table 7: Utterances of patterns 0001 to 1111 in the 10 files used.

0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

139 152 161 137 126 152 133 116 129 123 151 132 117 152 122

298 257 251 271 267 284 237 253 276 262 255 267 238 263 272

406 408 403 377 378 362 376 410 396 363 406 401 393 404 402

508 508 527 510 530 471 530 536 534 549 515 475 515 554 522

640 637 642 642 701 662 684 647 657 652 640 626 656 661 631

764 737 776 795 775 780 772 786 755 756 780 789 781 788 790

897 854 920 927 882 913 919 915 902 874 909 851 922 944 919

1031 1096 1080 1062 986 988 984 992 1012 1044 1101 1039 1016 1006 1055

1149 1130 1283 1182 1104 1123 1082 1169 1150 1156 1166 1240 1156 1163 1209

1323 1269 1319 1252 1341 1314 1267 1283 1316 1256 1276 1275 1305 1333 1287

Based on our findings, we can qualitatively conclude that the choice of the encoding algorithm affects

capacity in two measures:

1. The amount of embedded bits in a predefined cover message (secret bits/cover byte) or the
amount of cover message needed for a given secret message (cover bytes/secret bit).

2. The size of the combined message needed for a hidden message, either compared to the hidden
message (combined bytes/secret bit), or recorded as a percent increase to the size of the cover
message (bytes/byte).

Adnan Gutub, Lahouari Ghouti, Yousef Elarian, Sameh Awaideh, Aleem Alvi

Kuwait Journal of Science & Engineering (KJSE), Vol. 37, No. 1, June 2010

The effects of each scheme on the first and second capacity measures are summarized in Figures 14

and 15, respectively. Further, to see the effect of the block-size parameter within the fixed-size scenario,

we plot the results of three variations of block sizes, namely, 1, 2, and 4. Finally, we show the average

percent increase in the size of the cover message in Table 9, for this ratio results in being independent

from the input message size.

Table 8: Sizes of the indirect plain and the direct cipher inputs to the system.

Original CCA-Text ECC Encrypted Text

(KB) (bits) (bits)

1 8,192 8,736

2 16,384 16,912

3 24,576 25,128

4 32,768 33,296

5 40,960 41,488

6 49,152 49,680

7 57,344 57,872

8 65,536 66,064

9 73,728 74,256

10 81,920 82,448

Figure 14: Needed bytes of cover message per bits of secret message.

It is to be observed as expected that the results of both figures, i.e., Figures 14 and 15, are linear. Also

as anticipated, the slope of the 4-bit blocks scenario in Figure 14 is half of that of the 2-bit blocks

scenario, which in turn is half of the 1-bit blocks scenario slope. Notice the very close values of the

content-based (RLE) curve and the 2-bits block curve. (They appear superimposed in the graph.) Recall

that the relation between the needed cover and the secret messages can be determined solely by knowing

the size of the secret message in the case of the block scenarios.

As for Figure 15, the content-based scenario slightly out-performs the 2-bits block in terms of the final

size. Both of them are better than the 4-bits scenario, which might suffer from high overhead if the block

Adnan Gutub, Lahouari Ghouti, Yousef Elarian, Sameh Awaideh, Aleem Alvi

Kuwait Journal of Science & Engineering (KJSE), Vol. 37, No. 1, June 2010

has leftmost ones. The 1-bit block scenario bears the worst overhead, for each diacritic needs a minimum

of 2 bytes of overhead (the diacritic and the character that bares it).

Figure 15: Bytes of combined message per bits of secret message.

Finally, if the focus of the steganographic implementation is to have minimal variation from the

original text, then the 1-block scenario would function best, as depicted by Table 9. Here the 4-bit size

deteriorates dramatically.

Table 9: Average percent increase from the size of the cover message to the size of the combined message

Scenario Average Percent Increase in Size
Content-based 40.36 %
Fixed-size = 1 20.14 %
Fixed-size = 2 60.41 %
Fixed-size = 4 300.69 %

CONCLUSION

Two steganographic algorithms for Arabic text were proposed. The algorithms were developed based on

a new concept of a wasting/non-wasting property of the Arabic diacritics. The first algorithm, the fixed-

size block parsing, parses a stream of binary bits into cover blocks of fixed size. In the second algorithm,

the variable-size content-based, binary data is parsed into an integer number of blocks regardless of the

number of bits they carry. The proposed algorithms are characterized by different properties and, thus,

are suited for different application types and steganography requirements (i.e. robustness, capacity and

file size). Unlike the content-based algorithm, the fixed-size one allows straightforward computation of

the needed amount of cover text but cannot directly predict the output file size. Reported results indicate

that a 4-bit block size is preferred for a minimal size of the resulting message file. On the other hand, for

minimal overhead, the content-based algorithm is preferred. In terms of percent increase in cover size,

1-bit block acts most secretly.

Adnan Gutub, Lahouari Ghouti, Yousef Elarian, Sameh Awaideh, Aleem Alvi

Kuwait Journal of Science & Engineering (KJSE), Vol. 37, No. 1, June 2010

ACKNOWLEDGEMENT

We thank the KJSE anonymous referees for their reviews that significantly improved the presentation of

this paper. We would also like to thank King Fahd University of Petroleum and Minerals (KFUPM) for

partially hosting this research. Thanks to both research centers: Center Of Excellence in Information

Assurance (CoEIA), King Saud University, Riyadh, and Center of Research Excellence in Hajj and

Omrah, Umm Al-Qura University (UQU), Makkah, for collaborative moral support toward the

achievements in this work.

REFERENCES

Aabed, M., Awaideh, S., Elshafei, A., & Gutub, A. 2007. Arabic Diacritics Based Steganography. Proceedings of
the IEEE International Conference on Signal Processing and Communications (ICSPC 2007), Dubai, UAE, 2007,
Pp. 756-759.

Abandah, G., & Khundakjie, F. 2004. Issues Concerning Code System for Arabic Letters. Dirasat Engineering
Sciences Journal, 31(1):165-177.

Al-Ghamdi, M., & Zeeshan, M. 2007. KACST Arabic Diacritizer. Proceedings of the First International
Symposium on Computers and Arabic Language, 2007.

Al-Sulaiti, L. 2004. Designing and developing a corpus of contemporary Arabic. PhD Thesis, The University of
Leeds. March 2004.

Amano, T., & Misaki, D. 1999. A feature calibration method for watermarking of document images. Proceedings of
the Fifth International Conference on Document Analysis and Recognition (ICDAR 1999), 2:91-94, Bangalore,
India.

Correll, S. 2000. Graphite: an extensible rendering engine for complex writing systems. Proceedings of the 17th
International Unicode Conference, San Jose, California, USA.

Crypto++ Reference Manual. Available online: http://cryptopp.sourceforge.net/docs/ref/.

Dmitri, V. 2007. Digital Security and Privacy for Human Rights Defenders. The International Foundation for
Human Right Defenders, Feb. 2007, Manual.

El-Imam, Y. 2004. Phonetization of Arabic: Rules and Algorithms. Computer Speech and Language,
18(4):339-373.

Gal, Y. 2002. An HMM Approach to Vowel Restoration in Arabic and Hebrew. ACL-02 Workshop on
Computational Approaches to Semitic Languages.

Gutub, A., Elarian, Y., Awaideh, S., & Alvi, A. 2008. Arabic Text Steganography Using Multiple Diacritics.
Proceedings of the 5th IEEE International Workshop on Signal Processing and its Applications (WoSPA 2008),
Sharjah, UAE, 2008.

Gutub, A., & Fattani, M. 2007. A Novel Arabic Text Steganography Method Using Letter Points and Extensions.
Proceedings of the International Conference on Computer, Information and Systems Science and Engineering
(ICCISSE), Vienna, Austria, 2007, Pp. 28-31.

Gutub, A., Ghouti, L., Amin, A., Alkharobi, T., & Ibrahim, M.K. 2007. Utilizing Extension Character ‘Kashida’
With Pointed Letters For Arabic Text Digital Watermarking. Proceedings of the International Conference on
Security and Cryptography (SECRYPT), Barcelona, Spain, 2007.

Kim, Y.-W., & Oh, I.-S. 2004. Watermarking Text Document Images using Edge Direction Histograms. Pattern
Recognition Letters, 25:1243-1251.

Koblitz, N. 1987. Elliptic curve cryptosystems. Mathematics of Computation 48:203–209.

Musnad Al-Imam Ahmad. 2009. available on-line:
http://www.islamport.com/b/3/alhadeeth/motoon/%df%ca%c8%20%c7%e1%e3%ca%e6%e4/%e3%d3%e4%cf%
20%c3%cd%e3%cf%20%c8%e4%20%cd%e4%c8%e1/

Sakhr Software Co. 2009. Challenges in Arabic NLP. Arabic Language Resources (LR) and Evaluation: Status and
Prospects, Pp. 1126-1130.

Samphaiboon, N., & Dailey, M. 2008. Steganography in Thai Text. Proceedings of the Fifth Annual International
Conference organized by Electrical Engineering/Electronics, Computer, Telecommunications and Information
Technology (ECTI) Association (ECTI-CON 2008), Thailand.

Adnan Gutub, Lahouari Ghouti, Yousef Elarian, Sameh Awaideh, Aleem Alvi

Kuwait Journal of Science & Engineering (KJSE), Vol. 37, No. 1, June 2010

Shirali-Shahreza, M.H., & Shirali-Shahreza, M. 2006. A New Approach to Persian/Arabic Text Steganography.
Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2006),
Honolulu, HI, USA, 2006, Pp. 310-315.

Sukuun & Shadda. 2009. Available on-line: http://en.wikibooks.org/wiki/Arabic/LearnRW/Sukuun_and_Shadda.

Tanween. 2009. Available on-line: http://en.wikibooks.org/wiki/Arabic/LearnRW/Tanween.

Zitouni, I., Sorensen, J.S., & Sarikaya, R. 2006. Maximum entropy based restoration of Arabic diacritics.
Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of
the ACL, Sydney, Australia, Pp. 577-584.

